
Control Systems - January 7, 2019

Text & short solution. (There may be typos, and the solution is just a sketch.)

1) Consider the following plant

ẋ1 = 2x1 − 3x2 + 3u

ẋ2 = x1 − 2x2 + u

y = 2x1 − 2x2

1. Determine which natural modes are controllable and/or observable.

2. Is the plant stabilizable from the output with a static gain? In case of a positive answer, determine
the controller.

3. Is the plant stabilizable with a dynamic controller based on the separation principle? In case of a
positive answer, determine the controller.

• decompose w.r.t. controllability, choose F̃ to assign the desired eigenvalues and go back to the
original coordinates;

• decompose w.r.t. observability, choose K̃ and write the observer in the original coordinates;

• determine the controller transfer function (from y to u).

4. Is it possible to stabilize the given system with a controller of the form

C3(s) =
kc
s+ p

If possible, determine kc and p and give an interpretation in terms of root locus.

1 - Solution

• Eigenvalues

det

(
λ− 2 3
−1 λ+ 2

)
= λ2 − 1 = (λ+ 1)(λ− 1) ⇒ λ1 = −1, λ2 = 1

PBH test

rk

(
λ− 2 3 3
−1 λ+ 2 1

)
λ1=−1

= rk

(
−3 3 3
−1 1 1

)
= 1, rk

(
λ− 2 3 3
−1 λ+ 2 1

)
λ2=1

= rk

(
−1 3 3
−1 3 1

)
= 2



rk

λ− 2 3
−1 λ+ 2
2 −2


λ1=−1

= rk

−3 3
−1 1
2 −2

 = 1, rk

λ− 2 3
−1 λ+ 2
2 −2


λ2=1

= rk

−1 3
−1 3
2 −2

 = 2

therefore λ1 = −1, and the corresponding natural mode e−t, is both uncontrollable and unobservable while
λ2 = 1, and the corresponding natural mode et, is both controllable and observable. As an alternative
one could answer this question after the decomposition w.r.t. controllability and observability.

• (Alternative) Checking the rank of the controllability matrix (see next) which turns out to be 1, from
the PBH test for only one eigenvalue one understands the property of the other. For example, being
λ1 = −1 uncontrollable, the other eigenvalue will for sure be controllable (the uncontrollable subsystem
has dimension equal to the rank of the controllability matrix).

• Since only λ2 is both controllable and observable the transfer function will contain the only pole p = λ2
and no zero1 so we have a minimum-phase system with n−m = 1 and therefore it is clearly stabilizable
with high gain. Check

P (s) =
(
2 −2

)(s− 2 3
−1 s+ 2

)−1(
3
1

)
=

1

(s+ 1)(s− 1)

(
2 −2

)(s+ 2 −3
1 s− 2

)(
3
1

)
=

1

(s+ 1)(s− 1)

(
2s+ 2 −2s− 2

)(3
1

)
=

4s+ 4

(s+ 1)(s− 1)
=

4

s− 1

A static controller C(s) = K will lead to the closed loop polynomial equal to

s− 1 + 4K

which has a negative pole if K > 1/4. Choose a value for K (it was required to determine a controller).

• System is both stabilizable (via state feedback) and detectable (from the output), therefore it is stabi-
lizable with a dynamic controller (for example based on the separation principle) using only the output
as feedback measurement (output feedback stabilization).

• Kalman decomposition w.r.t. controllability

P =

(
3 3
1 1

)
⇒ R = gen

{(
3
1

)}
, T−1

R =

(
3 0
1 1

)
, TR =

1

3

(
1 0
−1 3

)
leads in the new coordinates to

AR =
1

3

(
1 0
−1 3

)(
2 −3
1 −2

)
T−1
R =

1

3

(
2 −3
1 −3

)(
3 0
1 1

)
=

(
1 −1
0 −1

)
,

BR =
1

3

(
1 0
−1 3

)(
3
1

)
=

(
1
0

)
, CR =

(
2 −2

)(3 0
1 1

)
=
(
4 −2

)
1The system has D = 0 so the transfer function will be strictly proper. Moreover we know we have a cancellation,

and therefore there has been a numerator/denominator cancellation in the computation of the transfer function. After the
cancellation we have only one pole left and no zero. We know the structure will be P (s) = K/(s− 1) but we do not know
the gain K unless we compute explicitly the transfer function.

2



A stabilizing feedback in these coordinates would take on the form

F̃ =
(
f1 0

)
⇒ F = F̃ TR =

(
f1
3 0

)
where f1 has been chosen s.t. 1 + f1 = λ∗1 (which is equivalent to applying the Ackermann formula to
the controllable subsystem).

• Observer design from original system. Being

O =

(
2 −2
2 −2

)
, I = gen

{(
1
1

)}
, ⇒ T−1

I =

(
1 1
0 1

)
, TI =

1

2

(
1 −1
0 1

)
leads in the new coordinates to

AI =

(
1 −1
0 1

)(
2 −2
1 −2

)
T−1
I =

(
1 −1
1 −2

)(
1 1
0 1

)
=

(
1 0
1 −1

)
,

BI =

(
1 −1
0 1

)(
3
1

)
=

(
2
1

)
, CI =

(
2 −2

)(1 1
0 1

)
=
(
2 0

)
The chosen K̃ will be of the form

K̃ = TI K ⇒ K = T−1
I K̃ =

(
1 1
0 1

)(
k1
0

)
=

(
k1
0

)
where k1 has been chosen s.t. 1 − 2k1 = λd1 (which is equivalent to applying the Ackermann formula to
the observable subsystem). The observer is

ξ̇ = (A−KC)ξ +Bu+Ky = ...

Note that there are several checks to see if your computation were right; for example if you find a pole
which is not an eigenvalue, there is clearly an error somewhere. Similarly if after the change of coordinates
the matrices do not have the expected structure and/or different eigenvalues.

• The dynamic controller, after using u = Fξ, has input y and output u

ξ̇ = (A−KC +BF )ξ +Ky

u = Fξ

and therefore its transfer function is

C(s) = F [sI − (A+BF −KC)]
−1
K = ...

• With the proposed controller, the closed loop polynomial becomes

L(s) = C3(s)P (s) =
4kc

(s− 1)(s+ p)
⇒ dcl(s) = s2 + s(p− 1) + 4kc − p

and thus is stable iff p > 1 and kc > p/4. In terms of root locus interpretation, since the system is
minimum-phase with n−m = 2 and the center of asymptotes s0 = (1−p)/2 < 0 if p > 1, it is stabilizable
with positive high-gain. The crossing through the origin (one root moves from positive to negative)
clearly happens for kc = p/4 so the singular point is negative.
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2) Let the plant be represented by the scheme in Fig. 1 with

P1(s) =
1

s− 1
, P2(s) =

5

s+ 10

+

+

+

+
d

y

P1(s)

P2(s)u

Figure 1: Plant

1. Determine a controller which guarantees, at steady state, no effect on the output of a constant
disturbance d acting on the plant.

2. Draw the corresponding Nyquist plot.

2-sol) Parallel is given by

P1(s) + P2(s) =
1

s− 1
+

5

s+ 10
=

6s+ 5

(s− 1)(s+ 10)
=

6(s+ 5/6)

(s− 1)(s+ 10)

plus astatism, i.e. add the necessary pole 1/s. Since we have n−m = 3− 1 = 2 with

s0 =
−10 + 1 + 0 + 5/6

2
< 0

there exists a positive gain, to be determined with the Routh criterion (critical value to be determined),
which stabilizes the system. The final controller is

C(s) =
Kc

s

with Kc > Kcrit
c (computation of Kcrit

c is left as an exercise). A root locus plot would clarify this stability
issue. It should be clear that the considered plant is controlled by a classic unit feedback control scheme
with the designed C(s). Note that you need to guarantee asymptotic stability of the closed-loop in order
for the system to be astatic (a solution which just adds the pole il s = 0 and does not consider stability
is wrong/incomplete)

As an alternative one could also add a zero s = −z (with z > 0) so to obtain n −m = 1 and then
choose the gain. In this case the controller is

C(s) =
Kc(s+ z)

s

• Draw carefully the Bode plot so that the corresponding Nyquist plot does the counter-clockwise encir-
clement which confirms closed-loop stability.
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3) Let the open loop system be characterized by

L(s) =
−K(s+ 5)

s(s+ 3)2

Illustrate qualitatively how the closed-loop system behaves, as K varies in R (e.g., steady-state, transient,
...) in response to a constant reference and a sinusoidal output disturbance. You can use approximate
Bode plots or other useful graphical tools.

3 - Solution We can say the following (short list):

• Being n−m = 2 and s0 = (−3−3−0+5)/2 = −1/2 < 0, the closed-loop system will be asymptotically
stable for sufficiently negative values of K (i.e. for −K sufficiently large and positive).

• When the closed-loop system is asymptotically stable, the steady-state error w.r.t. the constant refer-
ence is null (Type 1 system) independently from the particular value of K (as long as asymptotic stability
is guaranteed).

• As −K increases, from the root-locus plot, 2 poles will become complex conjugate with lower and lower
damping and higher and higher natural frequency. Therefore the transient will become faster but with
unacceptable transient. The third pole will be confined between -3 and -5 so transient can not become
any faster than that.

• As −K increases, from the approximate plot of the loop function and the corresponding sensitivity
approximate magnitude, the effect at steady-state of the sinusoidal output disturbance will be more
attenuated (but with worsing transient). Show plots of |S(jω)| for different values of K.

• N.B. Using the approximate (piecewise linear) plot for the Bode phase, we have that the phase goes
below −π around 30 rad/sec and therefore the phase margin becomes negative for some values of the
gain. However, from the root locus, we see that this never happens (closed-loop system always stable for
negative K). This is due to the approximation, looking at the real phase plot this does not happen.
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4) Let the plant be

P (s) =
0.05

s+ 0.01

Design a control scheme and the corresponding controller such that a reference r(t) = tδ−1(t) is followed
at steady state with a maximum error smaller or equal (in absolute value) than 1%. Simultaneously
guarantee that the phase margin is at least 30◦ with a crossover frequency of 0.1 rad/s.

4 - Solution Normal loop shaping design problem.

• Steady-state specifications require the introduction of a pole in s = 0 and a sufficiently high (in absolute
value) gain Kc ≥ 20.

• From the modified plant

P̂ (s) =
100

s(100s+ 1)

Bode plots, we need an increase of phase of at least 30◦ and an attenuation of 40dB. This requires the
use of, in this order, one (or two) lead functions first and then two lag functions with the usual technique
(see case IV in the Loop shaping slides).

• Closed-loop stability is guaranteed by Bode’s stability theorem (recall the hypothesis).
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