Control Systems

Response characteristics

L. Lanari

outline

- study a particular response, the step response, to a unit step as input
- final value theorem
- characterize the asymptotic and transient response on the step response
- position of poles in the complex plane
- definition of quantities on the step response in the time domain
- define the long term, asymptotic, behavior (steady-state) of a response and understand when it exists
- compute the steady-state response for different test inputs

step response

The forced response to a step input is referred as step response

- in s

$$
\begin{aligned}
& u(t)=\delta_{-1}(t) \longrightarrow U(s)=\frac{1}{s} \quad \longrightarrow \quad X_{s}(s)=H(s) U(s)=H(s) \frac{1}{s} \quad \text { state } \\
& x_{0}=0 \\
& Y_{s}(s)=W(s) U(s)=W(s) \frac{1}{s} \text { output }
\end{aligned}
$$

- in t, integral property of the Laplace transform

$$
x_{s}(t)=\int_{0}^{t} h(\tau) d \tau
$$

$$
y_{s}(t)=\int_{0}^{t} w(\tau) d \tau
$$

the (output) step response is equal to the integral of the (output) impulse response

step response

Let S be asymptotically stable

$$
W(s)=\frac{N(s)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \quad \begin{gathered}
\text { distinct poles } \\
\text { (for ease of exposition) }
\end{gathered}
$$

- explicit response from s from t

$$
Y_{s}(s)=W(s) U(s)=\frac{N(s)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \frac{1}{s} \xrightarrow[\text { fraction expansion }]{\substack{\text { distinct } \\
\text { denominator roots }}} Y_{s}(s)=\frac{R_{0}}{s}+\sum_{i=1}^{n-p_{i}} \frac{R_{i}}{s} \begin{gathered}
\downarrow \\
\text { input } \\
\text { contribution contribution }
\end{gathered}
$$

$$
\begin{array}{r}
\text { step response } \\
\text { (distinct poles) }
\end{array} y_{s}(t)=\left(R_{0}+\sum_{i=1}^{n} R_{i} e^{p_{i} t}\right) \delta_{-1}(t)
$$

these terms decay since
S is asymptotically stable $\operatorname{Re}\left[p_{i}\right]<0$

step response

- explicit response directly in t (alternative solution)
forced response (convolution integral + direct term)

$$
\begin{aligned}
y_{s}(t) & =\int_{0}^{t} C e^{A(t-\tau)} B u(\tau) d \tau+D u(t) \\
& =C \int_{0}^{t} e^{A(t-\tau)} B d \tau+D \\
& =C \int_{0}^{t} e^{A \sigma} B d \sigma+D \\
& =C(\underbrace{\left.C A^{-1} e^{A \sigma} B\right]_{\sigma=0}^{\sigma=t}+D}_{\text {(transient) }} \\
& =\underbrace{C A^{-1} e^{A t} B}_{\begin{array}{c}
\text { constant } \\
\text { (steady-state) }
\end{array}}+\underbrace{D-C A^{-1} B} B
\end{aligned}
$$

step response

for an asymptotically stable system
the response can be conceptually split in two parts: transient and steady state

do not confuse transient/steady state with free/forced response

step response: transient + steady state

let's clarify the separation between the transient and steady state contributions

for the step response the steady state is the constant value at which the output asymptotically tends to, from the response expression this is

$$
R_{0} \delta_{-1}(t)
$$

Laplace transform: initial value theorem

for an asymptotically stable system (distinct poles)

$$
y_{s}(t)=\left(R_{0}+\sum_{i=1}^{n} R_{i} e^{p_{i} t}\right) \delta_{-1}(t)
$$

$$
y_{s}(0)=R_{0}+\sum_{i=1}^{n} R_{i}=?
$$

Initial value theorem

- what is the value at $t=0$?
true for any asymptotically stable system
therefore

$$
y_{s}(0)=\lim _{s \rightarrow+\infty} s W(s) \frac{1}{s}=\lim _{s \rightarrow+\infty} W(s)= \begin{cases}D & \text { if } W(s) \text { proper } \\ 0 & \text { if } W(s) \text { strictly proper }\end{cases}
$$

Laplace transform: final value theorem

- what is the behavior at steady state $(t=\infty)$?

Final value theorem

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

general result
provided the limit on the left exists
if $s F(s)$ is analytic (all the roots of the denominator of $s F(s)$ in the open left half-plane)
example $\quad W(s)=\frac{1}{s+1} \quad$ asymptotically stable system

$$
\begin{array}{ll}
u_{1}(t)=\delta_{-1}(t) & U_{1}(s)=\frac{1}{s} \\
u_{2}(t)=t \delta_{-1}(t) & U_{2}(s)=\frac{1}{s^{2}} \\
u_{3}(t)=\sin \omega t & s Y_{2}(s)=s \frac{1}{(s+1)} \frac{1}{s} \\
U_{3}(s)=\frac{1}{s^{2}+\omega^{2}} & s Y_{3}(s)=s \frac{1}{s^{2}}
\end{array}
$$

step response: steady-state

S asymptotically stable $\left(\operatorname{Re}\left[p_{i}\right]<0\right) \quad W(s)=\frac{N(s)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \quad$ (distinct poles)
we already found

$$
Y_{s}(s)=\frac{R_{0}}{s}+\sum_{i=1}^{n} \frac{R_{i}}{s-p_{i}} \longrightarrow y_{s}(t)=R_{0} \delta_{-1}(t)+\sum_{i=1}^{n} R_{i} e^{p_{i} t} \delta_{-1}(t)
$$

by the definition of residue R_{0}
$R_{0}=\left[s Y_{s}(s)\right]_{s=0}=\left[s W(s) \frac{1}{s}\right]_{s=0}=W(0) \quad$ steady-state
these terms decay
or the application of the final value theorem

$$
\begin{aligned}
& \begin{array}{c}
\text { steady-state } \\
\text { output }
\end{array} \quad y_{\mathrm{ss}}(t)=\lim _{s \rightarrow 0} s Y_{s}(s)=\lim _{s \rightarrow 0} s W(s) \frac{1}{s}=W(0)=R_{0} \quad \text { dc-gain }
\end{aligned}
$$

$$
\text { note that } \quad W(0)=D-C A^{-1} B
$$

step response: steady-state

Since the output (total) response to a step input is given by

$$
y(t)=\underset{\substack{\text { zero-input } \\
\text { response }}}{y_{z i}(t)+y_{s}(t)} \begin{gathered}
\text { step } \\
\text { response }
\end{gathered}
$$

and the zero-input response tends to zero for an asymptotically stable system, we can state that:

The output of a linear asymptotically stable system $W(s)$ to a unit step input tends to a constant value given by the system's gain $W(0)$
the reasoning is still true for repeated poles (provided the system is asymptotically stable)

do not mix up \begin{tabular}{c}

zero-input
response

zero-state
response

resth

step

response
\end{tabular}\quad with $\quad y_{z i}(t)+y_{s}(t) \quad y_{s}(t)=y_{t}(t)+y_{s s}(t)$

step response: steady-state

even with non-zero initial condition, due to the asymptotic stability of S all the responses tend to the same constant value

Total output step response with different initial conditions

steady-state is independent from the initial conditions
the final constant value coincides with the system gain which can also be zero (due to the presence of a zero in $s=0$)

$$
P_{2}(0)=0
$$

step response: transient

transient is defined as the forced response minus the steady-state $\quad y_{t}(t)=y_{s}(t)-y_{s s}(t)$

alternative

$$
\begin{gather*}
W(s)=\sum_{i=1}^{n} \frac{R_{i}^{\prime}}{s-p_{i}} \quad w(t)=\sum_{i=1}^{n} R_{i}^{\prime} e^{p_{i} t} \\
y_{s}(t)=\int_{0}^{t} w(\tau) d \tau=\sum_{i=1}^{n} \frac{R_{i}^{\prime}}{p_{i}}\left[e^{p_{i} t}-1\right]=\sum_{i=1}^{n} \frac{R_{i}^{\prime}}{p_{i}} e^{p_{i}}-\sum_{i=1}^{n} \frac{R_{i}^{\prime}}{p_{i}} \tag{0}
\end{gather*}
$$

transient behavior of a system

defined on a particular time response: step response

transient

t_{r} rise time: amount of time required for the signal to go from 10% to 90% of its final value
$y_{s s}$ steady state value: asymptotic output value
M_{p} overshoot: maximum excess of the output w.r.t. the final value (can be defined as a percentage of the final value). In a normalized $y_{s}(t) / y_{s s}$ plot the overshoot is given by the maximum of the normalized output minus one.
t_{p} peak time: time required for the step response to reach the overshoot
t_{s} settling time: amount of time required for the step response to stay within 2% of its final value for all future times

transient

Quantities related to complex plane position of the poles

transient

Quantities related to complex plane position of the poles (real poles)

comparison between the response of the two systems taken separately

$$
P_{i}(s)=\frac{-p_{i}}{s-p_{i}}
$$

transient

quantities related to complex plane position of the poles (complex poles)

comparison between four systems with pair of complex poles and unit gain

$$
P(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

explain why \mathbf{x} is faster than \mathbf{x} even if eigenvalues have same real part

steady state

the steady state will be also defined for other classes of inputs (not only step)

Existence

we require
I. the existence of the steady state also for the state (not only for the output)
2. and the independence, of the asymptotic behavior, from the initial conditions $x(0)$ being

$$
x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

$x(t)$ will be independent for $t \rightarrow \infty$ from the initial condition iff all the modes are converging (all the eigenvalues have negative real part)
i.e. the system is asymptotically stable

steady state

- exists only for asymptotically stable systems
- is independent from the initial state
- depends on the particular input applied to the system

$$
\begin{array}{lll}
\text { polynomial inputs } \\
& \longrightarrow & \text { polynomial steady state } \\
\text { sinusoidal inputs } & & \text { sinusoidal steady state }
\end{array}
$$

(canonical test signals)

polynomial input

let the canonical input (signal of order k) be $\quad u(t)=\frac{t^{k}}{k!} \delta_{-1}(t) \quad$ with transform $U(s)=\frac{1}{s^{k+1}}$
for an asymptotically stable system with distinct poles, the output is

$$
Y(s)=P(s) U(s)=\frac{N(s)}{\prod_{i=1}^{n}\left(s-p_{i}\right)} \frac{1}{s^{k+1}}
$$

and expanding

$$
\begin{aligned}
& Y(s)= \frac{R_{11}}{s}+\frac{R_{12}}{s^{2}}+\cdots+\frac{R_{1, k+1}}{s^{k+1}}+\sum_{i=1}^{n} \frac{R_{i}}{s-p_{i}} \\
& \begin{array}{l}
\text { these give in } t \\
\text { contributions that } \\
\text { tend to } 0 \text { as } t \\
\text { increases }
\end{array} \\
& Y_{\mathrm{SS}}(s)=\frac{R_{11}}{s}+\frac{R_{12}}{s^{2}}+\cdots+\frac{R_{1, k+1}}{s^{k+1}}
\end{aligned}
$$

$$
u(t)=\frac{t^{k}}{k!} \delta_{-1}(t) \xrightarrow{\text { steady state }} \quad y_{\mathrm{ss}}(t)=\left(R_{11}+R_{12} t+\cdots+R_{1, k+1} \frac{t^{k}}{k!}\right) \delta_{-1}(t)
$$

note that $\quad R_{i, k+1}=\left[\frac{1}{((k+1)-(k+1))!} \frac{d^{((k+1)-(k+1))}}{s^{((k+1)-(k+1))}} s^{k+1} \frac{1}{s^{s+1}} P(s)\right]_{s=0}=P(0)$

steady state

sinusoidal input

input $u(t)=\sin \bar{\omega} t=\frac{e^{j \bar{\omega} t}-e^{-j \bar{\omega} t}}{2 j} \longrightarrow U(s)=\mathcal{L}\{\sin \bar{\omega} t\}=\frac{\bar{\omega}}{s^{2}+\bar{\omega}^{2}}=\frac{\bar{\omega}}{(s+j \bar{\omega})(s-j \bar{\omega})}$
system (asymptotically stable) $\quad P(s)=\frac{N(s)}{\prod\left(s-p_{i}\right)}$
output

$$
Y(s)=P(s) U(s)=\frac{N^{\prime}(s)}{\prod\left(s-p_{i}\right)}+\frac{R_{1}}{s-j \bar{\omega}}+\frac{R_{2}}{s+j \bar{\omega}}
$$

with

$$
\begin{aligned}
& R_{1}=[(s-j \bar{\omega}) Y(s)]_{s=j \bar{\omega}}=\left[P(s) \frac{\bar{\omega}}{s+j \bar{\omega}}\right]_{s=j \bar{\omega}}=\frac{1}{2 j} P(j \bar{\omega}) \\
& R_{2}=[(s+j \bar{\omega}) Y(s)]_{s=-j \bar{\omega}}=\left[P(s) \frac{\bar{\omega}}{s-j \bar{\omega}}\right]_{s=-j \bar{\omega}}=-\frac{1}{2 j} P(-j \bar{\omega})=R_{1}^{*}
\end{aligned}
$$

$$
\text { rational function } \quad P(-j \omega)=P^{*}(j \omega)
$$

sinusoidal input

asymptotic stability

$$
\mathcal{L}^{-1}\left\{\frac{N^{\prime}(s)}{\prod\left(s-p_{i}\right)}\right\}=\mathcal{L}^{-1}\left\{\sum \sum \frac{R_{i k}}{\left(s-p_{i}\right)^{m_{i}-k}}\right\} \quad \rightarrow 0 \quad \text { when } \quad t \rightarrow \infty
$$

asymptotic behavior (steady-state) is

$$
y_{\mathrm{ss}}(t)=\mathcal{L}^{-1}\left\{\frac{R_{1}}{s-j \bar{\omega}}+\frac{R_{2}}{s+j \bar{\omega}}\right\}
$$

but being $P(j \bar{\omega})=|P(j \bar{\omega})| e^{j \angle P(j \bar{\omega})}$ with $\quad|P(-j \bar{\omega})|=|P(j \bar{\omega})|$ and $\angle P(-j \bar{\omega})=-\angle P(j \bar{\omega})$
we have

$$
\begin{aligned}
y_{\mathrm{ss}}(t) & =R_{1} e^{j \bar{\omega} t}+R_{2} e^{-j \bar{\omega} t} \\
& =\frac{1}{2 j}\left(P(j \bar{\omega}) e^{j \bar{\omega} t}-P(-j \bar{\omega}) e^{-j \bar{\omega} t}\right) \\
& =\frac{1}{2 j}\left(|P(j \bar{\omega})| e^{j \angle P(j \bar{\omega})} e^{j \bar{\omega} t}-|P(-j \bar{\omega})| e^{-j \angle P(j \bar{\omega})} e^{-j \bar{\omega} t}\right) \\
& =\frac{|P(j \bar{\omega})|}{2 j}\left(e^{j(\bar{\omega} t+\angle P(j \bar{\omega}))}-e^{-j(\bar{\omega} t+\angle P(j \bar{\omega}))}\right) \\
& =|P(j \bar{\omega})| \sin (\bar{\omega} t+\angle P(j \bar{\omega}))
\end{aligned}
$$

sinusoidal input

the steady-state response of an asymptotically stable system $P(s)$ to a sinusoidal input $u(t)=\sin \bar{\omega} t$ is given by

$$
y_{\mathrm{ss}}(t)=|P(j \bar{\omega})| \sin (\bar{\omega} t+\angle P(j \bar{\omega}))
$$

- steady-state has same frequency than input
- can be

$$
\begin{array}{ll}
\text { amplified } & |P(j \bar{\omega})|>1 \\
\text { attenuated } & |P(j \bar{\omega})|<1
\end{array}
$$

- also phase variation
- depends only on the frequency of the input and the system characteristics
$|P(j \omega)|$
$\angle P(j \omega)$
gain curve
phase curve

sinusoidal input

