Graph-Based SLAM and Sparsity

Cyrill Stachniss
Graph-Based SLAM ??
Graph-Based SLAM

SLAM = simultaneous localization and mapping
Graph-Based SLAM

SLAM = simultaneous localization and mapping

graph = representation of a set of objects where pairs of objects are connected by links encoding relations between the objects
What is my goal for today?
Graph-Based SLAM

- Nodes represent poses or locations
- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain
Graph-Based SLAM

- Observing previously seen areas generates constraints between non-successive poses
Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them

Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints
Graph-SLAM and Least Squares

- The nodes represent the **state**
- Given a state, we can compute what we **expect** to perceive
- We have **real observations** relating the nodes with each other
Graph-SLAM and Least Squares

- The nodes represent the state
- Given a state, we can compute what we expect to perceive

Giorgio’s lecture

Find a configuration of the nodes so that the real and predicted observations are as similar as possible
Error Function

\[h_1(x) = \hat{z}_1 \quad z_1 \]
\[h_2(x) = \hat{z}_2 \quad z_2 \]
\[h_n(x) = \hat{z}_n \quad z_n \]

minimize the differences!

\[e_i(x) = e_i(x)^T \Omega_i e_i(x) \]
\[e_i(x) = z_i - h_i(x) \]
Procedure in Brief

Iterate the following steps:

- Linearize around x and compute for each measurement
 \[e_i(x + \Delta x) \approx e_i(x) + J_i \Delta x \]

- Compute the terms for the linear system
 \[b = \sum_i J_i^T \Omega_i e_i \quad H = \sum_i J_i^T \Omega_i J_i \]

- Solve the linear system
 \[\Delta x^* = -H^{-1}b \]

- Updating state $x \leftarrow x + \Delta x^*$
Let’s use that for SLAM
Pose-Graph-Based SLAM

- Nodes represent poses or locations
- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain
Pose-Graph-Based SLAM

- Observing previously seen areas generates constraints between non-successive poses
The Pose-Graph

- It consists of n nodes $x = x_{1:n}$
- Each x_i is a 2D or 3D pose (position and orientation of the robot at time t_i)
- A constraint/edge exists between the nodes x_i and x_j if...
Create an Edge If... (1)

- ...the robot moves from x_i to x_{i+1}
- Edge corresponds to odometry

The edge represents the **odometry** measurement
Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a **virtual measurement** about the position of x_j seen from x_i

Edge represents the position of x_j seen from x_i based on the **observation**
Transformations

- **How to express** x_j **relative to** x_i?
- Express this through transformations
- Let X_i be transformation of the origin into x_i
- Let X_i^{-1} be the inverse transformation
- We can express relative transformation $X_i^{-1}X_j$
Transformations

- **How to express** \(x_j \) **relative to** \(x_i \)?
- Express this through transformations
- Let \(X_i \) be transformation of the origin into \(x_i \)
- Let \(X_i^{-1} \) be the inverse transformation
- We can express relative transformation \(X_i^{-1}X_j \)
- Transformations can be expressed using **homogenous coordinates**
Transformations

- Transformations can be expressed using **homogenous coordinates**
- Odometry-Based edge
 \[
 (X_{i}^{-1}X_{i+1})
 \]
- Observation-Based edge
 \[
 (X_{i}^{-1}X_{j})
 \]
 describes “how node i sees node j”
The Edge Information Matrices

- Observations are affected by noise
- Information matrix Ω_{ij} for each edge to encode its uncertainty
- The “bigger” Ω_{ij}, the more the edge “matters” in the optimization

Question

- What should these matrices look like when moving in a long, featureless corridor?
Pose-Graph

observation of x_j from x_i →

$e_{ij}(x_i, x_j)$ → error

nodes according to the graph

z_{ij}, Ω_{ij} ← edge
Pose-Graph

Goal: \(x^* = \arg\min_x \sum_{ij} e_{ij}^T \Omega_{ij} e_{ij} \)
The Error Function

- Error function for a single constraint
 \[e_{ij}(x_i, x_j) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j)) \]

- Error as a function of the whole state vector
 \[e_{ij}(x) = t2v(Z_{ij}^{-1}(X_i^{-1}X_j)) \]

- Error takes a value of zero if
 \[Z_{ij} = (X_i^{-1}X_j) \]
Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence
Linearizing the Error Function

- We can approximate the error functions around an initial guess \mathbf{x} via Taylor expansion

$$e_{ij}(\mathbf{x} + \Delta \mathbf{x}) \simeq e_{ij}(\mathbf{x}) + \mathbf{J}_{ij} \Delta \mathbf{x}$$

with

$$\mathbf{J}_{ij} = \frac{\partial e_{ij}(\mathbf{x})}{\partial \mathbf{x}}$$
Derivative of the Error Function

- Does one error term $e_{ij}(x)$ depend on all state variables?
Derivative of the Error Function

- Does one error term $e_{ij}(x)$ depend on all state variables?
 - No, only on x_i and x_j
Derivative of the Error Function

- Does one error term \(e_{ij}(x) \) depend on all state variables?
 - No, only on \(x_i \) and \(x_j \)
- Is there any consequence on the structure of the Jacobian?
Derivative of the Error Function

- Does one error term $e_{ij}(x)$ depend on all state variables?
 - No, only on x_i and x_j

- Is there any consequence on the structure of the Jacobian?
 - Yes, it will be non-zero only in the rows corresponding to x_i and x_j

\[
\frac{\partial e_{ij}(x)}{\partial x} = \begin{pmatrix} 0 & \ldots & \frac{\partial e_{ij}(x_i)}{\partial x_i} & \ldots & \frac{\partial e_{ij}(x_j)}{\partial x_j} & \ldots & 0 \end{pmatrix}
\]

\[
J_{ij} = \begin{pmatrix} 0 & \ldots & A_{ij} & \ldots & B_{ij} & \ldots & 0 \end{pmatrix}
\]
Jacobians and Sparsity

- Error $e_{ij}(x)$ depends only on the two parameter blocks x_i and x_j

$$e_{ij}(x) = e_{ij}(x_i, x_j)$$

- The Jacobian will be zero everywhere except in the columns of x_i and x_j

$$J_{ij} = \begin{pmatrix} 0 & \ldots & 0 \\ \frac{\partial e(x_i)}{\partial x_i} & A_{ij} \\ \frac{\partial e(x_j)}{\partial x_j} & B_{ij} & 0 & \ldots & 0 \end{pmatrix}$$
Consequences of the Sparsity

- We need to compute the coefficient vector b and matrix H:

$$b = \sum_{ij} b_{ij} = \sum_{ij} J_{ij}^T \Omega_{ij} e_{ij}$$

$$H = \sum_{ij} H_{ij} = \sum_{ij} J_{ij}^T \Omega_{ij} J_{ij}$$

- The sparse structure of J_{ij} will result in a sparse structure of H

- This structure reflects the adjacency matrix of the graph
Illustration of the Structure

$$b_{ij} = J_{ij}^T \Omega_{ij} e_{ij}$$

Non-zero only at x_i and x_j
Illustration of the Structure

\[b_{ij} = J_{ij}^T \Omega_{ij} e_{ij} \]

Non-zero only at \(x_i \) and \(x_j \)

\[H_{ij} = J_{ij}^T \Omega_{ij} J_{ij} \]

Non-zero on the main diagonal at \(x_i \) and \(x_j \)
Illustration of the Structure

\[b_{ij} = J_{ij}^T \Omega_{ij} e_{ij} \]

Non-zero only at \(x_i \) and \(x_j \)

\[H_{ij} = J_{ij}^T \Omega_{ij} J_{ij} \]

Non-zero on the main diagonal at \(x_i \) and \(x_j \)

... and at the blocks \(ij, ji \)
Illustration of the Structure

\[b = \sum_{ij} b_{ij} \]

\[H = \sum_{ij} H_{ij} \]
Sparsity Effect on b

- An edge contributes to the linear system via b_{ij} and H_{ij}
- The coefficient vector is:

$$b_{ij}^T = e_{ij}^T \Omega_{ij} J_{ij}$$

$$= e_{ij}^T \Omega_{ij} \left(\begin{array}{c} 0 \cdots A_{ij} \cdots B_{ij} \cdots 0 \end{array} \right)$$

$$= \left(\begin{array}{c} 0 \cdots e_{ij}^T \Omega_{ij} A_{ij} \cdots e_{ij}^T \Omega_{ij} B_{ij} \cdots 0 \end{array} \right)$$

- It is non-zero only at the indices corresponding to x_i and x_j
Sparsity Effect on H

- The coefficient matrix of an edge is:

$$H_{ij} = J_{ij}^T \Omega_{ij} J_{ij}$$

$$= \begin{pmatrix}
\vdots \\
A_{ij}^T \\
\vdots \\
B_{ij}^T \\
\vdots
\end{pmatrix} \Omega_{ij} \begin{pmatrix}
\cdots A_{ij} \cdots B_{ij} \cdots
\end{pmatrix}$$

$$= \begin{pmatrix}
A_{ij}^T \Omega_{ij} A_{ij} & A_{ij}^T \Omega_{ij} B_{ij} \\
B_{ij}^T \Omega_{ij} A_{ij} & B_{ij}^T \Omega_{ij} B_{ij}
\end{pmatrix}$$

- Non-zero only in the blocks relating i,j
Sparsity Summary

- An edge ij contributes only to the
 - i^{th} and the j^{th} block of b_{ij}
 - to the blocks ii, jj, ij and ji of H_{ij}
- Resulting system is sparse
- System can be computed by summing up the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition
 - Conjugate gradients
 - ... many others
All We Need...

- Vector of the states increments:
 \[\Delta x^T = \left(\begin{array}{c} \Delta x_1^T \\ \Delta x_2^T \\ \vdots \\ \Delta x_n^T \end{array} \right) \]

- Coefficient vector:
 \[b^T = \left(\begin{array}{c} b_1^T \\ b_2^T \\ \vdots \\ b_n^T \end{array} \right) \]

- System matrix:
 \[
 H = \begin{pmatrix}
 H^{11} & H^{12} & \cdots & H^{1n} \\
 H^{21} & H^{22} & \cdots & H^{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 H^{n1} & H^{n2} & \cdots & H^{nn}
 \end{pmatrix}
 \]

 small blocks (or vectors) corresponding to the individual constraints
... for the Linear System

For each constraint:

- Compute error \(e_{ij} = t2v(Z_{ij}^{-1}(X_{i}^{-1}X_{j})) \)
- Compute the blocks of the Jacobian:
 \[
 A_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_i} \quad B_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_j}
 \]
- Update the coefficient vector:
 \[
 \bar{b}_i^T + = e_{ij}^T \Omega_{ij} A_{ij} \quad \bar{b}_j^T + = e_{ij}^T \Omega_{ij} B_{ij}
 \]
- Update the system matrix:
 \[
 \bar{H}^{ii} + = A_{ij}^T \Omega_{ij} A_{ij} \quad \bar{H}^{ij} + = A_{ij}^T \Omega_{ij} B_{ij}
 \]
 \[
 \bar{H}^{ji} + = B_{ij}^T \Omega_{ij} A_{ij} \quad \bar{H}^{jj} + = B_{ij}^T \Omega_{ij} B_{ij}
 \]
Algorithm

1: optimize(x):

2: while (!converged)

3: (H, b) = buildLinearSystem(x)

4: \Delta x = solveSparse(H\Delta x = -b)

5: x = x + \Delta x

6: end

7: return x
Real World Examples
The Graph with Landmarks
The Graph with Landmarks

- **Nodes** can represent:
 - Robot poses
 - Landmark locations

- **Edges** can represent:
 - Landmark observations
 - Odometry measurements

- The minimization optimizes the **landmark locations and robot poses**
Landmarks Observation

- Expected observation (x-y sensor)

\[
\hat{z}_{il}(x_i, x_l) = X_i^{-1} \begin{pmatrix} x_l \\ 1 \end{pmatrix}
\]

robot landmark
Landmarks Observation

- Expected observation (x-y sensor)
 \[\hat{z}_{il}(x_i, x_l) = X_i^{-1} \begin{pmatrix} x_l \\ 1 \end{pmatrix} \]
 robot landmark

- Error function (in Euclidian space)
 \[e_{il}(x_i, x_l) = \hat{z}_{il} - z_{il} \]
Bearing Only Observations

- A landmark is still a 2D point
- The robot observes only the bearing towards the landmark
- 1D Observation function

\[
\hat{z}_{il}(x_i, x_l) = \arctan\left(\frac{(x_l - t_i) \cdot y}{(x_l - t_i) \cdot x}\right) - \theta_i
\]
Bearing Only Observations

- **Observation function**

\[
\hat{z}_{il}(x_i, x_l) = \arctan\left(\frac{(x_l - t_i)_y}{(x_l - t_i)_x}\right) - \theta_i
\]

- **Error function**

\[
e_{il}(x_i, x_l) = \arctan\left(\frac{(x_l - t_i)_y}{(x_l - t_i)_x}\right) - \theta_i - z_{il}
\]
The Rank of the Matrix H

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
The Rank of the Matrix H

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are 2x3 matrices
 - H_{ij} cannot have more than rank 2

\[
\text{rank}(A^T A) = \text{rank}(A^T) = \text{rank}(A)
\]
The Rank of the Matrix H

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are a 2x3 matrices
 - H_{ij} cannot have more than rank 2
 $$\text{rank}(A^T A) = \text{rank}(A^T) = \text{rank}(A)$$

- What is the rank of H_{ij} for a bearing-only constraint?
The Rank of the Matrix H

- What is the rank of H_{ij} for a 2D landmark-pose constraint?
 - The blocks of J_{ij} are 2×3 matrices
 - H_{ij} cannot have more than rank 2
 $$\text{rank}(A^TA) = \text{rank}(A^T) = \text{rank}(A)$$

- What is the rank of H_{ij} for a bearing-only constraint?
 - The blocks of J_{ij} are 1×3 matrices
 - H_{ij} has rank 1
Rank

- In landmark-based SLAM, the system can be under-determined
- The rank of H is *less or equal* to the sum of the ranks of the constraints
- To determine a *unique solution*, the system must have *full rank*
Under-Determined Systems

- No guarantee for a full rank system
 - Landmarks may be observed only once
 - Robot might have no odometry
- We can still deal with these situations by adding a “damping” factor to H
- Instead of solving $H\Delta x = -b$, we solve
\[
(H + \lambda I)\Delta x = -b
\]

Levenberg Marquardt
UAV Example
UAV Example
Summary

- The back-end part of the SLAM problem can be solved with GN or LM
- The H matrix is typically sparse
- This sparsity allows for efficiently solving the linear system
- There are several extensions (online, robust methods wrt outliers or initialization, hierarchical approaches, exploiting sparsity, multiple sensors)
YouTube Lectures

SLAM Course - WS13/14

Lecture Recordings from my winter 2013/14 course on SLAM taught in Freiburg.

Lecture material can be found here:
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/

https://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_
Thank you for your attention!
Slide Information

- These slides have been created by Cyrill Stachniss, Giorgio Grisetti and Wolfram Burgard evolving from different courses and tutorials that we taught over the years between 2010 and 2016.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings of my lectures on robot mapping are available through YouTube:
 http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

 Cyrill Stachniss, cyrill.stachniss@igg.uni-bonn.de