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Abstract: This paper presents a Model Predictive Control (MPC) scheme capable of generating
a 3D gait for a humanoid robot. The proposed method starts from an assigned sequence of
footsteps and generates online the trajectory of both the Zero Moment Point and Center of Mass.
Starting from the moment balance (neglecting rotations) we derive a model characterizing all
3D trajectories that satisfy a linear differential equation along all three axes. Then a solution is
found by extending our previously proposed intrinsically stable MPC, which employs a stability
constraint for guaranteeing boundedness of the solution. The method is validated using a NAO

robot in a simulated dynamic environment.
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1. INTRODUCTION

Humanoid robots gained increasingly more attention in
the last few years. However, the great advantage given by
their versatility comes with multiple challenges that need
to be solved in order to generate appropriate motions.
When walking, the humanoid robot needs to maintain
balance while regularly switching the contact with the
ground. This is usually done by ensuring that the Zero
Moment Point (ZMP) is at all times within the convex
hull of the robot support polygon. Since this is a complex
task, in order to generate such motions a simplified model
which considers only the motion of the Center of Mass
(CoM) is often employed. By neglecting the robot angular
momentum the CoM dynamics can be treated as an
Inverted Pendulum (IP). Moreover, assuming a flat ground
and by constraining the CoM height to a constant value,
the model becomes the Linear Inverted Pendulum (LIP)
obtained by Kajita and Tani (1991). This allowed the
derivation of control schemes for the generation of the CoM
reference trajectory among which the Preview Control
approach of Kajita et al. (2003) quickly became the most
widespread. A notable improvement has been achieved
by embedding Kajita’s preview control approach in a
Model Predictive Control (MPC) framework where hard
constraints can be explicitly taken into account. This
lead to the possibility of generating gaits with footsteps
determined automatically (Herdt et al., 2010). With these
assumptions the LIP is particularly suited for generating
gaits on flat ground, since the constant height of the CoM
can be simply enforced at the kinematic level.

On uneven terrain, however, we need to allow 3D CoM
motions and thus the vertical displacement of the CoM
which now behaves as a variable length IP. The corre-
sponding model becomes nonlinear and the problem could
be approached as in Caron and Kheddar (2017) where
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nonlinear constraints are introduced and a dual MPC
scheme involving nonlinear optimization is used or, more
recently, as in Caron et al. (2018) where capturability-
based concepts are extended to the 3D case.

A simpler alternative considers pre-assigned vertical CoM
motion and results in a time-varying IP frequency as in
(Herdt, 2012; Hopkins et al., 2014). This idea was also
used in (Kamioka et al., 2015) for the transition between
bipedal and quadrupedal locomotion. The resulting system
is linear time-varying and therefore the determination of
suitable CoM motions remains still difficult in general.

It is however possible, while still allowing some vertical mo-
tion of the CoM, to remain in the LIP simple framework.
A first important result is due to Terada and Kuniyoshi
(2007) who constrain the motion of the CoM vertical
component to satisfy a particular differential equation.
The same idea has been developed in (Luo et al., 2013)
introducing a 3D linear model which has a LIP-like dy-
namics also along the z-axis. A closely related approach
has also been used in Englsberger et al. (2015).

Alternative ideas have been proposed in (Takenaka et al.,
2009) studying the divergent component of motion for
running which involves vertical acceleration of the center
of gravity, in (Brasseur et al., 2015) using a linearized
MPC to generate in real time walking motions over uneven
terrain with guaranteed kinematic and dynamic feasibility,
and in (Heerden, 2015) approaching the variable height
CoM problem with a quadratically constrained quadratic
program (QCQP) formulation and solving it via sequential
quadratic programming (SQP).

Since the LIP has an unstable mode, one needs to ensure
that the generated trajectories remain bounded. In a
previous work (Scianca et al., 2016) we developed an
MPC control scheme for gait generation that is guaranteed
to produce bounded constant-height CoM trajectories by
enforcing a stability constraint. In this paper we derive a
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Fig. 1. A humanoid walking on piecewise-horizontal
ground (side view). Note the relative positions of the
CoM, the CoP and the ZMP.

linear model which allows vertical CoM motion and then
design an intrinsically stable MPC for it, thus obtaining a
gait generation method suitable for uneven ground.

The paper is organized as follows. Section 2 describes
the proposed 3D motion model. The intriniscally stable
MPC formulation and algorithm are presented in Sect.
3 and 4, respectively. Dynamic simulations of a gait on
uneven ground are presented in Sect. 5. Section 6 offers
some concluding remarks.

2. 3D MOTION MODEL

In this section we recall first the dynamic equations govern-
ing the 3D motion of the CoM for a humanoid walking on
a specific kind of uneven ground. Then, we show how these
dynamic equations become linear and time-invariant if the
vertical motion of the CoM is appropriately constrained.

In the following we denote by (2, Y, 2,) and (xc, ye, 2zc)
respectively the positions of the ZMP and of the CoM.

2.1 8D CoM dynamics

Throughout this paper, we will assume that the humanoid
is walking on piecewise-horizontal ground, i.e., a composite
surface made by horizontal patches located at different
heights; for example, this is the case of a robot climbing or
descending a staircase, or stepping over boxes of different
sizes. In this situation, the gravity acceleration is always
directed as the normal to the surface. Further, we will
also suppose that the variation of the angular momentum
around the CoM is negligible. These two assumptions lead
to the situation shown in Fig. 1: at each step, the Center
of Pressure (CoP) is located on the corresponding patch
while the ZMP can be anywhere along the line joining the
CoP and the CoM (Caron and Kheddar, 2017).

Under the above assumptions, moment balance around the
ZMP for the x coordinate is expressed as

(ze = 25) Fe = (Zc + 9)(Tc — T2),
where ¢ is the gravity acceleration. An identical balance
equation can be written for the y coordinate. The two
balance equations allow to write the dynamics of the =, y
coordinates of the CoM as

8

Y

Fig. 2. Balance condition in 3D: the CoP should be internal
to the support polygon (light blue). This is equivalent
to requiring that the ZMP is internal to the polyhedral
cone (green) with the CoM as vertex.
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Force balance along the z axis leads to a structurally
different dynamics for the corresponding coordinate:

. I

=2 g, 3)
where f, denotes the z-component of the ground reaction
force, acting as an external input, and m is the total mass
of the humanoid. For a detailed derivation of the above
dynamic equations see, e.g., Kajita et al. (2014).

The condition for maintaining balance is that the CoP is
internal to the support polygon, as this guarantees that
the robot feet do not tilt w.r.t. the ground. Since the
CoP, the CoM and the ZMP are colinear, the condition
is equivalent to the ZMP being internal to the polyhedral
cone having the CoM as vertex and the support polygon
as cross-section, see Fig. 2.

2.2 3D Linear Model

The 3D motion model (1-3) is clearly nonlinear and
therefore cumbersome to use for gait generation. The usual
way to make the model linear is to assume that the ground
is fully horizontal (i.e, all patches are at the same zero
height) and that the CoM elevation over the ground is
constant; as a consequence, we can set z, = 0 (i.e., ZMP
coincident with the CoP) and z. = Z. constant, thus
obtaining the well known LIP model

Te = w(2) (e — x,)

Ye = w(2) (yc - yz)a
where wg = g/z.. This is a 2D linear model which is not
appropriate for gait generation over uneven terrain.

However, requiring the CoM to move at a constant height
is not the only way to make the system linear. A more
general option is constraining its vertical motion so that

=19 _ 2, ()

Zc T %z

with w an arbitrary constant. The LIP model can then be

seen as a particular case in which w? = w?.
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Using (4), egs. (1-2) become
ie = w?(2e — 2,) (5)

Yo = W2(yc - yz)a (6)
whereas the dynamics of z. are directly derived from the
constraint itself (4) as

S = w? (2e — 2,) — g (7)
The dynamic equations (5-7) are linear (strictly speaking,
affine) and have a clear LIP-like structure, with the ZMP
coordinates (z,,y.,2,) acting as control inputs. This 3D
model allows vertical motion of the CoM and therefore can
be used for gait generation on uneven terrain, in conjunc-
tion with the balance condition illustrated in Fig. 2.

Note the following points.

e Comparing the constrained dynamics (7) of z, with its
free dynamics (3), we can derive the required vertical
component of the ground reaction force as

fr=mw? (ze — 2,),
i.e., a force proportional to the vertical displacement
between the CoM and the ZMP.

e The value of w determines the equilibrium point of
the z. dynamics, which is met when the difference
between the z coordinates of the ZMP and CoM is
equal to g/w?; i.e., when the reaction force f, equals
the gravitational force. Being a design parameter of
our approach, w can be freely chosen as long as it is
compatible with the robot kinematic limits.

3. MPC FORMULATION

Under the assumption that the footstep sequence is as-
signed in advance, we now describe an MPC scheme for
gait generation that is based on the 3D model (5-7). It
is important to note that all three equations include an
unstable subsystem, which will be taken care of by adding
a stability constraint. The proposed method represents an
extension to the 3D case of the result in Scianca et al.
(2016).

3.1 Motion model

To improve the smoothness of the generated trajectories
we perform a dynamic extension and choose the control
variable as the ZMP velocity &, rather than the ZMP itself.
On the x axis we have then

Te 01 0 Ze 0
(jic>: w? 0 —w? (i‘c>+<0>ﬂbz. (8)
Iy, 00 O Ty, 1

The dynamics are the same along all three axes, with the
exception of the additive term g appearing in the second
equation of the dynamics along the z axis, see (7).

We will use piecewise-constant control inputs over sam-
pling intervals of duration §, with a prediction horizon
Th = N - 6. We denote the current time instant by ¢
and the successive instants within the prediction horizon
by tr+i, ¢ = 1,...,N. A similar notation is used for all
variables; e.g., the current CoM position is ¥ and its
predicted value at t3.; is z%t%. At a generic instant t;
we have

iZ(t) = ig, te [tjvthrl)v

previous
support
00t

Fig. 3. The moving ZMP constraint (dashed region) during
double support.

so that the ZMP z-position in the time interval [t;,¢;41]
is

2, (t) = )+ (t—t;) &), t € [tj,tj4]. 9)
3.2 ZMP constraints

We briefly recall how the ZMP constraints can be imposed
in the 2D case (Scianca et al., 2016), and then discuss how
this can be done in the 3D case.

Recall that when walking on fully horizontal ground the
robot maintains balance if the ZMP remains inside the
support polygon. Denote by (zf,y7) and 6] respectively
the position and orientation of the generic footstep within
the assigned sequence. We use a fixed-shape moving ZMP
constraint to enforce balance: in particular, the admissible
region for the ZMP at t;; is centered in (zF* y#T%) and
9?-&-1‘

has orientation , with these values defined as follows:

e in single support, (xf“, yf“) and 9?“ coincide with
the position and orientation of the support foot,
respectively (zf,y?) and 6{;

e in double support, (mf“,yf“) and 9?“ gradually
slide from the position and orientation of the previous
support foot to those of the next (see Fig. 3).

This is a convenient way to enforce a double support
constraint because, although not strictly necessary when
the footsteps sequence is assigned, it generalizes easily to
the case of automatically placed footsteps as described
in (Aboudonia et al., 2017).

The expression of the ZMP constraint in 2D can then be
written as

z k+i k+i Z
-3 <d5> <R, (xk - ) <1<d;">, (10)

2\ 4, vy ! 2\ d,
where d; and dj are the dimensions of the rectangular
constraint region and R, ; is the rotation matrix asso-
ciated with 0F 7. Note that (z5+? y¥+%) is the predicted
position of the ZMP, which can be expressed as a linear

combination of the control variables using (9); e.g., for the
x coordinate we get

i—1
.Z’IZH_i _ xlzc + 6Z$’;+J
7=0

(11)

Constraint (10) must be imposed for i = 1,... N, leading
to a total of N constraints.
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dz

Fig. 4. Side view of the polyhedral cone (green) represent-
ing the actual ZMP constraint and the box (red) used
for defining approximate linear constraint. Here, the
CoM is at its maximum allowed displacement Az,
with respect to the center of the support foot.

In the 3D case, the ZMP is allowed to leave the ground in
order to generate vertical CoM motions, and correspond-
ingly 25*% has become a control variable. As illustrated
in Fig. 2, the balance condition now requires the ZMP to
remain inside the polyhedral cone defined by the support
polygon and the CoM. However, when the ZMP is allowed
to move vertically the cone defines a nonlinear constraint.
In order to remove this nonlinearity, a box constraint is
used instead (see Fig. 4):

: dz wp T — : d
5 T ki ki 7

5| 9 < Riyi |y, l‘—yfz' §§ dz |, (12)
d? k—+i k+i d

z 2z — % z
where d% is a design parameter that defines the maximum
allowed vertical ZMP displacement w.r.t. the horizontal
patch. To guarantee that the box is contained in the cone,
its x and y dimensions are reduced to dj and dj. Suitable

values for these parameters are

- ” dZ dZ
& = d- (1 - 22m> — e,

where Az, is the maximum expected displacement of the
CoM with respect to the center of the support foot and
mn s the minimum expected value for the CoM height.

ZC
An analogous formula can be written for dj.

Similarly to the 2D case, the box constraint is kept
fixed during single support. During double support, the
box slides linearly from its position around the previous
support foot to its position around the next support foot,
thus always remaining within the polyhedral cone which
defines the ZMP balance constraint for this situation (see
Fig. 5).

3.8 Stability constraint

As already mentioned, the motion model (5-7) is unstable
and thus its generic solution diverges, making all com-
ponents of the CoM position unbounded w.r.t. the ZMP
position and the generated gait ultimately unfeasible.

Fig. 5. During double support, the box constraint slides
from the previous to the next support foot.

n (Scianca et al., 2016) it was shown that if the initial
condition (z*, i ) satisfies

ik >
A w/ e =ty (7)dr,

w t

(13)

then the solution of (5) remains bounded w.r.t. z, for all
t. A similar condition can be written for the y. dynamics
(6) while for z. we obtain a slightly different condition

k 0o
P +— —2+w/ e @t (r)dr. (14)
w tk

In the MPC formulation, the stability condition (13) can
be enforced by writing it as a constraint on the control
variables 2%+

N-1
1— e—5w 3
1 — § e 0w k+z _
wl—e"

This expression is actually obtained by computing the inte-
gral in (13) using the piecewise linear ZMP trajectory (9),
which however only goes up to the prediction horizon. The
contribution beyond the horizon is computed by assuming
infinite replication of the control variables! within 73, the
rationale being that the generated gait is expected to be
cyclic and therefore exhibit some form of periodicity. An
identical constraint can be written for the y, component.

ik
k L k

— —ux,. 15
e+ Tl (15)

The stability constraint on the z. component is derived
from (14)

k
7C

sw N g
Ze—m ki gk Ze f—ﬁ. (16)

This expression is not based on an infinite replication as-
sumption since on uneven terrain vertical motions cannot
be expected to be cyclic. Rather, Z, is simply set to zero
beyond the prediction horizon.

4. MPC ALGORITHM

Having defined the constraints, we now briefly illustrate
the MPC algorithm which solves a Quadratic Program-
ming (QP) problem at each iteration. We assume that
the coordinates of the footsteps are assigned. To extend
the proposed algorithm to the case of automatic footsteps

1 To this end, it is assumed that the prediction horizon T} is a
multiple of the step duration.
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placement in the z and y directions with known foot-
steps height z{, a Mixed-Integer quadratic programming
approach can be used.

4.1 Formulation of the QP problem

Defining the decision variables vectors

L

V=G ogthT

gk — (Zk 2',16+N71)T
the QP problem is written as

N
Cmin (@R G G BT - )
vayzkvzf i=1
subject to:
ZMP constraints (12)
stability constraints for z, y and z (15) and (16)

where the cost function includes the decision variables
for regularization purposes and a term which attempts to
bring the ZMP to patch level whenever possible.

4.2 Algorithm

We now provide a sketch of the MPC algorithm. The
position of each assigned footstep, together with its timing,
is used to compute the box constraint for the ZMP using
the moving constraint procedure described in Sect. 3.2.
The MPC iteration starts at t; and goes as follows.

(1) Compute X¥, V¥, ZF that solve the QP problem.
(2) From the solutions, extract the first control samples
(3) Set &, = &% in (8) and integrate from (z¥,3¥ z¥) to
obtain z¢(t), @c(t), @,(t) for t € [ty,try1]. Similarly
for the y and z components. This defines the 3D
trajectory of the CoM during the considered time

interval.
5. SIMULATIONS

We performed both MATLAB and dynamic simulations
to illustrate the proposed approach. Commands for the
robot joints are computed by a simple kinematic control
law based on pure pseudoinversion that tracks the CoM
trajectory produced by the MPC scheme, in addition to
the swing foot trajectory, which is exogenous.

Figure 6 shows the results of a gait generation performed
in MATLAB using the presented 3D model. The footsteps
sequence is assigned so as to follow the profile of a
small staircase, with two ascending steps followed by two
descending ones. The ZMP trajectory along the z axis tries
to pass through the footsteps while simultaneously driving
the CoM trajectory to satisfy (7). In this simulation we
chose the constant parameter w = 6.14 s~!, duration of
the single and double support respectively 0.2 s and 0.1 s,
prediction time 0.6 s, the size of the constraints dj = dj =
0.06 m and d% = 0.02 m, while the maximum horizontal
deviation of the CoM w.r.t. the footstep position is Az, =
0.15 m. The sampling time is 6 = 0.05 s.

0.4 T T

—o—footsteps

—z,
03 /’\\ e R

0.25 4

02f -

z [m]

0.1 4

T k=L |

1 1
T 1

oF l

-0.05 L L L L L L I I I
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

z [m]

Fig. 6. MATLAB simulation: staircase example. The ver-
tical lines represent the ZMP-CoM segment (i.e., the
LIP) at the beginning of every single support.

We performed two dynamic simulations to show how this
control scheme can effectively be employed on a humanoid
robot walking while maintaining balance. The dynamic
environment used is DART (Dynamic Animation and
Robotics Toolkit), while qpOASES is used to solve the
QP problem.

The first experiment requires the humanoid to step on
boxes with variable height. A series of snapshots are shown
in Fig. 7 which illustrate how the robot is able to keep
balance while properly adapting the CoM trajectory, along
the vertical direction, to the profile of the ground.

Snapshots from the second experiment are shown in Fig. 8.
Here the algorithm is used to achieve a different task
than walking on uneven terrain. The robot is required
to walk on a flat ground while lowering its CoM for a
few steps, after which it should come back to the initial
height. This could be useful for avoiding obstacles hanging
from the ceiling or to pick up items from the ground. If
the final height is different from the initial one, it could
also represent the transition from a biped to a quadruped
locomotion as in (Kamioka et al., 2015). We achieve this
behavior by lowering the center of the ZMP constraint (the
red box in Fig. 4) below the ground, which is acceptable
up to a certain extent because it is still contained within
the conic region. Since the center of this constraint was
taken to be coincident with the position of the center of the
footstep, we temporarily set the footstep to be at ground
level in order for the robot to not push into the ground
while stepping.

Both dynamic simulations use the following parameters:
w = 6.14 s71, single support and double support duration
respectively 0.3 s and 0.2 s, prediction time 1.0 s, the size
of the constraints dj = dj = 0.03 m and d7 = 0.02 m,
Az, = 0.15 m, sampling time § = 0.05 s.

6. CONCLUSIONS

We presented an MPC for generating 3D CoM trajectories
suitable for walking on uneven grounds. The CoM dynam-
ics are rendered linear while still allowing vertical motions
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Fig. 7. Dynamic simulation: NAO stepping on small boxes with variable height. In red the trajectory of the CoM, in

blue the same trajectory without the vertical variation.

Fig. 8. Dynamic simulation: NAO lowering its center of mass while walking on a flat horizontal floor. In red the trajectory
of the CoM, in blue the same trajectory without the vertical variation.

of the CoM, thus favoring the use of real-time optimization
techniques. We illustrated the proposed approach on a
NAO humanoid in a simulated dynamic environment. An
experimental validation is under way. In the future, we
will address the automatic footstep placement problem
and study walking on inclined surfaces as well as in the
presence of obstacles (De Simone et al., 2017).
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