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Outline

• polar plots when F(j!) has no poles on the imaginary axis

• Nyquist stability criterion (first version)

• what happens when F(j!) has poles on the imaginary axis

• Nyquist stability criterion (general case)

• general feedback system

• stability margins (gain and phase margin)

• Bode stability criterion

• effect of a delay in a feedback loop

Goal: establish a necessary and sufficient stability criterion for the asymptotic stability of 

the closed-loop system based on the information (Nyquist plot) of the open-loop system
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Unit negative feedback

-

+

• in a unit feedback system, the closed-loop system has hidden modes if and only if 

the open loop has them

• the open-loop hidden modes are inherited unchanged by the closed loop

we have seen that

therefore we make the hypothesis that there exists 

no open-loop hidden eigenvalue with non-negative real part 
(since these would be inherited by the closed-loop system)

closed-loop system
transfer function

stability of the closed loop is only determined by the closed-loop poles 

W(s)F (s)
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We are going to determine the 

stability of the closed-loop system from the open-loop system features 

(i.e. the graphical representation of the open-loop frequency response F(j!))

Nyquist diagram: (closed) polar plot of F(j!) with � 2 (�1,1)

we plot the magnitude and phase on the same plot using the frequency as a parameter, that 

is we use the polar form for the complex number F(j!)

in !1

F(j!1)

in !2

F(j!2)

F(-j!) = F  *(j!)

being F(s) a rational function

(or rational function + delay)

and therefore the plot for negative

angular frequencies ! is the symmetric 

wrt the real axis of the one obtained for

positive !

� 2 (�1, 0]

� 2 [0,1)

mirror image
positive
phase

+

Re

Im

|F (j!)| = |F (�j!)|
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\F (j!) = �\F (�j!)
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F(-j!) = F  *(j!)

F(— j!1)
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dB not in dB

F (s) =
1

s+ 1

Hyp. no open-loop poles on the imaginary axis (i.e. with Re[.] = 0)

|F (j!3)|
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Nyquist plot intersects the real axis in —1 therefore        such that

6

The closed-loop system W(s) has poles with Re[.] = 0 

if anf only if

the Nyquist plot of F (j!) passes through the critical point (-1,0)

Proof.

F (j�̄) = �1

F (j�̄) + 1 = 0

W (s) =
F (s)

1 + F (s)

9 !̄

that is Being the closed-loop transfer function given by

this shows that                 is a pole of W(s)s = j�̄

(and vice versa).

fact I

example:
<latexit sha1_base64="/dk8ctpgQhSN6kFeNkguSwLsEpU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEurAkUrQboSCIywr2AW0pk+mkHTqZhJmJUEPwV9y4UMSt/+HOv3HaZqHVAxcO59zLvfd4EWdKO86XlVtaXlldy68XNja3tnfs3b2mCmNJaIOEPJRtDyvKmaANzTSn7UhSHHictrzx1dRv3VOpWCju9CSivQAPBfMZwdpIffvguqRO0CXq+hKTxE0TdeqmfbvolJ0Z0F/iZqQIGep9+7M7CEkcUKEJx0p1XCfSvQRLzQinaaEbKxphMsZD2jFU4ICqXjK7PkXHRhkgP5SmhEYz9edEggOlJoFnOgOsR2rRm4r/eZ1Y+9VewkQUayrIfJEfc6RDNI0CDZikRPOJIZhIZm5FZIRNDtoEVjAhuIsv/yXNs7J7Xq7cVoq1ahZHHg7hCErgwgXU4Abq0AACD/AEL/BqPVrP1pv1Pm/NWdnMPvyC9fENYlST4w==</latexit>

F (s) =
1

s� 1
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fact II

let us define

•  nF+ the number of open-loop poles with positive real part

•  nW+ the number of closed-loop poles with positive real part

•  Ncc the number of encirclements the Nyquist plot of F (j!) makes 

around the point (—1, 0) counted positive if counter-clockwise 

a direct application of Cauchy’s principle of argument gives 

Hyp. no open-loop poles on the imaginary axis (i.e. with Re[.] = 0)

Ncc = nF+ — nW+

Obviously if the encirclements are defined positive clockwise, let them be 
Nc, the relationship changes sign and becomes Nc = nW+ - nF+
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Hyp. no open-loop poles on the imaginary axis (i.e. with Re[.] = 0)

(this hypothesis guarantees that, if F (s) is strictly proper, the polar plot of F (j!) is a 

closed contour and therefore we can determine the number of encirclements)

In order to guarantee closed-loop stability, we need nW+ = 0 (no closed-loop poles with 

positive real part) and no poles with zero real part (which we saw being equivalent to asking 

that the Nyquist plot of F (j!) does not pass through the point (—1, 0))

If the open-loop system has no poles on the imaginary axis, 

the unit negative feedback system is asymptotically stable

if and only if 

i) the Nyquist plot does not pass through the point (—1, 0)

ii) the number of encirclements around the point (—1, 0), counted positive if counter-

clockwise, is equal to the number of open-loop poles with positive real part, i.e.

Ncc = nF+

Nyquist stability criterion (first version)
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Remarks

• if the open-loop system has no positive real part poles (nF+ = 0) then we obtain the 

simple N&S condition Ncc = 0 which requires the Nyquist plot not to encircle (—1, 0) 

• if the stability condition is not satisfied (and Ncc exists) then we have an unstable 

closed-loop system with nW+ = nF+ — Ncc positive real part poles

• condition i), which ensures that the closed-loop system does not have poles with zero 

real part, could be omitted by noting that if the Nyquist plot goes through the critical 

point (—1, 0) then the number of encirclements is not well defined

00 - 1 + 1 0 - 2 0 - 2 - 1 0

examples on the number of encirclements depending on where is the critical point

0 002 2 1
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F (s) =
10

(s+ 1)2(s+ 10)
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Let’s remove the hypothesis of “no open-loop poles on the imaginary axis” (i.e. with Re[.] = 0)

open-loop poles on the imaginary axis (i.e. with Re[.] = 0) come from:

• one or more integrators (pole in s = 0)

• resonance (imaginary poles in s = +/— j!n)

and give a discontinuity in the phase

• passing from ¼/2 to —¼/2 when ! switches from 0- to 0+  

• or from 0 to —¼ when ! switches from !n— to !n+

while the magnitude is at infinity

In order to obtain a closed polar plot, we introduce closures at infinity which consists in 
rotating of ¼ clockwise with an infinite radius (for every pole with Re[.] = 0) for increasing 
frequencies, at those values of the frequency corresponding to singularities of the transfer 
function F (s) lying on the imaginary axis (poles of the open-loop system with Re[.] = 0)

F (s) =
1

s(s+ 1)

! =  0—

! =  0+

! =  + ∞ 

! =  — ∞ 

! =  0—

! =  0+

R =  + ∞ 

closure
at infinity
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F (s) =
K

(s2 + ⇥2
1)(1 + �1s)

F (s) =
K

(s2 + ⇥2
1)

2(1 + �1s)

F (s) =
K(1 + �2s)

s2(s2 + ⇥2
1)(1 + �1s)

¼ clockwise at infinity from ! =  0- to ! =  0+

2¼ clockwise at infinity from ! =  0- to ! =  0+

3¼ clockwise at infinity from ! =  0- to ! =  0+

¼ clockwise at infinity from ! =  —!1
- to ! =  —!1

+

¼ clockwise at infinity from ! =  !1
- to ! =  !1

+

2¼ clockwise at infinity from ! =  —!1
- to ! =  —!1

+

2¼ clockwise at infinity from ! =  !1
- to ! =  !1

+

¼ clockwise at infinity from ! =  —!1
- to ! =  —!1

+

¼ clockwise at infinity from ! =  !1
- to ! =  !1

+

2¼ clockwise at infinity from ! =  0- to ! =  0+

F (s) =
K(1 + �2s)

s3(1 + �1s)

F (s) =
K

s2(1 + �1s)

F (s) =
K

s(1 + �1s)

closures at infinity examples
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Let the open-loop system have nF+ poles with positive real part.

The unit negative feedback system is asymptotically stable

if and only if

i) the Nyquist plot does not pass through the point (—1, 0)

ii) the number of encirclements around the point (—1, 0) counted positive if counter-

clockwise is equal to the number of open-loop poles with positive real part, i.e.

Ncc = nF+

Nyquist stability criterion (no restriction on open-loop poles)

That is the result shown before, valid under the hypothesis of no open-loop poles on the 
imaginary axis (i.e. with Re[.] = 0), still holds provided we define how to obtain the closures 
at infinity. 
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1

s(s+ 1)
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from 0- to 0+

F2(s) =
1

s5(s+ 1)

example IX

F1(j!)

<latexit sha1_base64="7rDcaUa07/m0e+M6Ef0pmnUeX3o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahXsquFOyxIIjHCvYDukvJptk2NtksSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305hY3Nre6e4W9rbPzg8Kh+fdLRMFaFtIrlUvRBryllM24YZTnuJoliEnHbDyc3c7z5RpZmMH8w0oYHAo5hFjGBjJf924FUffSnoCF8OyhW35i6A1omXkwrkaA3KX/5QklTQ2BCOte57bmKCDCvDCKezkp9qmmAywSPatzTGguogW9w8QxdWGaJIKluxQQv190SGhdZTEdpOgc1Yr3pz8T+vn5qoEWQsTlJDY7JcFKUcGYnmAaAhU5QYPrUEE8XsrYiMscLE2JhKNgRv9eV10rmqefVa/b5eaTbyOIpwBudQBQ+uoQl30II2EEjgGV7hzUmdF+fd+Vi2Fpx85hT+wPn8AdwUkOU=</latexit>

F2(j!)

<latexit sha1_base64="TxkrpKR9AJ/2kLhu+/N6kLajZqM=">AAAB83icbVBNSwMxEM36WetX1aOXYBHqpeyWgj0WBPFYwX5AdynZdLaNTbJLkhXK0r/hxYMiXv0z3vw3pu0etPXBwOO9GWbmhQln2rjut7OxubW9s1vYK+4fHB4dl05OOzpOFYU2jXmseiHRwJmEtmGGQy9RQETIoRtObuZ+9wmUZrF8MNMEAkFGkkWMEmMl/3ZQqzz6sYARuRqUym7VXQCvEy8nZZSjNSh9+cOYpgKkoZxo3ffcxAQZUYZRDrOin2pICJ2QEfQtlUSADrLFzTN8aZUhjmJlSxq8UH9PZERoPRWh7RTEjPWqNxf/8/qpiRpBxmSSGpB0uShKOTYxngeAh0wBNXxqCaGK2VsxHRNFqLExFW0I3urL66RTq3r1av2+Xm428jgK6BxdoAry0DVqojvUQm1EUYKe0St6c1LnxXl3PpatG04+c4b+wPn8Ad2hkOY=</latexit>
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general negative feedback

-

+

F2(s)

F1(s) F1(s)F2(s)
+

-for stability these two 
schemes are equivalent

F2(s) = N2(s)/D2(s)

F1(s) = N1(s)/D1(s)

W2(s) =
F1(s)F2(s)

1 + F1(s)F2(s)

=
N1(s)N2(s)

D2(s)D1(s) +N1(s)N2(s)

W1(s) =
F1(s)

1 + F1(s)F2(s)

=
N1(s)D2(s)

D2(s)D1(s) +N1(s)N2(s)

same denominator
same poles
same stability properties
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Typical pattern for a control system: 

open-loop system with no positive real part poles nF+ = 0, therefore the closed-loop system 

will be asymptotically stable if and only if the Nyquist plot makes no encirclements around 

the point (—1, 0). We want to explore how the closed-loop stability varies as a gain K in the 

open-loop system increases. 

! =  0+

! =  0- Im

Re! =  + ∞ 

! =  - ∞ 

-1

-

+
K  F (s)

as K 
increases

As K increases over a critical value 

the closed-loop system goes from 

asymptotically stable to unstable
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In this context, the proximity to the critical point (—1, 0) is an indicator of the proximity of 

the closed-loop system to instability.

We can define two quantities:

! =  0+

! =  0- Im

Re! =  + ∞ —1

1/kGM
If we multiply F (j!) by the quantity 

kGM the Nyquist diagram will pass 

through the critical point

F (j!)

kGM F (j!)

gain margin kGM

the gain margin kGM is the smallest gain 

factor that the closed-loop system can 

tolerate (strictly) before it becomes 

unstable 

only positive angular 
frequencies are shown
for ease of exposition

⇥⇡ : \F (j⇥⇡) = ��

kGM =
1

|F (j��)|
kGM |dB = �|F (j��)|dB

!  ¼
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Im

Re! =  + ∞ -1

F (j!)

PM

phase margin PM

the phase margin PM is the amount of 

lag the closed-loop system can tolerate 

(strictly) before it becomes unstable 

!  c angular frequency at which the gain is unity

is defined as crossover frequency
(or gain crossover frequency)

F (j!  c)

�c : |F (j�c)| = 1

�c : |F (j�c)|dB = 0 dB

PM = � + \F (j⇥c)
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Im

Re! =  + ∞ -1

F (j!)

PM

(A)

(B)

(C)

(B) same gain margin as (A) but different phase margin

(C) same phase margin as (A) but different gain margin

1/kGM

real 
“distance”

Im

Re
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stability margins on Bode

kGM |dB = �|F (j��)|dB
PM = � + \F (j⇥c)
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F (s) =
1000

s(s+ 10)2
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F1(s) =
500

s(s+ 10)2

F1(s) =
6000

s(s+ 10)2

these are scaled (by 0.5 and 6) 
wrt the previous system

both have same phase
but different crossover 

frequencies and therefore 
different phase margins

negative phase margin
(and thus for this example a non-zero Ncc)

positive phase margin 
(and thus for this example Ncc = 0)

both systems with nF+ = 0 asymptotically stable
closed-loop system

unstable
closed-loop system

(suggested exercise: check with Routh)
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Bode stability theorem
Let the open-loop system F (s) be with no positive real part poles (i.e. nF+ = 0) and 

such that there exists a unique crossover frequency !c (i.e. such that | F (j!c) | = 1) 

then the closed-loop system is asymptotically stable 

if and only if

the open-loop system’s generalized gain is positive

&

the phase margin (PM) is positive
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Bode stability theorem

• stability margins are useful to evaluate stability robustness wrt parameters variations 
(for example the gain margin directly states how much gain variation we can tolerate)

• phase margin is also useful to evaluate stability robustness wrt delays in the feedback 
loop. Recall that, from the time shifting property of the Laplace transform, a delay is 
modeled by e-sT and that

|e�j�T | = 1

\e�j�T = ��T

-

+
F (s)e-sT

\e�j�T = ��T
a delay introduces a phase lag and therefore it can easily 
“destabilize” a system (note that the abscissa in the Bode 
diagrams is in log10 scale so the phase decreases very fast)

|e�j�T | = 1 a delay in the loop does not alter the magnitude 
(0 dB contribution)

delay
of T sec
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Special cases

• infinite gain margin

-1

Im

Re

-1

Im

Re

• infinite phase margin
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Particular example
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F (s) =
0.38(s2 + 0.1s+ 0.55)

s(s+ 1)(s/30 + 1)(s2 + 0.06s+ 0.5)

good gain and phase margins but close to critical point

zoom to see the gain margin


