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* indirect method of Lyapunov (see slides StabilityTheory by Prof. G. Oriolo)
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linear systems - equilibrium states

the origin is a particular state:

* at the origin the state velocity is O if no inputs are applied

* therefore if we start from the origin, the state will stay there in the ZIR
* mathematically 0 = A.0

we can look for any state x. with such a property i.e. a state x. such that
Az, =0

these are defined as equilibrium states

all the equilibrium states of a LTI system belong to the nullspace of A
* if A nonsingular then only one equilibrium state (the origin)
* if A singular then infinite equilibrium states (subspace)

note that A singular means
det (A) = det(A-0.I) =0

that is \; = 0O is an eigenvalue of A
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linear systems - equilibrium states
therefore

* if A has no eigenvalue \; = 0 then the system has a unique equilibrium point

which is necessarily the origin (physical example: MSD system)
* if A has at least one eigenvalue \; = 0 then the system has infinite equilibrium

points (physical example: point mass with friction)

stable Phase portrait (Iambda1 =-1, Iambda2 =1)
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linear systems - equilibrium states

example 2
A —0.20  0.25
0.20 —0.25
det (A) = 0
A =—0.5 A=
1
)\2 — O —> u2 — 1

the ZIR for arbitrary
initial conditions will
not always tend to the origin:
following the velocity directions,
we end in an equilibrium point ()
different from the origin
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definitions (LTI systems)

(AS) - A system S is said to be asymptotically stable if its state zero-input
response converges to the origin for any initial condition

(MS) - A system S is said to be (marginally) stable if its state zero-input
response remains bounded for any initial condition

(U) - A system S is said to be unstable if its state zero-input response
diverges for some initial condition

note: only interested in the free state evolution (ZIR)

note: use of “any/some”

—>  state transition matrix =~ ®(t) = e LTI (Linear Time Invariant)

O (t,tg) LTV (Linear Time Variant)
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possible behaviors

At . . .
we saw that the ZIJZIR(t) — € Zo is a linear combination of

|

aperiodic modes

A real \; .
diagonalizable e
mg(Ai) = ma(Ai) pseudoperiodic modes
for all 5 complex
Ai = o + Jw; e®i! [sin(w;t + QR )Ure + cos(w;t + ©R ) Uim]
tnk—l
A real \; el 'e>‘it
not diagonalizable (ng —1)!
(defective matrix A)l1 """"""""""""""""
| £
mg(Ai) < ma(\) comp ex. coey, —4 e’ sin w;t
Ai = i + Jwi (ng —1)!

max dimension
of Jordan block Ji
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stability and eigenvalues (stability criterion)

4 )
A LTI system is asymptotically stable
if and only if
. all the eigenvalues have strictly negative real part )
4 )
A LTI system is (marginally) stable
if and only if

all the eigenvalues have non positive real part

and those which have zero real part have scalar Jordan blocks ...{...
\ A 4

equivalent to mg(Ai) = ma(\;) for all \; with O real part

! A LTI system is unstable
if and only if
there exists at least one eigenvalue with positive real part or a
Jordan block corresponding to an eigenvalue with zero real part of dimension
. greater than 1 - ,

€}

equivalent to mg(\i) < ma(\;) for all \; with O real part
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stability and eigenvalues (stability criterion)

it all depends upon the positioning of the eigenvalues of matrix A in the complex plane

Alm
X Re asymptotic stability
XH ] all eigenvalues in the open left half-plane
Im
% distinct eigenvalues case
X)( J  Re (marginal) stability
X some eigenvalues may be on the Im axis
X (ma(Xi) = 1 case)
Alm
> instability
VIRV at least one eigenvalue with positive real part
X (the case Re(\;) = 0 and Jordan block dim > 1 is not shown)
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remarks

e stability is an intrinsic characteristic of the system, depends only on A

* stability does not depend upon the applied input nor from B, C or D

example
u(®) AS system
ﬁ z()
+ . REEREN t
> r = —Tr+tu )
> o >
X — x A
ult) ’
x(¢)
/t‘ ‘/t\
v
i | “diverging”
ut system Is p response due
asymptotically stable to the input

not to the system
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remarks

unstable systems can have bounded or converging solutions for some specific
initial conditions

unstable
system

aperiodic A\ >0 ——>
modes Ao < 0

x(t) = e)‘ltulv’{ajo + eAQtuQUQTwO

x5 has no component along the
unstable eigenspace the time evolution is a

decaying exponential along the eigenspace

unstable
Ar >0 eigenspace

stable Ao < 0
eigenspace
$04S el
x4 has a component ¢y >

along the unstable eigenspace
T
C41U1 = Uy L04

as long as the initial condition does not have a
component along the unstable eigenspace the zero

input response does not diverge
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remarks

e if the system is asymptotically stable then the output ZIR also converges to 0
(the converse is not true)

* if the system is (marginally) stable then the output ZIR is bounded
(the converse is not true)

e if the system is unstable it does not necessarily imply that the output will
diverge for some initial condition (it may never diverge)

mn
Yy = CeMrg = E et C gl vl

i L0
1=1

this term may be zero for some u;

example

(compute yzrr(t))
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examples

. 0 1
e MSD with no friction ms=f A= ( > A =0
and no spring

eigenspace V1 is generated by (é) and therefore mg(A1) = 1 < ma(A;)

system in unstable (with a non-zero initial velocity, the mass will move with
constant velocity and the position will grow linearly with time)

| | L 0 1 AL =0
e MSD with nospring ms+us=j A= 0 —un/
H/m )\2 — —IU,/m < O

since ma(A1) = 1 = mg(\;) for the zero eigenvalue \; = 0, the system is
marginally stable (from a generic initial condition, the ZIR velocity will go to
zero while the ZIR position will asymptotically stop at a constant value which
depends upon the initial conditions)
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LTI stability criterion: Routh criterion

In order to establish if a LTI system is asymptotically stable we do not need to
compute the eigenvalues but just the sign of their real parts

generic polynomial of order n

PA) = ap A" + A A AN Ao AT 4 a )+ ag

-
A necessary condition in order for the roots of p(A) = 0 to have all

negative real part is that the coefficients need to have all the same sign

\

« if all the roots of p(\) = 0 have negative real part then the coefficients

have the same sign
o if a coefficient a; is null then the coefficients do not have the same sign

and therefore the necessary condition is not satisfied
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Routh-Hurwitz stability criterion

In order to state a necessary and sufficient condition we need to build a table

PA) = ap A" + A A" T G ANTTE 4 ar )+ ag

directly from p(\)

Routh table /
FoOw N 7% Ay —2 Apn—4 e
row n-1 An—1 Apn—3 An—5
row n-2 bl b2
C1 C2 '
computed
dy
as
row 1 /
row ()

“missing”’ terms can be set to ()

* the Routh table has a finite number of elements and

has n-+1 rows

* an entire row can be multiplied by a positive number

without altering the result
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70 Ay —2
b1 = —
b 1 Un Apn—4
5 = —
c __;L Ap—1 0Un-3
bl bl b2
Co __;L pn—1 0Unp-5
bl bl b3




Routh-Hurwitz stability criterion

If the Routh table can be completed then we have the following N&S condition

4 )
All the roots of p(A) = 0 have negative real part iff there are no sign changes

in the first column of the Routh table
\_ _J

applied to the characteristic polynomial we have the following stability criterion

4 )
A LTI system is asymptotically stable iff the Routh table built from the

characteristic polynomial has no sign changes in the first column
\ _/

* if the table cannot be completed (due to some 0 in the first column) then
not all the roots have negative part

* the number of sign changes in the first column of the Routh table is equal to
the number of roots with positive real part
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Routh table example
p(A) = A+ AT+ 220 + A2 430 + 1

~~ added to compute the next elements :
-7
¢" 5

___________ k..
5 1 2 3 0 5 1 2 3 0 5 1 2 3 5 1 2 3 +4 1
01 1 1:0 411 1 1 0 11 1 1 0 01 1 1
; 11 2 0 .11 2 00 5|1 2 0 0 + 3 2
4
) . | R -1 1 0 -1 1 0 I 1
) 1 o 113 0 0
. A
0 0 O,' 0 ': " +]- 3 O
4+ 0 1 0
: A A
__‘1 2‘ 1‘1 1‘ o 1|1 2‘ 1‘_1 1‘
1 1 111 2 : 1 ]-1 1 : 313 0
1 3 1 1 1 3
11 1 | 11 0 Ly 0 Li=10
Lo Lo “1]-1 0 313 0
111 0 110 0

the table has been completed, 2 sign changes in the first column (from row 3 to row 2 and
from row 2 to row 1) so 2 roots with positive real part
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Routh table example

second order polynomial Routh table
a c
p(A) = aX* + b\ + ¢ b
C

* for a second order polynomial, the necessary condition is also sufficient
(for the 2 roots to have negative real part)
* if ¢ has different sign than a and b, then 1 root has positive real part

* if b has different sign than a and c, then both roots have positive real part
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Routh table example

we want to use the Routh criterion in order to state N&S condition for the roots
of a polynomial to have real part less than a given o

since Re[A\| <a «—> Re[A-a] <0 setting M-a=mn

Re[)\| < «
for p(\)

«—> | Re[n] <0 for p(n) = PN =n+a

in order to check if the roots of p(\) = 0 all have real part smaller than «,
we can apply the Routh criterion to the polynomial p(n)

., Im
|‘_
: ™ this corresponds to a

X : translation of the Im axis
E Re

KX e} .

X :

r X
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from linear to nonlinear

Nonlinear systems (see slides StabilityTheory by Prof. G. Oriolo):
* equilibrium points

* examples

* stable equilibrium state

* indirect method of Lyapunov

the remaining slides of Prof. Oriolo are supplementary
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nonlinear systems - equilibrium states
pendulum example

damping
coefficient

m 29 +m g lsin¥ ,uz§‘ =0

N L2 -\ jJQZ—QSil’l.CL‘l— a X9
m™m

in the general form = = f(z)

a2

we are going to look for those states x. (equilibrium states) for which x =0
that is for which f(x.) = 0

—_ 0 m
2 equilibrium states Tel = Te2 =
(o) ()
down upright
rest position rest position
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solution on phase plane: pendulum

no damping case (1 = 0) m 29 +mglsind =0

from this initial state the pendulum
will never stop rotating '

phase portrait .

7.9(1;) x' 0
Lel ?
©
(stable)
equilibrium [
state 6

O
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condition from
which the
pendulum reaches
autonomously
(asymptotically)
the upright rest
position

O Le2

(unstable)
equilibrium
state




solution on phase plane: pendulum
no damping case (1 = 0) m 0209 +mglsing =0

x.1 stable equilibrium state

Phase portrait undamped pendulum

for a given T _—— ' — =
neighbourhood of > &*_///%%/// \'\\:§§ﬁ
radius ¢ of x.; we can . i\\\:’j/%%// —— 1
find a neighbourhood ™. N, / / / 7 \\—*/ -
of radius 0 such that 3§§:§;% / % \\:j:_ z\r/\e:hseti::f:jger
the stability condition N - 7 s .
o SN e A / < T_.-%"| we remain
is verified Ex \\\ - %1/ & s ;’ inside ¢
1 XJ \ : ; ’ N : 7 A
NN -t
Sof ] AT
/ J ’Q‘ """ x “ l ‘\ }s'\
ajel -------- _2_/:\\\ /:\\ €2
\} -
LN N NN (unstable)
(stable) /,\\§ < TN —_
equilibrium K _:;A—\Q\ ;«Q& equilibrium
state -4 g‘i\\\\% /; \ state
- e
5§;(:—‘;13\\\\A\ /h\

A
(V)
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solution on phase plane: pendulum

solutions with non-zero damping

from these initial states the

pendulum will go over the upright ., _
position to finally asymptotically 5
stop in the down rest position

this equilibrium state z.; is
now asymptotically stable

-
~ -
bl
-
~ -
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Phase portrait damped pendulum
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solution on phase plane: Van der Pol oscillator

i—b(1—2*)t+x=0 is the origin stable?

Phase portrait Van der Pol equation b = 0.4
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solution on phase plane: Van der Pol oscillator

for a given neighbourhood of radius ¢ of z.; there is no
neighbourhood of radius 9 such that the stability condition is verified

i—b(1—2*)t+x=0

Phase portrait Van der Pol equation b = 0.4
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