Control Systems

Bode diagrams L. Lanari

Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti

Outline

- Bode's canonical form for the frequency response
- Magnitude and phase in the complex plane
- The decibels (dB)
- Logarithmic scale for the abscissa
- Bode's plots for the different contributions

Frequency response

The steady state response of an asymptotically stable system P(s) to a sinusoidal input $u(t) = \sin \bar{\omega} t$ is given by

$$y_{\rm ss}(t) = |P(j\bar{\omega})| \sin(\bar{\omega}t + \angle P(j\bar{\omega}))$$

amplification/attenuation depends on same frequency as input the system at the frequency of the input

 $P(j\omega)$ is the restriction of the transfer function to the imaginary axis $P(j\omega)|_{s = j\omega}$

Frequency response
$$P(j\omega)$$
 $\left\{ \begin{array}{c} |P(j\omega)| & \text{(or magnitude)} \\ (or magnitude) & 2p(j\omega) & 2p(j$

pole/zero representation of the transfer function

$$F(s) = K' \frac{1}{s^m} \frac{\prod_k (s - z_k) \prod_\ell (s^2 + 2\zeta_\ell \omega_{n\ell} s + \omega_{n\ell}^2)}{\prod_i (s - p_i) \prod_z (s^2 + 2\zeta_z \omega_{nz} s + \omega_{nz}^2)}$$

with m such that

- m = 0 if no pole or zero in s = 0
- m < 0 if m zeros in s = 0
- m > 0 if m poles in s = 0

remarks

- numerator and denominator are by hypothesis coprime
- denominator is monic
- K' is not the system gain

- the terms $(s z_k)$ and $(s p_i)$ are relative to
 - real zeros (in $s = z_k$)
 - real poles (in $s = p_i$)

- the terms $(s^2 + 2\zeta_\ell \omega_{n\ell}s + \omega_{n\ell}^2)$ and $(s^2 + 2\zeta_z \omega_{nz}s + \omega_{nz}^2)$ are relative to
 - \blacktriangleright complex conjugate zeros (in $s=\alpha_\ell\pm j\beta_\ell$)
 - complex conjugate poles (in $s = \alpha_z \pm j\beta_z$)

with

- natural frequency $\omega_{n*} = \sqrt{\alpha_*^2 + \beta_*^2}$
- damping coefficient $\zeta_* = -\alpha_*/\omega_{n*} = -\alpha_*/\sqrt{\alpha_*^2 + \beta_*^2}$

factoring out the constant terms

 $s - z_k = -z_k(1 - 1/z_k s) = -z_k(1 + \tau_k s) \text{ with } \tau_k = -1/z_k$ $s - p_i = -p_i(1 - 1/p_i s) = -p_i(1 + \tau_i s) \text{ with } \tau_i = -1/p_i$

with τ_i and τ_k being time constants

$$F(s) = K' \frac{1}{s^m} \frac{\prod_k (-z_k) \prod_\ell (\omega_{n\ell}^2) \prod_k (1+\tau_k s) \prod_\ell (1+2\zeta_\ell / \omega_{n\ell} s + s^2 / \omega_{n\ell}^2)}{\prod_i (-p_i) \prod_z (\omega_{nz}^2) \prod_i (1+\tau_i s) \prod_z (1+2\zeta_z / \omega_{nz} s + s^2 / \omega_{nz}^2)}$$

defining $K = K' \frac{\prod_k (-z_k) \prod_\ell (\omega_{n\ell}^2)}{\prod_i (-p_i) \prod_z (\omega_{nz}^2)}$

$$K = [s^m F(s)]_{s=0} \quad \text{for any} \quad m \ge 0$$

how to compute K

$$F(s) = K \frac{1}{s^m} \frac{\prod_k (1 + \tau_k s) \prod_\ell (1 + 2\zeta_\ell / \omega_{n\ell} s + s^2 / \omega_{n\ell}^2)}{\prod_i (1 + \tau_i s) \prod_z (1 + 2\zeta_z / \omega_{nz} s + s^2 / \omega_{nz}^2)}$$

Bode canonical form

$$F(s) = K \frac{1}{s^m} \frac{\prod_k (1 + \tau_k s) \prod_\ell (1 + 2\zeta_\ell / \omega_{n\ell} s + s^2 / \omega_{n\ell}^2)}{\prod_i (1 + \tau_i s) \prod_z (1 + 2\zeta_z / \omega_{nz} s + s^2 / \omega_{nz}^2)} = 1 \text{ for } s = 0$$

generalized gain
$$K = [s^m F(s)]_{s=0}$$
 for any $m \ge 0$

Note that

for a system with no poles in s = 0 (i.e. m negative or zero) we have defined as
 dc-gain (or static gain)

$$K_s = F(s)\Big|_{s=0} = F(0)$$

if m < 0 (zeros in s = 0) we have F(0) = 0

• static and generalized gain coincide only when m=0

$$K = K_s \quad \Leftrightarrow \quad m = 0$$

• for an asymptotically stable system, the step response tends to the static gain $K_s = F(0)$

Examples

•
$$F(s) = \frac{s-1}{2s^2+6s+4} = \frac{s-1}{2(s+1)(s+2)} = -\frac{1}{4}\frac{1-s}{(1+s)(1+s/2)}$$

 $K = -\frac{1}{4} = K_s$

•
$$F(s) = \frac{s(s-1)}{2(s+1)^2(s+2)} = -\frac{1}{4} \frac{s(1-s)}{(1+s)^2(1+s/2)}$$

 $K = -\frac{1}{4}$ $K_s = 0$

•
$$F(s) = \frac{s-1}{2s(s+1)(s+2)} = -\frac{1}{4} \frac{1-s}{s(1+s)(1+s/2)}$$

 $K = -\frac{1}{4} \nexists K_s$

frequency response

$$F(j\omega) = K \frac{1}{(j\omega)^m} \frac{\prod_k (1+j\omega\tau_k) \prod_\ell (1+2\zeta_\ell j\omega/\omega_{n\ell} + (j\omega)^2/\omega_{n\ell}^2)}{\prod_i (1+j\omega\tau_i) \prod_z (1+2\zeta_z j\omega/\omega_{nz} + (j\omega)^2/\omega_{nz}^2)}$$

has 4 elementary factors

- I. constant K (generalized gain)
- 2. monomial $j\omega$ (zero or pole in s = 0)
- 3. binomial $1 + j\omega\tau$ (non-zero real zero or pole)
- 4. trinomial $1 + 2\zeta(j\omega)/\omega_n + (j\omega)^2/\omega_n^2$ (complex conjugate pairs of zeros or poles)

so first check which kind of root you have and then factor it out

Bode diagrams

for any real value of the angular frequency ω the frequency response $F(j\omega)$ is a complex number

 $|F(j\omega)|$ magnitude of the frequency response as a function of the angular frequency ω

 $\angle F(j\omega)$ angle or phase of the frequency response as a function of the angular frequency ω

$$F(j\omega) = \operatorname{Re}[F(j\omega)] + j\operatorname{Im}[F(j\omega)]$$

$$F(j\omega) = |F(j\omega)|e^{j\angle F(j\omega)}$$

$$\operatorname{Im}[F(j\omega)]$$

$$F(j\omega) = |F(j\omega)|e^{j\angle F(j\omega)}$$

$$\operatorname{Im}[F(j\omega)]$$

$$\operatorname{Im}[F(j\omega)]$$

$$\operatorname{Im}[F(j\omega)]$$

$$\operatorname{Im}[F(j\omega)]$$

$$|F(j\omega)| = \sqrt{\operatorname{Re}[F(j\omega)]^2 + \operatorname{Im}[F(j\omega)]^2}$$

$$\angle F(j\omega) = \operatorname{atan2}(\operatorname{Im}[F(j\omega)], \operatorname{Re}[F(j\omega)])$$

Phase

Phase[F.G] = Phase[F] + Phase[G]

the phase of a product is the sum of the phases

and therefore

Phase
$$\left[\frac{F}{G}\right]$$
 = Phase $[F]$ – Phase $[G]$

the phase of a ratio is the difference of the phases

since

Phase $\left[\frac{1}{G}\right] = -\text{Phase}[G]$

very useful since we can find the contribution to the phase of each term and then just do an algebraic sum

Phase

principal argument takes on values in (- π , π] and is implemented by the function with two arguments atan2

$$\begin{array}{cccc} \text{for} & \\ P = \alpha + j\beta \\ \text{atctan} \left(\frac{\beta}{\alpha}\right) & \text{if} & \alpha > 0 & (\text{I \& IV quadrant}) \\ \text{arctan} \left(\frac{\beta}{\alpha}\right) + \pi & \text{if} & \beta \ge 0 \text{ and } \alpha < 0 & (\text{II quadrant}) \\ \text{atctan} \left(\frac{\beta}{\alpha}\right) - \pi & \text{if} & \beta < 0 \text{ and } \alpha < 0 & (\text{III quadrant}) \\ \frac{\pi}{2} \operatorname{sign}(\beta) & \text{if} & \alpha = 0 \text{ and } \beta \neq 0 \\ \text{undefined} & \text{if} & \alpha = 0 \text{ and } \beta = 0 & \underbrace{\text{II}} & \underbrace{\text{II}} & \text{II} \\ \text{III} & \text{IV} \end{array}$$

Magnitude

in order to have the same useful property we need to go through some logarithmic function

 $|F(j\omega)|_{\mathrm{dB}} = 20 \log_{10} |F(j\omega)|$

decibels (dB)

$$F.G|_{\mathrm{dB}} = |F|_{\mathrm{dB}} + |G|_{\mathrm{dB}}$$

same nice properties

as phase

$$\left|\frac{1}{F}\right|_{\rm dB} = -\left|F\right|_{\rm dB}$$

 $|1|_{\mathrm{dB}} = 0\,\mathrm{dB}$

 $|0.1|_{dB} = -20 \, dB \qquad |\sqrt{2}|_{dB} \approx 3 \, dB$

 $|10|_{dB} = 20 \, dB$ $|100|_{dB} = 40 \, dB$

 $|F|_{\mathrm{dB}} \nearrow +\infty \quad \text{if} \quad |F| \nearrow \infty$ $|F|_{\mathrm{dB}} \searrow -\infty \quad \text{if} \quad |F| \searrow 0$

Logarithmic scale

we use a logarithmic (log_{10}) scale for the abscissa (angular frequency ω)

a decade corresponds to multiplication by $10\,$

Logarithmic scale

advantages

- quantities can vary in large range (both ω and magnitude)
- easy to build the magnitude plot in dB of a frequency response given in its Bode canonical form from the magnitudes of the single terms
- easy to represent series of systems

Bode diagrams

 $\frac{|F(j\omega)|_{dB}}{|F(j\omega)|_{dB}} \qquad \begin{array}{l} \text{magnitude in dB of the frequency response as a function of the angular} \\ \text{frequency } \omega \text{ with logarithmic scale for } \omega \end{array}$

angle or phase of the frequency response as a function of the angular frequency ω with logarithmic scale for ω

we need to find the magnitude (in dB) and phase for the 4 elementary factors

- I. constant K (generalized gain)
- 2. monomial $j\omega$ (zero or pole in s = 0)
- 3. binomial $1 + j\omega\tau$ (non-zero real zero or pole)
- 4. trinomial $1 + 2\zeta(j\omega)/\omega_n + (j\omega)^2/\omega_n^2$ (complex conjugate pairs of zeros or poles)

for $\omega \in \mathbb{R}^+ = [0, +\infty)$

Constant

Lanari: CS - **Bode diagrams**

18

Monomial - Denominator

from properties of log and phase

magnitude

phase

Binomial - Numerator $1 + j\omega\tau$

magnitude

$$|1 + j\omega\tau|_{dB} = 20\log_{10}\sqrt{1 + \omega^2\tau^2}$$

approximation wrt the cutoff frequency $1/|\tau|$ (or corner frequency)

$$\sqrt{1+\omega^2\tau^2} \approx \begin{cases} 1 & \text{if } \omega \ll 1/|\tau| \\ \\ \sqrt{\omega^2\tau^2} & \text{if } \omega \gg 1/|\tau| \end{cases}$$

and therefore

$$|1+j\omega\tau|_{dB} \approx \begin{cases} 0 \, dB & \text{if } \omega \ll 1/|\tau| \\ 20\log_{10}\omega + 20\log_{10}|\tau| & \text{if } \omega \gg 1/|\tau| \end{cases}$$

at the cutoff frequency $\omega^* = 1/|\tau|$ $|1 + j\tau/|\tau||_{dB} = 20 \log_{10} \sqrt{2} \approx 3 \, dB$

two half-lines approximation: 0 dB until the cutoff frequency, + 20dB/decade after

Binomial - Numerator $1 + j\omega\tau$

phase depends on the sign of τ

see how the phase changes as ω increases

Binomial - Numerator

 $1 + j\omega\tau$ phase depends on the sign of au

$$\begin{aligned} \cos \tau &> 0 \quad \angle (1+j\omega\tau) \quad \approx \quad \begin{cases} 0 \quad \text{if} \qquad \omega \ll 1/|\tau| \\ \frac{\pi}{2} \quad \text{if} \quad \omega \gg 1/|\tau| \quad \text{and} \quad \tau > 0 \\ \end{aligned}$$
$$\begin{aligned} \cos \tau &< 0 \quad \angle (1+j\omega\tau) \quad \approx \quad \begin{cases} 0 \quad \text{if} \qquad \omega \ll 1/|\tau| \\ -\frac{\pi}{2} \quad \text{if} \quad \omega \gg 1/|\tau| \quad \text{and} \quad \tau < 0 \end{cases} \end{aligned}$$

the two asymptotes are connected by a segment starting a decade before $(0.1/|\tau|)$ the cutoff frequency and ending a decade after $(10/|\tau|)$. The approximation is a broken line.

Binomial - numerator

 $1 + j\omega\tau$

au > 0

au < 0

frequency (rad/s)

Binomial - denominator

 $1/(1+j\omega\tau)$

frequency (rad/s)

magnitude

$$\begin{aligned} \left| 1 + 2\frac{\zeta}{\omega_n} (j\omega) + \frac{(j\omega)^2}{\omega_n^2} \right| &= \left| 1 - \frac{\omega^2}{\omega_n^2} + j2\zeta\frac{\omega}{\omega_n} \right| \\ &= \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2} \right)^2 + \left(4\zeta^2\frac{\omega^2}{\omega_n^2} \right)} \end{aligned}$$

approximation wrt ω_n

$$|\text{TRINOMIAL}| \approx \begin{cases} 1 & \text{if } \omega \ll \omega_n \\ \sqrt{\left(\frac{\omega^2}{\omega_n^2}\right)^2} = \frac{\omega^2}{\omega_n^2} & \text{if } \omega \gg \omega_n \end{cases}$$
$$|\text{TRINOMIAL}|_{dB} \approx \begin{cases} 0 \, dB & \text{if } \omega \ll \omega_n \\ 40 \log_{10} \omega - 20 \log_{10} \omega_n^2 & \text{if } \omega \gg \omega_n \end{cases}$$

in $\omega = \omega_n$ the magnitude |TRINOMIAL| is equal to 2 $|\zeta|$

$ \zeta $	0	0.5	$1/\sqrt{2} \approx 0.707$	1
$ TRIN _{dB}$ in ω_n	$-\infty$	0 dB	$3 \mathrm{dB}$	6 dB

large variation of the magnitude in $\omega = \omega_n$ depending upon the value of the damping coefficient ζ

no approximation around the natural frequency ω_n

How does a generic complex root varies in the plane as a function of ω

Phase

$$\angle \left(1 + 2\frac{\zeta}{\omega_n}(j\omega) + \frac{(j\omega)^2}{\omega_n^2}\right) = \begin{cases} 0 & \text{if} & \omega \ll \omega_n \\ \pi & \text{if} & \omega \gg \omega_n & \text{and} & \zeta \ge 0 \\ -\pi & \text{if} & \omega \gg \omega_n & \text{and} & \zeta < 0 \end{cases}$$

transition between 0 and π (or - π) is symmetric wrt ω_n and becomes more abrupt as $|\zeta|$ becomes smaller. When $\zeta = 0$ the phase has a discontinuity in ω_n

Trinomial - numerator

magnitude

 $\zeta \ge 0$

Trinomial - denominator

phase

 $\zeta \ge 0$

When $|\zeta| = 1$ the trinomial reduces to a product of two identical binomials (real roots)

roots =
$$\begin{cases} -\omega_n & \text{if } \zeta = 1\\ \omega_n & \text{if } \zeta = -1 \end{cases}$$
$$\left(1 + 2\frac{\zeta}{\omega_n}s + \frac{s^2}{\omega_n^2}\right)_{\zeta = \pm 1} = \left(1 \pm \frac{s}{\omega_n}\right)^2$$

and therefore the magnitude and phase coincides with that of a double binomial with corner frequency

$$\frac{1}{|\tau|} = \omega_n$$

that is in $\omega = \omega_n$ when $|\zeta| = 1$

$2 \times (3 \mathrm{dB})$	=	$6\mathrm{dB}$	(numerator)
$2 \times (-3 \mathrm{dB})$	=	$-6\mathrm{dB}$	(denominator

example: MSD system with critical value for the damping ($\mu^2 = 4km$)

if $|\zeta| < 1/\sqrt{2} \approx 0.707$ the magnitude of a trinomial factor at the denominator has a peak

$$|F(j\omega_r)| = \frac{1}{2|\zeta|\sqrt{1-\zeta^2}}$$

resonance peak

at the **resonance frequency**

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$

(similarly for the **anti-resonance peak**)

