Control Systems

Internal Stability - LTI systems

L. Lanari

outline

LTI systems:

- definitions
- conditions
- Routh stability criterion
- equilibrium points

Nonlinear systems:

- equilibrium points
- examples
- stable equilibrium state (see slides StabilityTheory by Prof. G. Oriolo)
- indirect method of Lyapunov (see slides StabilityTheory by Prof. G. Oriolo)

linear systems - equilibrium states

the origin is a particular state:

- at the origin the state velocity is 0 if no inputs are applied
- therefore if we start from the origin, the state will stay there in the ZIR
- mathematically $0=A .0$
we can look for any state x_{e} with such a property i.e. a state x_{e} such that

$$
A x_{e}=0
$$

these are defined as equilibrium states
all the equilibrium states of a LTI system belong to the nullspace of A

- if A nonsingular then only one equilibrium state (the origin)
- if A singular then infinite equilibrium states (subspace)
note that A singular means

$$
\operatorname{det}(A)=\operatorname{det}(A-0 . I)=0
$$

that is $\lambda_{i}=0$ is an eigenvalue of A

linear systems - equilibrium states

therefore

- if A has no eigenvalue $\lambda_{i}=0$ then the system has a unique equilibrium point which is necessarily the origin (physical example: MSD system)
- if A has at least one eigenvalue $\lambda_{i}=0$ then the system has infinite equilibrium points (physical example: point mass with friction)
example 1

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \lambda_{1}=-1 \quad \lambda_{2}=1
\end{aligned}
$$

linear systems - equilibrium states

example 2
$A=\left(\begin{array}{cc}-0.25 & 0.25 \\ 0.25 & -0.25\end{array}\right)$
$\operatorname{det}(A)=0$
$\lambda_{1}=-0.5 \quad \lambda_{2}=0$
$\lambda_{2}=0 \longrightarrow u_{2}=\binom{1}{1}$
the ZIR for arbitrary initial conditions will not always tend to the origin: following the velocity directions, we end in an equilibrium point (*) different from the origin
$\begin{aligned} & \text { every equilibrium state } \\ & \text { is of the form }\end{aligned} \quad x_{e}=\binom{x_{1 e}}{x_{2 e}=x_{1 e}}$
$\left.\begin{array}{c}\text { eigenspace } \\ \text { relative to }\end{array}=\quad \begin{array}{c}\text { infinite } \\ \text { equilibrium }\end{array}\right]$
$\lambda_{i}=0 \quad \ddots, \quad$ points

definitions (LTI systems)

(AS) - A system S is said to be asymptotically stable if its state zero-input response converges to the origin for any initial condition
(MS) - A system S is said to be (marginally) stable if its state zero-input response remains bounded for any initial condition
(U) - A system S is said to be unstable if its state zero-input response diverges for some initial condition
note: only interested in the free state evolution (ZIR)
note: use of "any/some"
\longrightarrow state transition matrix

$$
\begin{array}{ll}
\Phi(t)=e^{A t} & \text { LTI (Linear Time Invariant) } \\
\Phi\left(t, t_{0}\right) & \text { LTV (Linear Time Variant) }
\end{array}
$$

possible behaviors

we saw that the $x_{Z I R}(t)=e^{A t} x_{0} \quad$ is a linear combination of

stability and eigenvalues (stability criterion)

> A LTI system is asymptotically stable if and only if
> all the eigenvalues have strictly negative real part

> A LTI system is (marginally) stable if and only if
> all the eigenvalues have non positive real part and those which have zero real part have scalar Jordan blocks

equivalent to $m g\left(\lambda_{i}\right)=m a\left(\lambda_{i}\right)$ for all λ_{i} with 0 real part

A LTI system is unstable

if and only if
there exists at least one eigenvalue with positive real part or a Jordan block corresponding to an eigenvalue with zero real part of dimension greater than $1 \cdots$
equivalent to $m g\left(\lambda_{i}\right)<m a\left(\lambda_{i}\right)$ for all λ_{i} with 0 real part

stability and eigenvalues (stability criterion)

it all depends upon the positioning of the eigenvalues of matrix A in the complex plane

asymptotic stability
all eigenvalues in the open left half-plane

instability

at least one eigenvalue with positive real part (the case $\operatorname{Re}\left(\lambda_{i}\right)=0$ and Jordan block $\operatorname{dim}>1$ is not shown)

remarks

- stability is an intrinsic characteristic of the system, depends only on A
- stability does not depend upon the applied input nor from B, C or D
example

remarks

unstable systems can have bounded or converging solutions for some specific initial conditions

$$
x(t)=e^{\lambda_{1} t} u_{1} v_{1}^{T} x_{0}+e^{\lambda_{2} t} u_{2} v_{2}^{T} x_{0} \begin{array}{cc}
\text { aperiodic } \\
\text { modes }
\end{array} \begin{gathered}
\lambda_{1}>0 \\
\lambda_{2}<0
\end{gathered} \longrightarrow \begin{gathered}
\text { unstable } \\
\text { system }
\end{gathered}
$$

x_{05} has no component along the unstable eigenspace the time evolution is a decaying exponential along the eigenspace
x_{04} has a component c_{41} along the unstable eigenspace

$$
c_{41} u_{1}=v_{1}^{T} x_{04}
$$

remarks

- if the system is asymptotically stable then the output ZIR also converges to 0 (the converse is not true)
- if the system is (marginally) stable then the output ZIR is bounded (the converse is not true)
- if the system is unstable it does not necessarily imply that the output will diverge for some initial condition (it may never diverge)

$$
y=C e^{A t} x_{0}=\sum_{i=1}^{n} e^{\lambda_{i} t} \square C u_{i} v_{i}^{T} x_{0}
$$

this term may be zero for some u_{i}
example

$$
A=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
1 & \lambda_{2}
\end{array}\right), \quad B=\binom{1}{1}, \quad C=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

(compute $y_{Z I R}(t)$)

examples

- MSD with no friction $m \ddot{s}=f$

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \begin{aligned}
\lambda_{1} & =0 \\
m a\left(\lambda_{1}\right) & =2
\end{aligned}
$$

eigenspace V_{1} is generated by $\binom{1}{0}$ and therefore $m g\left(\lambda_{1}\right)=1<m a\left(\lambda_{1}\right)$ system in unstable (with a non-zero initial velocity, the mass will move with constant velocity and the position will grow linearly with time)

- MSD with no spring $\quad m \ddot{s}+\mu \dot{s}=f \quad A=\left(\begin{array}{cc}0 & 1 \\ 0 & -\mu / m\end{array}\right) \begin{aligned} & \lambda_{1}=0 \\ & \lambda_{2}=-\mu / m<0\end{aligned}$
since $m a\left(\lambda_{1}\right)=1=m g\left(\lambda_{1}\right)$ for the zero eigenvalue $\lambda_{1}=0$, the system is marginally stable (from a generic initial condition, the ZIR velocity will go to zero while the ZIR position will asymptotically stop at a constant value which depends upon the initial conditions)

LTI stability criterion: Routh criterion

In order to establish if a LTI system is asymptotically stable we do not need to compute the eigenvalues but just the sign of their real parts
generic polynomial of order n

$$
p(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

A necessary condition in order for the roots of $p(\lambda)=0$ to have all negative real part is that the coefficients need to have all the same sign

- if all the roots of $p(\lambda)=0$ have negative real part then the coefficients have the same sign
- if a coefficient a_{i} is null then the coefficients do not have the same sign and therefore the necessary condition is not satisfied

Routh-Hurwitz stability criterion

In order to state a necessary and sufficient condition we need to build a table

$$
p(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\cdots+a_{1} \lambda+a_{0}
$$

Routh table

a_{n}	a_{n-2}	a_{n-4}	\cdots
a_{n-1}	a_{n-3}	a_{n-5}	\cdots
b_{1}	b_{2}	\cdots	
c_{1}	c_{2}	\cdots	
d_{1}	\cdots	computed \longrightarrow	
\vdots		as	
"missing" terms can be set to 0			

$$
b_{1}=-\frac{1}{a_{n-1}}\left|\begin{array}{cc}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right|
$$

row 1
row 0
row n
row $n-1$
row $n-2$

$$
\text { row } n-1
$$

$$
\text { row } n-2
$$

- the Routh table has a finite number of elements and has $n+1$ rows

$$
c_{2}=-\frac{1}{b_{1}}\left|\begin{array}{cc}
a_{n-1} & a_{n-5} \\
b_{1} & b_{3}
\end{array}\right|
$$

- an entire row can be multiplied by a positive number without altering the result

Routh-Hurwitz stability criterion

If the Routh table can be completed then we have the following $N \& S$ condition

All the roots of $p(\lambda)=0$ have negative real part iff there are no sign changes in the first column of the Routh table
applied to the characteristic polynomial we have the following stability criterion
A LTI system is asymptotically stable iff the Routh table built from the characteristic polynomial has no sign changes in the first column

- if the table cannot be completed (due to some 0 in the first column) then not all the roots have negative part
- the number of sign changes in the first column of the Routh table is equal to the number of roots with positive real part

Routh table example

$$
p(\lambda)=\lambda^{5}+\lambda^{4}+2 \lambda^{3}+\lambda^{2}+3 \lambda+1
$$

the table has been completed, 2 sign changes in the first column (from row 3 to row 2 and from row 2 to row 1) so 2 roots with positive real part

Routh table example

second order polynomial

$$
p(\lambda)=a \lambda^{2}+b \lambda+c
$$

Routh table

- for a second order polynomial, the necessary condition is also sufficient (for the 2 roots to have negative real part)
- if c has different sign than a and b, then 1 root has positive real part
- if b has different sign than a and c, then both roots have positive real part

Routh table example

we want to use the Routh criterion in order to state N\&S condition for the roots of a polynomial to have real part less than a given α

$$
\text { since } \operatorname{Re}[\lambda]<\alpha \longleftrightarrow \operatorname{Re}[\lambda-\alpha]<0 \quad \text { setting } \quad \lambda-\alpha=\eta
$$

$$
\begin{array}{|l}
\hline \operatorname{Re}[\lambda]<\alpha \\
\text { for } \\
p(\lambda)
\end{array} \longleftrightarrow \begin{array}{|rl}
\operatorname{Re}[\eta]<0 \quad \text { for } \quad p(\eta)=\left.p(\lambda)\right|_{\lambda=\eta+\alpha} \\
\hline
\end{array}
$$

in order to check if the roots of $p(\lambda)=0$ all have real part smaller than α, we can apply the Routh criterion to the polynomial $p(\eta)$

from linear to nonlinear

Nonlinear systems (see slides StabilityTheory by Prof. G. Oriolo):

- equilibrium points
- examples
- stable equilibrium state
- indirect method of Lyapunov
the remaining slides of Prof. Oriolo are supplementary

nonlinear systems - equilibrium states

pendulum example

$$
\begin{aligned}
& \begin{array}{c}
\text { damping } \\
\text { coefficient }
\end{array} \mu \\
& m \ell^{2} \ddot{\vartheta}+m g \ell \sin \vartheta+\mu \dot{\vartheta}=0 \\
& x=\binom{x_{1}}{x_{2}}=\binom{\vartheta}{\dot{\vartheta}} \quad \longrightarrow \quad \begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{g}{\ell} \sin x_{1}-\frac{\mu}{m \ell^{2}} x_{2}
\end{array} \\
& \text { in the general form } \quad \dot{x}=f(x)
\end{aligned}
$$

we are going to look for those states x_{e} (equilibrium states) for which $\dot{x}=0$ that is for which $f\left(x_{e}\right)=0$

2 equilibrium states

$$
\begin{array}{cc}
x_{e 1}=\binom{0}{0} & x_{e 2}=\binom{\pi}{0} \\
\text { down } & \text { upright } \\
\text { rest position } & \text { rest position }
\end{array}
$$

solution on phase plane: pendulum

no damping case $(\mu=0) \quad m \ell^{2} \ddot{\vartheta}+m g \ell \sin \vartheta=0$

solution on phase plane: pendulum

no damping case $(\mu=0) \quad m \ell^{2} \ddot{\vartheta}+m g \ell \sin \vartheta=0$
$x_{e 1}$ stable equilibrium state
for a given neighbourhood of radius ε of $x_{e 1}$ we can find a neighbourhood of radius δ such that the stability condition is verified
$x_{e 1}$
(stable)
equilibrium
state

Phase portrait undamped pendulum

even starting on the border we remain inside ε
$x_{e 2}$ (unstable) equilibrium state

solution on phase plane: pendulum

solutions with non-zero damping
from these initial states the pendulum will go over the upright position to finally asymptotically stop in the down rest position
this equilibrium state $x_{e 1}$ is now asymptotically stable

solution on phase plane: Van der Pol oscillator

$\ddot{x}-b\left(1-x^{2}\right) \dot{x}+x=0 \quad$ is the origin stable?
Phase portrait Van der Pol equation $\mathbf{b}=0.4$

solution on phase plane: Van der Pol oscillator

$$
\ddot{x}-b\left(1-x^{2}\right) \dot{x}+x=0
$$

for a given neighbourhood of radius ε of $x_{e 1}$ there is no neighbourhood of radius δ such that the stability condition is verified

