Control Systems

Internal Stability - LTI systems L. Lanari

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

outline

LTI systems:

- definitions
- conditions
- Routh stability criterion
- equilibrium points

Nonlinear systems:

- equilibrium points
- examples
- stable equilibrium state (see slides StabilityTheory by Prof. G. Oriolo)
- indirect method of Lyapunov (see slides StabilityTheory by Prof. G. Oriolo)

linear systems - equilibrium states

the **origin** is a particular state:

- \bullet at the origin the state velocity is 0 if no inputs are applied
- therefore if we start from the origin, the state will stay there in the ZIR
- mathematically 0 = A.0

we can look for any state x_e with such a property i.e. a state x_e such that

 $Ax_e = 0$

these are defined as equilibrium states

all the equilibrium states of a LTI system belong to the nullspace of ${\cal A}$

- if A nonsingular then only one equilibrium state (the origin)
- if A singular then infinite equilibrium states (subspace)

note that A singular means

$$\det\left(A\right) = \det\left(A - 0.I\right) = 0$$

that is $\lambda_i = 0$ is an eigenvalue of A

linear systems - equilibrium states

therefore

- if A has no eigenvalue $\lambda_i = 0$ then the system has a unique equilibrium point which is necessarily the origin (physical example: MSD system)
- if A has at least one eigenvalue $\lambda_i = 0$ then the system has infinite equilibrium points (physical example: point mass with friction)

linear systems - equilibrium states

example 2

$$A = \begin{pmatrix} -0.25 & 0.25\\ 0.25 & -0.25 \end{pmatrix}$$

det (A) = 0 $\lambda_1 = -0.5 \quad \lambda_2 = 0$ $\lambda_2 = 0 \longrightarrow u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

the ZIR for arbitrary initial conditions will not always tend to the origin: following the velocity directions, we end in an equilibrium point (*) different from the origin

definitions (LTI systems)

(AS) - A system S is said to be **asymptotically stable** if its state zero-input response **converges** to the origin for **any** initial condition

(MS) - A system S is said to be (marginally) stable if its state zero-input response remains bounded for any initial condition

(U) - A system S is said to be **unstable** if its state zero-input response **diverges** for some initial condition

note: only interested in the free state evolution (ZIR) note: use of "any/some"

→ state transition matrix $\Phi(t) = e^{At}$ LTI (Linear Time Invariant) $\Phi(t, t_0)$ LTV (Linear Time Variant)

possible behaviors

we saw that the $x_{ZIR}(t) = e^{At}x_0$ is a linear combination of aperiodic modes real λ_i A $e^{\lambda_i t}$ diagonalizable $mg(\lambda_i) = ma(\lambda_i)$ pseudoperiodic modes complex for all i $\lambda_i = \alpha_i + j\omega_i \qquad e^{\alpha_i t} \left[\sin(\omega_i t + \varphi_R) u_{\rm re} + \cos(\omega_i t + \varphi_R) u_{\rm im} \right]$ $\dots, \frac{t^{n_k-1}}{(n_k-1)!}e^{\lambda_i t}$ A real λ_i not diagonalizable (defective matrix A) $\dots, \frac{t^{n_k-1}}{(n_k-1)!} e^{\alpha_i t} \sin \omega_i t$ complex $mg(\lambda_i) < ma(\lambda_i)$ $\lambda_i = \alpha_i + j\omega_i$ max dimension of Jordan block J_k

Lanari: CS - Dynamic response - Time

stability and eigenvalues (stability criterion)

A LTI system is **asymptotically stable** if and only if **all** the eigenvalues have **strictly negative real part**

A LTI system is (marginally) stable if and only if all the eigenvalues have non positive real part and those which have zero real part have scalar Jordan blocks

equivalent to $mg(\lambda_i) = ma(\lambda_i)$ for all λ_i with 0 real part

A LTI system is unstable if and only if there exists at least one eigenvalue with positive real part or a Jordan block corresponding to an eigenvalue with zero real part of dimension greater than 1

Lanari: CS - Internal stability

Ŵ

stability and eigenvalues (stability criterion)

it all depends upon the positioning of the eigenvalues of matrix A in the complex plane

 $\begin{array}{c} \times & & \\ \end{array} \xrightarrow{\text{Re}} & & \\ \text{Some eigenvalues may be on the Im axis} \\ (marg(\lambda)) & 1 & \\ \end{array}$

 $(ma(\lambda_i) = 1 \text{ case})$

 $\begin{array}{c|c} \times & & & \\ \hline & \times & & \\ \hline & \times & & \\ \times & & \\ \end{array} \xrightarrow{\operatorname{Re}} & & \\ \text{at least one eigenvalue with positive real part} \\ \text{(the case } \operatorname{Re}(\lambda_i) = 0 \text{ and Jordan block } \dim > 1 \text{ is not shown)} \end{array}$

remarks

- \bullet stability is an intrinsic characteristic of the system, depends only on A
- \bullet stability does not depend upon the applied input nor from B,C or D

remarks

unstable systems can have bounded or converging solutions for some specific initial conditions

remarks

• if the system is asymptotically stable then the output ZIR also converges to 0 (the converse is not true)

- if the system is (marginally) stable then the output ZIR is bounded (the converse is not true)
- if the system is unstable it does not necessarily imply that the output will diverge for some initial condition (it may never diverge)

$$y = Ce^{At}x_0 = \sum_{i=1}^n e^{\lambda_i t} Cu_i v_i^T x_0$$

this term may be zero for some u_i

example

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 1 & \lambda_2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

(compute $y_{ZIR}(t)$)

examples

• MSD with no friction $m\ddot{s}=f$ $A=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}$ $\lambda_1=0$ and no spring $ma(\lambda_1)=2$

eigenspace V_1 is generated by $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and therefore $mg(\lambda_1) = 1 < ma(\lambda_1)$

system in unstable (with a non-zero initial velocity, the mass will move with constant velocity and the position will grow linearly with time)

• MSD with no spring
$$m\ddot{s} + \mu\dot{s} = f$$
 $A = \begin{pmatrix} 0 & 1 \\ 0 & -\mu/m \end{pmatrix}$ $\lambda_1 = 0$
 $\lambda_2 = -\mu/m < 0$

since $ma(\lambda_1) = 1 = mg(\lambda_1)$ for the zero eigenvalue $\lambda_1 = 0$, the system is marginally stable (from a generic initial condition, the ZIR velocity will go to zero while the ZIR position will asymptotically stop at a constant value which depends upon the initial conditions)

LTI stability criterion: Routh criterion

In order to establish if a LTI system is asymptotically stable we do not need to compute the eigenvalues but just the sign of their real parts

generic polynomial of order n

$$p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_1 \lambda + a_0$$

A necessary condition in order for the roots of $p(\lambda) = 0$ to have all negative real part is that the coefficients need to have all the same sign

- if all the roots of $p(\lambda) = 0$ have negative real part then the coefficients have the same sign
- if a coefficient a_i is null then the coefficients do not have the same sign and therefore the necessary condition is not satisfied

Routh-Hurwitz stability criterion

In order to state a necessary and sufficient condition we need to build a table

$$p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + a_{n-2} \lambda^{n-2} + \dots + a_1 \lambda + a_0$$
Routh table
$$row n$$

$$row n$$

$$row n-1$$

$$row n-2$$

$$a_{n-1} \quad a_{n-3} \quad a_{n-5} \quad \dots$$

$$b_1 = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}$$

$$b_1 = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}$$

$$b_2 = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}$$

$$b_1 = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}$$

$$b_1 = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}$$

$$c_1 = -\frac{1}{b_1} \begin{vmatrix} a_{n-1} & a_{n-3} \\ b_1 & b_2 \end{vmatrix}$$
"missing" terms can be set to 0

- the Routh table has a finite number of elements and has $n\!+\!1~{\rm rows}$
- an entire row can be multiplied by a positive number without altering the result

Lanari: CS - Internal stability

 $c_2 = -\frac{1}{b_1} \begin{vmatrix} a_{n-1} & a_{n-5} \\ b_1 & b_3 \end{vmatrix}$

Routh-Hurwitz stability criterion

If the Routh table can be completed then we have the following N&S condition

All the roots of $p(\lambda) = 0$ have negative real part iff there are no sign changes in the first column of the Routh table

applied to the characteristic polynomial we have the following stability criterion

A LTI system is asymptotically stable iff the Routh table built from the characteristic polynomial has **no sign changes** in the first column

- if the table cannot be completed (due to some 0 in the first column) then **not** all the roots have negative part
- the number of sign changes in the first column of the Routh table is equal to the number of roots with positive real part

Routh table example

 $p(\lambda) = \lambda^5 + \lambda^4 + 2\lambda^3 + \lambda^2 + 3\lambda + 1$

the table has been completed, 2 sign changes in the first column (from row 3 to row 2 and from row 2 to row 1) so 2 roots with positive real part

Routh table example

second order polynomial

$p(\lambda) = a\lambda^2 + b\lambda + c$

Routh table

$$\begin{array}{c} a & c \\ b & 0 \\ c \end{array}$$

- for a second order polynomial, the necessary condition is also sufficient (for the 2 roots to have negative real part)
- \bullet if c has different sign than a and b, then $1 \mbox{ root}$ has positive real part
- if b has different sign than a and c, then both roots have positive real part

Routh table example

we want to use the Routh criterion in order to state N&S condition for the roots of a polynomial to have real part less than a given α

since
$$\operatorname{Re}[\lambda] < \alpha \iff \operatorname{Re}[\lambda - \alpha] < 0$$
 setting $\lambda - \alpha = \eta$

$$\begin{array}{l} \operatorname{Re}[\lambda] < \alpha \\ \text{for} \quad p(\lambda) \end{array} \longleftarrow \begin{array}{l} \operatorname{Re}[\eta] < 0 & \text{for} \quad p(\eta) = p(\lambda)|_{\lambda = \eta + \alpha} \end{array}$$

in order to check if the roots of $p(\lambda) = 0$ all have real part smaller than α , we can apply the Routh criterion to the polynomial $p(\eta)$

this corresponds to a translation of the ${\rm Im}$ axis

from linear to nonlinear

Nonlinear systems (see slides StabilityTheory by Prof. G. Oriolo):

- equilibrium points
- examples
- stable equilibrium state
- indirect method of Lyapunov

the remaining slides of Prof. Oriolo are supplementary

nonlinear systems - equilibrium states

pendulum example

we are going to look for those states x_e (equilibrium states) for which $\dot{x} = 0$ that is for which $f(x_e) = 0$

2 equilibrium states

$$x_{e1} = \begin{pmatrix} 0\\0 \end{pmatrix}$$

down rest position

$$x_{e2} = \begin{pmatrix} \pi \\ 0 \end{pmatrix}$$

upright rest position

solution on phase plane: pendulum

no damping case ($\mu = 0$) $m \ell^2 \ddot{\vartheta} + m g \ell \sin \vartheta = 0$

Lanari: CS - Time response

solution on phase plane: pendulum

no damping case ($\mu = 0$) $m \ell^2 \ddot{\vartheta} + m g \ell \sin \vartheta = 0$

x_{e1} stable equilibrium state

Lanari: CS - **Time response**

solution on phase plane: pendulum

solutions with non-zero damping

solution on phase plane: Van der Pol oscillator

 $\ddot{x} - b(1 - x^2)\dot{x} + x = 0$ is the origin stable?

solution on phase plane: Van der Pol oscillator

 $\ddot{x} - b(1 - x^2)\dot{x} + x = 0$

for a given neighbourhood of radius ε of x_{e1} there is **no** neighbourhood of radius δ such that the stability condition is verified

Lanari: CS - Internal stability