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outline

LTI systems:

• definitions

• conditions

• Routh stability criterion

• equilibrium points

Nonlinear systems:

• equilibrium points

• examples

• stable equilibrium state (see slides StabilityTheory by Prof. G. Oriolo) 

• indirect method of Lyapunov (see slides StabilityTheory by Prof. G. Oriolo)
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the origin is a particular state: 
• at the origin the state velocity is 0 if no inputs are applied 
• therefore if we start from the origin, the state will stay there in the ZIR 
• mathematically 0 = A.0

we can look for any state xe with such a property i.e. a state xe such that

Axe = 0

these are defined as equilibrium states

all the equilibrium states of a LTI system belong to the nullspace of A
• if A nonsingular then only one equilibrium state (the origin)
• if A singular then infinite equilibrium states (subspace)

linear systems - equilibrium states

note that A singular means
det (A ) = det (A  - 0.I) = 0

that is ¸i = 0 is an eigenvalue of A
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therefore
• if A has no eigenvalue ¸i = 0 then the system has a unique equilibrium point 

which is necessarily the origin (physical example: MSD system)
• if A has at least one eigenvalue ¸i = 0 then the system has infinite equilibrium 

points (physical example: point mass with friction)

linear systems - equilibrium states
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linear systems - equilibrium states
example 2
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relative to
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�1 = �0.5 �2 = 0

det (A ) = 0

¸2 = 0 u2 =

✓
1
1

◆

every equilibrium state
is of the form

the ZIR for arbitrary
initial conditions will

not always tend to the origin:
following the velocity directions,
we end in an equilibrium point ( ) 

different from the origin

xe =

✓
x1e

x2e = x1e

◆
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definitions (LTI systems)

(AS) - A system S is said to be asymptotically stable if its state zero-input 
response converges to the origin for any initial condition

(MS) - A system S is said to be (marginally) stable if its state zero-input 
response remains bounded for any initial condition

(U) - A system S is said to be unstable if its state zero-input response 
diverges for some initial condition

state transition matrix LTI (Linear Time Invariant)

note: use of “any/some”

note: only interested in the free state evolution (ZIR)

�(t) = eAt

�(t, t0) LTV (Linear Time Variant)
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possible behaviors

A 
diagonalizable

A 
not diagonalizable

(defective matrix A)

mg(¸i) = ma(¸i) 
for all i

aperiodic modes

mg(¸i) < ma(¸i) 

real ¸i 

complex
¸i = ®i + j !i

e�it

pseudoperiodic modes

e�it [sin(�it+ ⇥R)ure + cos(�it+ ⇥R)uim]

real ¸i 

complex
¸i = ®i + j !i

. . . ,
tnk�1

(nk � 1)!
e�it

. . . ,
tnk�1

(nk � 1)!
e�it sin�it

xZIR(t) = eAtx0 is a linear combination of

max dimension
of Jordan block Jk

we saw that the
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A LTI system is asymptotically stable 
if and only if 

all the eigenvalues have strictly negative real part

A LTI system is (marginally) stable 
if and only if 

all the eigenvalues have non positive real part
and those which have zero real part have scalar Jordan blocks

A LTI system is unstable
if and only if 

there exists at least one eigenvalue with positive real part or a 
Jordan block corresponding to an eigenvalue with zero real part of dimension 

greater than 1

stability and eigenvalues (stability criterion)

equivalent to mg(¸i) = ma(¸i) for all ¸i with 0 real part

equivalent to mg(¸i) < ma(¸i) for all ¸i with 0 real part
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it all depends upon the positioning of the eigenvalues of matrix A in the complex plane

Re

Im

Re

Im

Re

Im

asymptotic stability 
all eigenvalues in the open left half-plane

distinct eigenvalues case 
(marginal) stability 
some eigenvalues may be on the Im axis
(ma(¸i) = 1 case)

instability 
at least one eigenvalue with positive real part
(the case Re(¸i) = 0 and Jordan block dim > 1 is not shown)

stability and eigenvalues (stability criterion)
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• stability is an intrinsic characteristic of the system, depends only on A 

• stability does not depend upon the applied input nor from B, C or D

example

AS system

remarks

ẋ = �x+ u

y = x

(t

t

u(t)

u(t)

t

t

x(t)

x(t)

“diverging”
response due
to the input

not to the system

but system is 
asymptotically stable
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unstable systems can have bounded or converging solutions for some specific 
initial conditions

remarks

u1
u2

x(t) = e�1tu1v
T
1 x0 + e�2tu2v

T
2 x0

unstable
eigenspace

�1 > 0

�2 < 0

aperiodic
modes

�1 > 0

�2 < 0

unstable
system

as long as the initial condition does not have a 
component along the unstable eigenspace the zero 
input response does not diverge

stable
eigenspace

x01

x02x03

x04

x05

x06

x07

x05 has no component along the 
unstable eigenspace the time evolution is a
decaying exponential along the eigenspace

x04 has a component c41

along the unstable eigenspace

c41u1 = vT1 x04

c41
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• if the system is (marginally) stable then the output ZIR is bounded
(the converse is not true)

• if the system is unstable it does not necessarily imply that the output will 
diverge for some initial condition (it may never diverge)

remarks
• if the system is asymptotically stable then the output ZIR also converges to 0
(the converse is not true)

A =

✓
�1 0
1 �2

◆
, B =

✓
1
1

◆
, C =

�
1 0

�

(compute yZIR(t))

this term may be zero for some ui

y = CeAtx0 =
nX

i=1

e�it C ui v
T
i x0

example
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• MSD with no friction 
and no spring

• MSD with no spring

examples

ms̈ = f

ms̈+ µṡ = f

A =

✓
0 1
0 0

◆
¸1 = 0

ma(¸1) = 2

eigenspace V1 is generated by 
✓
1
0

◆
and therefore mg(¸1) = 1 < ma(¸1)

system in unstable (with a non-zero initial velocity, the mass will move with 
constant velocity and the position will grow linearly with time)

¸1 = 0

¸2 = -µ/m < 0

since ma(¸1) = 1 = mg(¸1) for the zero eigenvalue ¸1 = 0, the system is 
marginally stable (from a generic initial condition, the ZIR velocity will go to 
zero while the ZIR position will asymptotically stop at a constant value which 
depends upon the initial conditions)

A =

✓
0 1
0 �µ/m

◆
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LTI stability criterion: Routh criterion

In order to establish if a LTI system is asymptotically stable we do not need to 
compute the eigenvalues but just the sign of their real parts

p(�) = an�
n + an�1�

n�1 + an�2�
n�2 + · · ·+ a1�+ a0

generic polynomial of order n

A necessary condition in order for the roots of p(¸) = 0 to have all 
negative real part is that the coefficients need to have all the same sign

• if all the roots of p(¸) = 0 have negative real part then the coefficients 
have the same sign

• if a coefficient ai is null then the coefficients do not have the same sign 
and therefore the necessary condition is not satisfied
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Routh table

Routh-Hurwitz stability criterion

row n

row n-1

row n-2

row 1

row 0

an an�2 an�4 · · ·
an�1 an�3 an�5 · · ·
b1 b2 · · ·
c1 c2 · · ·
d1 · · ·
...

b1 = � 1

an�1

����
an an�2

an�1 an�3

����

b2 = � 1

an�1

����
an an�4

an�1 an�5

����

c1 = � 1

b1

����
an�1 an�3

b1 b2

����

c2 = � 1

b1

����
an�1 an�5

b1 b3

����

In order to state a necessary and sufficient condition we need to build a table

directly from p(¸)

computed
as

“missing” terms can be set to 0

p(�) = an�
n + an�1�

n�1 + an�2�
n�2 + · · ·+ a1�+ a0

• the Routh table has a finite number of elements and 
has n+1 rows

• an entire row can be multiplied by a positive number 
without altering the result
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Routh-Hurwitz stability criterion
If the Routh table can be completed then we have the following N&S condition

All the roots of p(¸) = 0 have negative real part iff there are no sign changes 
in the first column of the Routh table

A LTI system is asymptotically stable iff the Routh table built from the 
characteristic polynomial has no sign changes in the first column

• if the table cannot be completed (due to some 0 in the first column) then 
not all the roots have negative part

• the number of sign changes in the first column of the Routh table is equal to 
the number of roots with positive real part

applied to the characteristic polynomial we have the following stability criterion
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Routh table example

5 1 2 3 0

4 1 1 1 0

3 1 2 0

2

1

0

5 1 2 3 0

4 1 1 1 0

3

2

1

0

5 1 2 3 0

4 1 1 1 0

3 1 2 0 0

2 -1 1 0

1

0

5 1 2 3 0

4 1 1 1 0

3 1 2 0 0

2 -1 1 0

1 3 0 0

0

5 1 2 3

4 1 1 1

3 1 2 0

2 -1 1 0

1 3 0 0

0 1 0 0

�1

1

����
1 2
1 1

����
�1

1

����
1 3
1 1

����
�1

1

����
1 0
1 0

����

�1

1

����
1 1
1 2

����
�1

1

����
1 1
1 0

����
�1

1

����
1 0
0 0

����

� 1

�1

����
1 2
�1 1

����

� 1

�1

����
1 0
�1 0

����

�1

3

����
�1 1
3 0

����

�1

3

����
�1 0
3 0

����

p(�) = �5 + �4 + 2�3 + �2 + 3�+ 1

added to compute the next elements

the table has been completed, 2 sign changes in the first column (from row 3 to row 2 and 
from row 2 to row 1) so 2 roots with positive real part

+
+
+
-
+
+
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Routh table example

p(�) = a�2 + b�+ c

second order polynomial

• for a second order polynomial,  the necessary condition is also sufficient 

(for the 2 roots to have negative real part)

• if c has different sign than a and b, then 1 root has positive real part

• if b has different sign than a and c, then both roots have positive real part

Routh table

a c

b

c

0
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Routh table example

we want to use the Routh criterion in order to state N&S condition for the roots 
of a polynomial to have real part less than a given ® 

Re

Im

Re[¸] < ® 

Re[¸ - ®] < 0 ¸ - ® = ´

p(´) = p(¸)| ¸  =  ´ + ® 

setting

Re[´] < 0 for
p(¸)for

this corresponds to a
translation of the Im axis

®

®

Re[¸] < ® since

in order to check if the roots of p(¸) = 0 all have real part smaller than ®, 
we can apply the Routh criterion to the polynomial p(´)
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from linear to nonlinear

Nonlinear systems (see slides StabilityTheory by Prof. G. Oriolo):

• equilibrium points

• examples

• stable equilibrium state

• indirect method of Lyapunov

the remaining slides of Prof. Oriolo are supplementary
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nonlinear systems - equilibrium states
pendulum example

# m

`

µdamping
coefficient m `2 #̈+mg ` sin#+ µ #̇ = 0

x =

✓
x1

x2

◆
=

✓
#
#̇

◆ ẋ1 = x2

ẋ2 = �g

`
sin x1 �

µ

m `2
x2

ẋ = f(x)in the general form

we are going to look for those states xe (equilibrium states) for which
that is for which f(xe) = 0

ẋ = 0

2 equilibrium states xe1 =

✓
0
0

◆
xe2 =

✓
⇡
0

◆

upright
rest position

down
rest position
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solution on phase plane: pendulum

#̇(t)

#(t)

(unstable)
equilibrium

state

(stable)
equilibrium

state

#̇(0)

phase portrait

no damping case (µ = 0) m `2 #̈+mg ` sin# = 0

xe2xe1

particular initial 
condition from 
which the 
pendulum reaches 
autonomously 
(asymptotically) 
the upright rest 
position

from this initial state the pendulum 
will never stop rotating
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solution on phase plane: pendulum

(unstable)
equilibrium

state

(stable)
equilibrium

state

no damping case (µ = 0) m `2 #̈+mg ` sin# = 0

xe2xe1

for a given 
neighbourhood of 
radius " of xe1 we can 
find a neighbourhood 
of radius ± such that 
the stability condition 
is verified

±
"

xe1 stable equilibrium state

even starting
on the border
we remain 
inside "
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solution on phase plane: pendulum
solutions with non-zero damping
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Phase portrait damped pendulum

from these initial states the 
pendulum will go over the upright 
position to finally asymptotically 
stop in the down rest position

this equilibrium state xe1 is 
now asymptotically stable
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solution on phase plane: Van der Pol oscillator
ẍ� b(1� x2)ẋ+ x = 0

x1
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Phase portrait Van der Pol equation b = 0.4

limit cycle

is the origin stable?
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solution on phase plane: Van der Pol oscillator
ẍ� b(1� x2)ẋ+ x = 0

x1
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Phase portrait Van der Pol equation b = 0.4

"

for a given neighbourhood of radius " of xe1 there is no 
neighbourhood of radius ± such that the stability condition is verified

limit cycle


