Control Systems

Introduction

L. Lanari

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

course main topics

- analysis (time and frequency domain)
- general feedback control system
- controller design in the frequency domain (loop shaping)
- performance and limitations of a control system
- analysis and design using root locus
- state space design
- stability theory

goal

fundamental objective of the control systems course

• analysis

control

of dynamical systems

dynamical system:

a system whose state variables evolve over time

state:

variables whose time evolution univocally characterize the system

e.g. in mechanical engineering, rigid body dynamics studies forces/ torques that produce motion, i.e., that make positions and velocities vary over time

dynamics

- we need to describe how a quantity x(t) varies in time
- how do we represent such a variation?

variation in time of the quantity x depending on the nature of the time variable

 $t \in \mathbf{R}$

in continuous time (C.T.) derivative

$$\frac{dx(t)}{dt} = \dot{x}(t) = \dot{x}$$

 $t \in \mathbf{Z}$

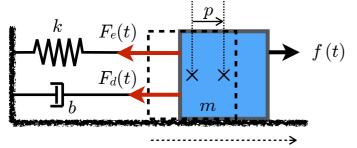
in discrete time (D.T.) difference

x(t+1) - x(t)

dynamics

examples of known relationships including time derivatives:

• mass-spring-damper system acceleration (a), velocity (v), position (p), force (f)



$$m a(t) + b v(t) + k p(t) = f(t)$$

$$m \ddot{p}(t) + b \dot{p}(t) + k p(t) = f(t) \quad \checkmark$$

• capacitor: voltage (v) - current (i)

$$\frac{d\,v(t)}{dt} = \frac{1}{C}i(t)$$

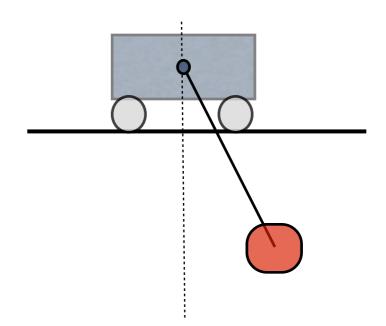
• inductor: current (i) - voltage (v)

$$\frac{d\,i(t)}{dt} = \frac{1}{L}v(t)$$

importance of dynamics

- description of the motion (eg. satellite trajectory)
- simulation models (system behavior wrt to inputs)

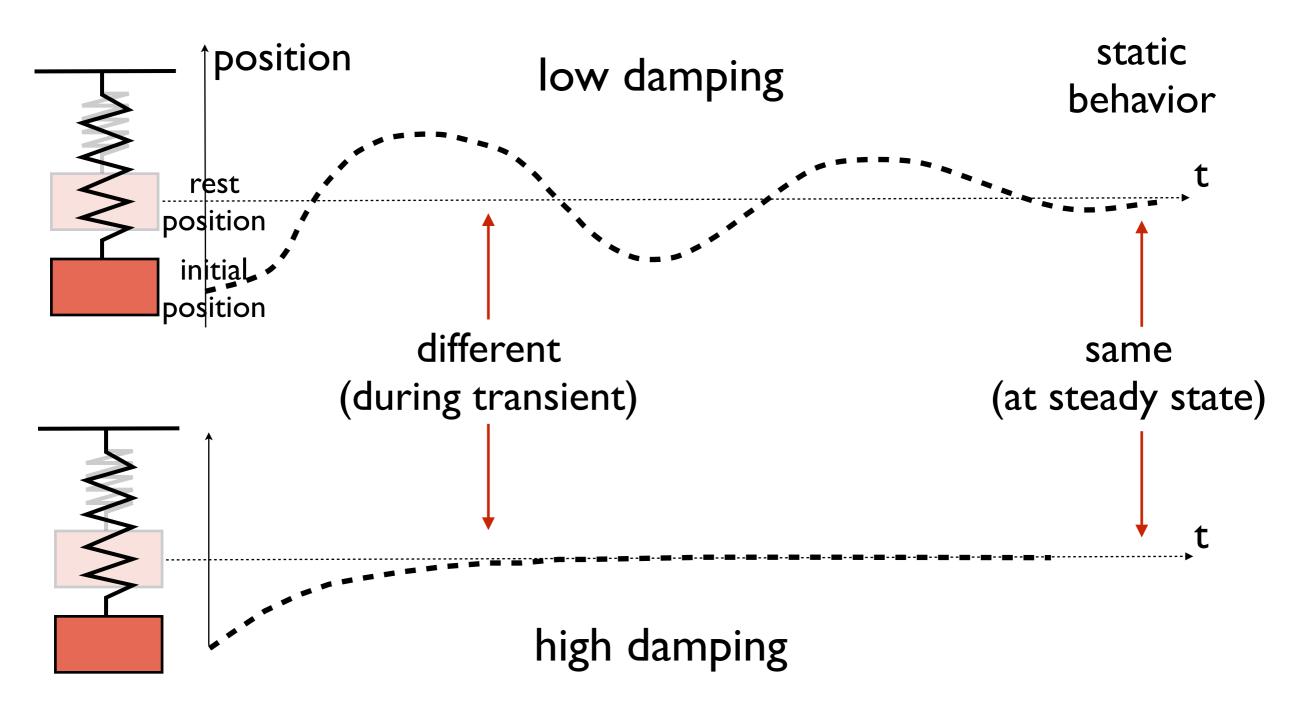
simplified model



crane control: input shaping technique (Georgia Tech)

importance of dynamics

 same static behavior, different dynamic one two similar systems with different damping or friction coefficient and similar spring elastic coefficient, starting from same initial position



Lanari: CS - Introduction

analysis of dynamic properties

- infer important properties from few basic quantities
 - e.g. stability (dynamic matrix eigenvalues)
 - characterization of the dynamic behavior as the transient or the steady-state (bandwidth, overshoot, poles, ...)
 - study the possibility to influence the dynamics through the input (controllability analysis)
 - understand the internal dynamics through the observation of the output (observability analysis)
- these will allow a clear formulation of specifications for the control system design
- other uses: forecast, prediction

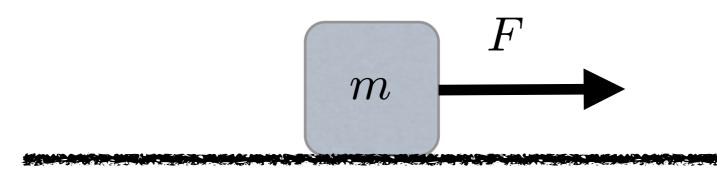
qualitative analysis of systems of differential equations

analysis

• model based approach:

representation of the real system through a **model** (usually includes approximations)

- in particular we consider dynamical systems whose mathematical model is a set of differential equations
- the analysis consists in the study of some characteristics of the system's mathematical description with particular emphasis on quantities that characterize the system motion



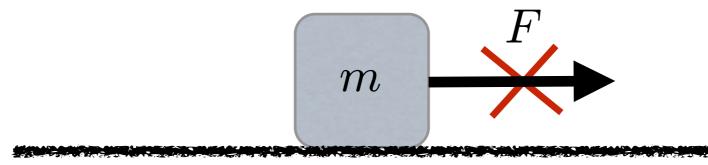
- mass m moving on a line (one-dimensional motion) under the action of a force F
- hyp: no friction

$$m \dot{v} = F$$
 mathematical model

this mathematical relationship tells us how the variation of the mass velocity is related to the applied force under the assumed hypothesis: it is our **model**

+ other tacit hypothesis (ex. m constant otherwise linear momentum)

example (cont.)



• if F = 0 do we still have motion?

model becomes $\dot{v} = 0$ and the solution is v(t) = v(0)

• if we have a non-zero initial velocity v(0), the mass moves (at constant speed)

we need to learn how to read the information hidden in the mathematical model

example (cont.)

$$\begin{array}{ll} {\rm model} & \dot{v} & = & \displaystyle \frac{F}{m} \\ {\rm (linear differential equation)} & v(0) & = & v_0 \end{array}$$

we have noticed that the motion is generated by

- forcing term F(t) (will be called input to the system)
- initial condition v_0

here (v_0, F) represents the cause (of motion) and v(t) is the effect (motion) of such causes

example (cont.)

solution of the differential equation (model)

$$v(t) = v_0 + \frac{1}{m} \int_0^t F(\tau) d\tau$$

tells us how the velocity depends upon the initial condition **and** the applied force. Knowing the applied force and the initial velocity we know how the velocity of the point mass behaves in the future

new capacity: analysis & prediction

example (cont.) - linearity

• with initial condition $v_0 = 0$ and $F \neq 0$ we have velocity v if we apply 2F instead of F what happens to velocity?

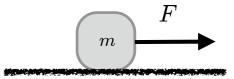
$$\tilde{v}(t) = v_0 + \frac{1}{m} \int_0^t 2F(\tau) d\tau$$

the velocity will also double to $2 \; v$

linear behavior wrt to F

m

example (cont.) - linearity



• if we apply no force F = 0 and start with non-zero $v_0 \neq 0$, the velocity will be $v = v_0$

clearly, if the initial velocity changes to $3v_0$ the velocity will also triple

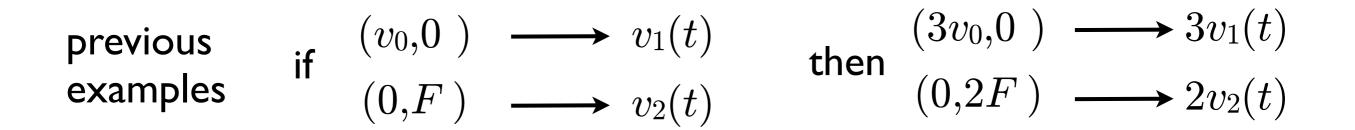
$$\tilde{v}(t) = 3v_0 + \frac{1}{m} \int_0^t F(\tau) d\tau$$

linear behavior wrt to the initial condition v_0

example (cont.) - linearity

• Att. $F \neq 0$ and $v_0 \neq 0$ simultaneously if $F \longrightarrow 2F$

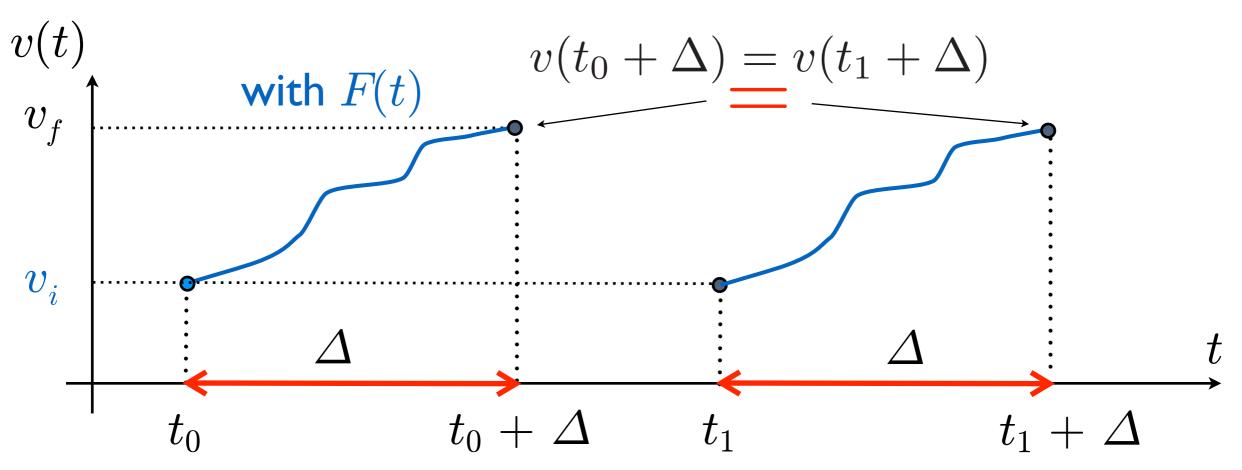
and $v_0 \longrightarrow 3v_0$ what happens to velocity?



linear behavior wrt the motion causes (v_0, F)

this linearity comes from the differential equation being linear

example (cont.) - time invariance



same initial condition v_i and same input (force) F(t) after same time interval Δ leads to the same state

- state evolution does not depend on the initial time t_0 but only on the elapsed time \varDelta
- this time invariance translates into the differential equation having constant coefficients

Lanari: CS - Introduction

F

m

general mathematical model

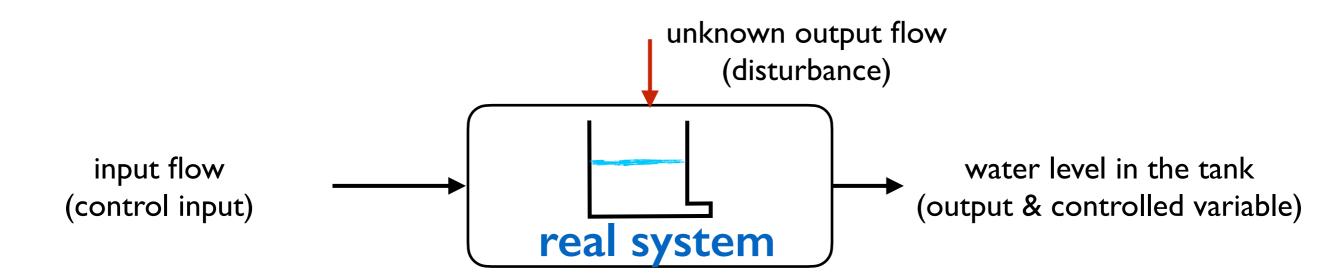
$$\dot{x}(t) = A x(t) + B u(t)$$
$$y(t) = C x(t) + D u(t)$$
$$x(0) = x_0$$

Linear Time Invariant (LTI) dynamical system (Continuous Time)

 $egin{aligned} x(t) ext{ state } & x \in \mathbf{R}^n \\ u(t) ext{ input } & u \in \mathbf{R}^m & ext{multi input (we consider } m=1, ext{single input)} \\ y(t) ext{ output } & y \in \mathbf{R}^p & ext{multi output (we consider } p=1, ext{single output)} \\ ext{ SISO (single input/single output) linear time-invariant system} \end{aligned}$

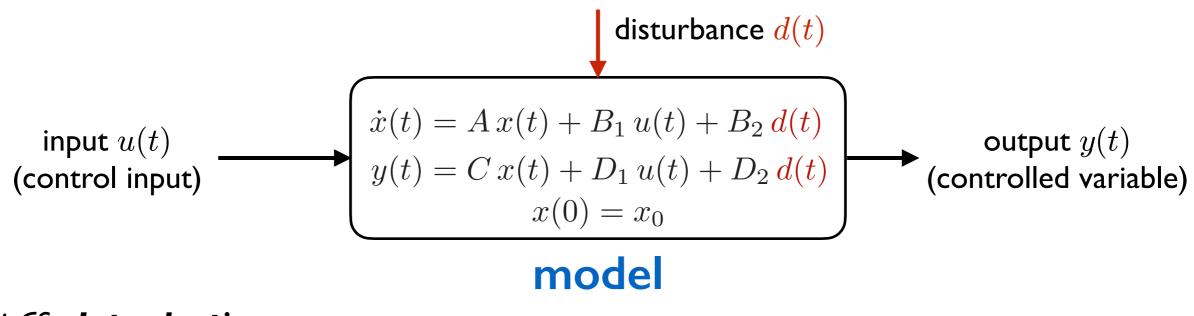
state, input and output dimensions determine the 4 matrices dimensions

control example: water level in a tank

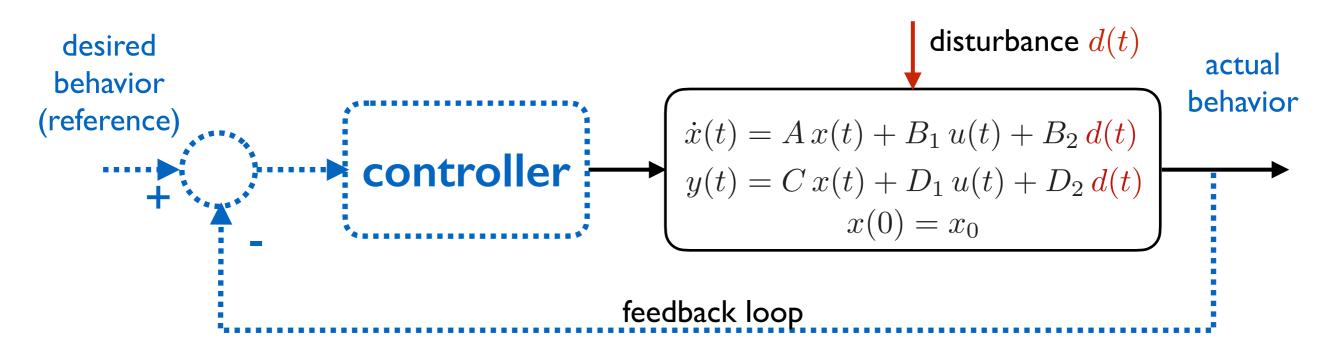


problem: we want to maintain the water level at a desired height regardless of the unknown output flow and any other disturbance

understand how to choose the (control) input in order to guarantee a **desired behavior** of the output

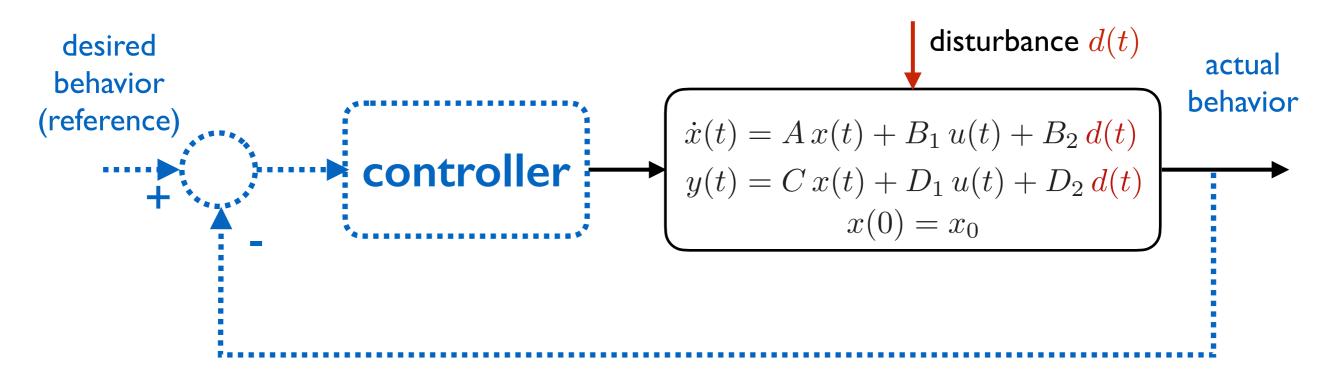


control example: water level in a tank

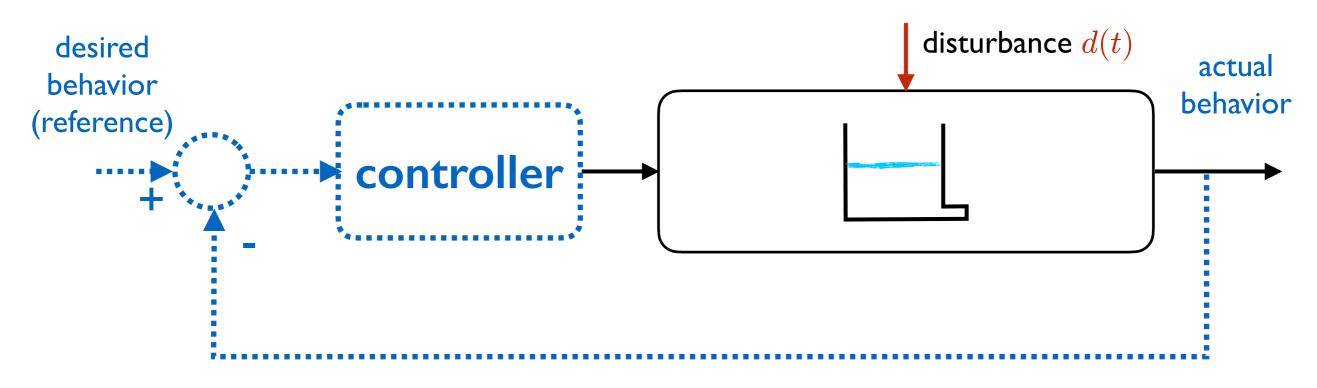


- schematic diagram of an automatic control system based on feedback
- the design of such a control system requires the determination (design) of the controller
- need a systematic procedure in order to design the controller
- design (and controller) will be based on the plant model

control example: water level in a tank



control scheme is **implemented** on the real system



Lanari: CS - Introduction

typical flow

- problem definition (real system)
- mathematical model (+hypothesis & simplifications)
- real specifications translated into control system language
- design of the control system
- simulation on the more complete available model
- implementation