
Control Systems - January 08, 2024

Student name: Matricola:

1) Let the plant be

P (s) =
0.1

s(s+ 0.1)

1. Design a controller and a control scheme which guarantee a crossover frequency ω∗c = 1 rad/s and a phase
margin of at least PM∗ = 30◦.

2. Draw qualitatively the control sensitivity function magnitude and compute the control input at steady
state corresponding to a reference input r(t) = tδ−1(t)

2) Consider the system S shown in figure
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S S1 :

{
ẋ1 = −x1 + u1

y1 = x1

S2 :

{
ẋ2 = −x2 − u2
y2 = −2x2

S3 :

{
ẋ3 = −x3 + 2u3

y3 = −2x3

where d1 and d2 are unknown constant disturbances.

1. Find the state space representation of the system S when d1 = d2 = 0.

2. Find the eigenvalues together with their algebraic and geometric multiplicity.

3. Study explicitly controllability and observability of the system S.

4. Using a feedback control scheme (which should be drawn), establish if it is necessary that the controller
has a pole in s = 0 to make the control scheme astatic w.r.t. constant unknown disturbances d1 and d2.

5. Find a controller which guarantees astatism w.r.t. constant unknown disturbances d1 and d2.

6. Compute the value at steady state of y1 when a constant non-zero disturbance d1 is present and d2 = 0.

3) Design a control system which stabilizes the plant P (s) and ensures that the output is capable of reproducing
precisely a reference ramp r(t) = tδ−1(t) at steady state

P (s) =
(s+ 1)(s− 10)

s(s+ 10)
.

4) Design, if possible, a stabilizing dynamic controller based on the separation principle for the system

A =

(
−1 2
1 0

)
, B =

(
2
2

)
, C =

(
1 2

)
, D = 0.

You need to give the final expression of the dynamic controller (state space or transfer function, you decide).



1 - Sol.) Since there are no steady state requirements (except stability), the plant coincides with the “modified

plant” that is P̂ (s) = P (s) and therefore we can proceed to the Bode plots (see Fig. 1) to check if the other
requests are already met (and implicitly also closed loop stability if we use Bode’s stability theorem). After
writing the transfer function in its canonical form

P (s) =
1

s(1 + 10s)

we see that we need an amplification of 20 dB and a phase increase of at least 30◦.

PM = 30˚
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Figure 1: Problem 1: Bode plots of P (jω)

We focus on the necessary phase lead, the amplification will be adjusted with the controller gain Kc. This
can be obtained, for example, with a lead function characterized by ma = 4 and normalized frequency 1 (many
different choices are possible), that is τa = 1. The lead function gives also an amplification of roughly 2.5 dB.

The remaining amplification is given by a gain Kc such that Kc|dB = 17.5 dB that is Kc = 10
17.5
20 . Approximate

magnitude and phase of the lead function and the gain are also shown in Fig. 1. We are in the conditions for
the applicability of Bode’s stability theorem so the closed loop system is asymptotically stable.

The final controller is

C(s) =
Kc(1 + τa s)

1 + τa/ma s
=

10
17.5
20 (1 + s)

1 + 1/4 s

The control sensitivity function magnitude is shown in Fig. 2 using the usual approximation. In order to
compute the steady state control input (steady state exists since the closed loop system is asymptotically stable)
corresponding to r(t) = tδ−1(t) (which has Laplace transform 1/s2), we can first write the control sensitivity
function as

Su(s) =
C(s)

1 + C(s)P (s)
=

Nc(s)/Dc(s)

1 +Nc(s)Np(s)/(Dc(s)Dp(s))
=

Nc(s)Dp(s)

Dc(s)Dp(s) +Nc(s)Np(s)

=
Kc(1 + τa s)s(s+ 0.1)

s(s+ 0.1)(1 + τa/ma s) + 0.1Kc(1 + τa s)

Using the final value theorem (we can use it since the expression of mss has all the roots of the denominator
with real parte less than 0), we have

mss = lim
s→0

sSu(s)
1

s2
= lim

s→0
s

Kc(1 + τa s)s(s+ 0.1)

s(s+ 0.1)(1 + τa/ma s) + 0.1Kc(1 + τa s)

1

s2
= 1

Other solution: cancel the stable pole and manipulate with gain then add HF pole

Typical errors:

• After choosing the lead function and the gain one should always discuss closed loop stability and many
forgot.

• It is tempting to choose a unique lead function which not only gives the desired phase lead but si-
multaneously also the required amplification (for example with ma = 12 and normalized frequency
ωτ = 20) but we also know that this choice is to be avoided due to low robustness issues (see slides
Lec16 Loop Shaping.pdf).
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Figure 2: Problem 1: Control sensitivity function magnitude (approximate) |Su(jω)|

• Still some evaluate the required phase and magnitude action at the current crossover frequency instead of
at the desired one.

• Some read “sensitivity function” instead of “control sensitivity function” ...

2 - Sol.) The three systems are in parallel and when we set d1 = d2 = 0, the interconnection equations are
u = u1 = u2 = u3 and y = y1 + y2 + y3. Choosing as state vector x = (x1, x2, x3 )T we haveẋ1ẋ2

ẋ3

 =

 −x1 + u
−x2 − u
−x3 + 2u

 =

−1 0 0
0 −1 0
0 0 −1

x1x2
x3

+

 1
−1
2

u = Ax+Bu

with output
y =

(
1 −2 −2

)
x = C x

Being the dynamic matrix diagonal, the eigenvalues are evident and we have three coincident eigenvalues in
λ1 = −1 (and therefore algebraic multiplicity is equal to 3, ma(λ1 = −1) = 3) and a characteristic polynomial
pA(λ) = (λ + 1)3. Since the matrix is already diagonal the geometric multiplicity clearly equals the algebraic
one, mg(λ1 = −1) = 3. As a check, we could compute the dimension of the Ker(A−λ1I) which obviously turns
out to be the null matrix and therefore its Kernel is generated by the whole state space and has dimension 3.

Although we already know from the theory that this interconnection leads to uncontrollable and unobservable
dynamics (of the common eigenvalues) we have seen only the case of two systems in parallel and therefore here
we do not know if the unobservable and uncontrollable subsystem has dimension 1 or 2. We can therefore
compute the following controllability and observability matrices

P =

 1 −1 1
−1 1 −1
2 −2 2

 , rank[P ] = 1, O =

 1 −2 −2
−1 2 2
1 −2 −2

 , rank[O] = 1

which both have rank equal to 1 (the matrix is singular, all minors of order 2 are zero and there are matrix
elements – minors of order1 – non-null). Therefore the uncontrollable subsystem and the unobservable one have
both dimension 2 (the dimension of the Ker[O] is 2 thanks to the rank-nullity theorem). This result is expected
since the index of the eigenvalue λ1 = −1 is 1 and therefore already in (sI −A)−1 the common denominator is
going to be (s + 1); of the three coincident eigenvalues only one will potentially become a pole of the transfer
function (see the slides Lec07 Laplace Analysis.pdf).

In order to understand how the disturbances affect the output, we can transform the block scheme repre-
senting system S noticing that the output is given by

y = (y1 + d1) + (y2 + d2) + y3 = (y1 + y2 + y3) + (d1 + d2)

and therefore the effect of the disturbances on the output is equivalent to a single disturbance d1 + d2 acting
directly at the output of the three systems in parallel as illustrated in Fig. 3. We have therefore that the system
S of Fig. 3 is represented by the transfer function

F (s) = F1(s) + F2(s) + F3(s) =
1

s+ 1
+

2

s+ 1
+
−4

s+ 1
=
−1

s+ 1

where Fi(s) is the transfer function of the single system Si, i = 1, ..., 3.
Now we are in a situation already considered by the theory and therefore, provided the closed loop system is

asymptotically stable, a pole in s = 0 in the controller guarantees astatism w.r.t. constant disturbances. Since
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Figure 3: System S

the sensitivity function S(s) relates d1 + d2 (an output disturbance) to y, highlighting the pole at the origin in
the controller C(s) = C ′(s)/s we have

S(s) =
1

1 + C(s)(F1(s) + F2(s) + F3(s))
=

s

s+ C ′(s)(F1(s) + F2(s) + F3(s))
=⇒ S(0) = 0

and therefore, since we know that for an asymptotically stable system the steady state response to a constant
input d1 + d2 is given by the transfer function gain times the input, we have S(0)(d1 + d2) = 0.

Alternatively we can proceed algebraically and compute the two transfer functions from d1 and d2 to y. We
can first write looking at the original block scheme in a feedback control system (with u = −C(s)y since we
have no reference)

y = (y1 + d1) + (y2 + d2) + y3 = d1 + d2 + (F1(s) + F2(s) + F3(s))u = d1 + d2 + (F1(s) + F2(s) + F3(s))C(s)y

where all the signals are intended as Laplace transforms. This leads to

(1 + (F1(s) + F2(s) + F3(s))C(s))y = d1 + d2

In order to compute the d1 → y transfer function, we set d2 = 0 (thanks to the superposition principle) and
obtain

Wd1y(s) =
1

1 + C(s)(F1(s) + F2(s) + F3(s))
= S(s)

and similarly for the d2 → y transfer function, setting d1 = 0 we have

Wd2y(s) =
1

1 + C(s)(F1(s) + F2(s) + F3(s))
= S(s)

Note, however, that if we set the controller just equal to C(s) = 1/s, the closed loop is not asymptotically stable
since

S(s) =
1

1 + C(s)(F1(s) + F2(s) + F3(s))
=

s

s− 1
s+1

=
s

s2 + s− 1

Being the temporary loop function with the necessary part of the controller

1

s

−1

s+ 1

we have n−m = 2, no zeros and a negative center of asymptotes. Since we have to rewrite the function in the
form

K

∏
(s− zi)∏
(s− pj)

= −K 1

s(s+ 1)
= Kc

1

s(s+ 1)

we can now state that a large in magnitude and negative gain −K will certainly stabilize the closed loop system.
In other words we have

C(s) =
−K
s

with K > 0 =⇒ L(s) = C(s)P (s) =
K

s(s+ 1)

and the closed loop pole polynomial pCL(s,K) = s2 + s + K has solutions in the left half-plane if and only if
K > 0 (so in this case we do not even need a large magnitude gain).

Now that we have an asymptotically stable closed loop system (see Fig. 4) that also guarantees astatism, we
can compute the value at steady state of y1 when d2 = 0. So we need to compute the transfer function d1 → y1.
We can proceed algebraically with the following steps:
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Figure 4: Control scheme

• find u from

u = −C(s) y = −C(s)(y1 + d1 + y2 + y3) = −C(s)(y1 + d1 + F2(s)u+ F3(s)u)

that is

u =
−C(s)(y1 + d1)

1 + (F2(s) + F3(s))C(s)

• and finally obtain y1 from

y1 = F1(s)u =
−C(s)F1(s)(y1 + d1)

1 + (F2(s) + F3(s))C(s)

that is

y1 =
−F1(s)C(s)

1 + (F1(s) + F2(s) + F3(s))C(s)
d1

Since the closed loop system is asymptotically stable, the steady state value of y1 to the constant disturbance
d1 is

y1,ss =
−F1(s)C(s)

1 + (F1(s) + F2(s) + F3(s))C(s)

∣∣∣∣∣
s=0

d1 =
K
s+1

s+ K
s+1

∣∣∣∣∣
s=0

d1 = 1× d1 = d1

An interesting aspect which is clear if we move the disturbances outside the parallel interconnection (as already
shown previously), is to notice that the value y1,ss at steady state does not cancel d1 (as would normally happen
for a standard output disturbance when the control system is astatic) even when d2 = 0. This is due to the fact
that the disturbance d1 also affects y2 and y3 due to the feedback. Figure 5 shows a simulation with the three
outputs y1, y2 and y3 when a disturbance d1 = −5δ−1(t) is applied and d2 = 0.

0 1 2 3 4 5 6 7 8 9 10
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Figure 5: The three outputs y1(t), y2(t) and y3(t) when d1 = −5δ−1(t) and d2 = 0

The plot shows how all three outputs yi(t) contribute to make the output y independent from the value of
the disturbance (astatism), not just y1,ss and also that the disturbed output y1 + d1 does not tend to zero at
steady state (in the simulation it tends to -10). All outputs contribute to counterbalance the disturbance(s),
it’s not only y1 since also y2 and y3 are affected by the disturbance d1 (even when d2 = 0).

Typical errors:

• Some wrote that the geometric multiplicity is mg(λ1 = −1) = 1 (wrong); the dynamic matrix is already
diagonal and this can happen if and only if ma(λi) = mg(λi) for all eigenvalues. (Study theory).

• You have a diagonal matrix with 3 coincident eigenvalues and the rank of the controllability is 1 which
means that the controllable subsystem has dimension 1 and the uncontrollable 2. Is there a need to
make a decomposition? You will find that both the controllable and the uncontrollable subsystem are
characterized by the eigenvalue λ1 = −1.
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Figure 6: Exercise 2 - Two alternative root loci.

• Some spent time to compute the transfer function (when d1 = d2 = 0) from the state space representation
while it is more evident and easier from the parallel of the 3 transfer functions (being one dimensional
systems these were evident).

• It should be clear that the input to system is represented by u so it is not possible to control separately
(as has been wrongly suggested in some solutions) each subsystem by placing a controller Ci(s) on each
branch.

• When computing the steady state value y1,ss an interesting error is: since we made the output astatic,
the steady state value of the output when only the constant disturbance is applied is 0 (true). Therefore
when we compute y1(s) and write the algebraic relationship

y1(s) = F1(s)u1(s) = F1(s)u(s) = −F1(s)C(s)y(s)

one could think that being at steady state y(t) = 0 then also y1,ss(t) would be zero. However one forgets
the presence of the pole is s = 0 (i.e., an integrator) and although at steady state the input of the controller
is 0, the output u(t) is not (see the last slides of Performance.pdf).

3 - Sol.) Being the reference of order 1, in order to have a 0 steady state tracking error the control system
needs to be at least of type 2 and therefore the controller needs a pole in s = 0. The resulting modified plant

P̂ (s) =
(s+ 1)(s− 10)

s2(s+ 10)

is such that n−m = 1 but since the system is non-minimum phase due to the presence of the positive zero in
s = 10, it is not possible to stabilize the plant with high positive gain (which does not mean we cannot stabilize
the system with a pure gain). However, plotting the root locus (that is verifying if a simple gain is sufficient to
stabilize the control system) we could have two possible situations shown in Fig. 6. From the Routh criterion
applied to the closed loop polynomial

p(s,K) = s2(s+ 10) +K(s+ 1)(s− 10) = s3 + (10 +K)s2 − 9Ks− 10K

we see that the necessary condition requires −10 < K < 0. The Routh table is

1 −9K

10 +K −10K

−K(9K + 80)

−10K

we clearly see that the closed loop is asymptotically stable for K ∈ (−80/9, 0). This corresponds to the root
locus of Fig. 6b. In particular, if we analyze the sign changes of the terms in the first column, we have that the
two unstable poles (the third one is always real and negative) move to left half plane when K crosses the value
−80/9.

The resulting Nyquist plot (for completeness) is shown in Fig. 7.

Other solutions: one could obtain similar results through a loop shaping approach choosing a negative gain
and guaranteeing, after the introduction of the necessary pole in s = 0 that the conditions for the applicability
of Bode’s stability conditions were met.

Typical errors:
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−10 -80/9 0
1 + + + +

10 +K - + + +

−K(9K + 80) - - + -

−10K + + + -

# sign changes 2 2 0 1

Table 1: Sign changes in first column of the Routh table as a function of K

-120

-60

0 dB

+60

Figure 7: Nyquist plot in a log scale

• One of the worse error is to choose a controller that cancels the non-minimum phase zero and thus creates
hidden unstable dynamics which cannot be modified by any output feedback controller.

4 - Sol.) Let us first study controllability and observability

rank[P ] = rank

(
2 2
2 2

)
= 1, rank[O] = rank

(
1 2
1 2

)
= 1

so the system has an uncontrollable eigenvalue and an unobservable eigenvalue (they may not coincide in
general). The eigenvalues are easily found to be λ1 = 1 and λ2 = −2 since the characteristic polynomial is

pA(λ) = det

(
λ+ 1 −2
−1 λ

)
= λ2 + λ− 2 = (λ− 1)(λ+ 2)

So in order for the system to be stabilizable by state feedback (necessary condition for output stabilizability)
and detectable, the eigenvalue λ1 = 1 needs to be controllable and observable which can be checked through
the PBH tests

rank
(
A− λ1 B

)
= rank

(
−2 2 2
1 −1 2

)
= 2, rank

(
A− λ1
C

)
= rank

−2 2
1 −1
1 2

 = 2,

Therefore the asymptotically stable eigenvalue λ2 = −2 will be both uncontrollable and unobservable. We can
perform the Kalman decomposition w.r.t. controllability

Im[P ] = gen

{(
1
1

)}
⇒ T−1 =

(
1 0
1 1

)
, T =

(
1 0
−1 1

)
and therefore

Ã =

(
1 2
0 −2

)
, B̃ =

(
2
0

)
, C̃ =

(
3 2

)
Assigning λ∗1 = −1 leads to

F̃ =
(
−1 0

)
=⇒ F = F̃ T =

(
−1 0

)
Let’s check

A+BF =

(
−1 2
1 0

)
+

(
2
2

)(
−1 0

)
=

(
−3 2
−1 0

)
=⇒ pA+BF (λ) = (λ+ 1)(λ+ 2)
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For the design of the observer, since we know the system is detectable (and that the unobservable eigenvalue is
λ2 = −2), we can either proceed algebraically or do the Kalman decomposition w.r.t. observability. In the first
case, let’s define

K =

(
k1
k2

)
→ A−KC =

(
−1 2
1 0

)
−
(
k1
k2

)(
1 2

)
=

(
−1− k1 2− 2k2
1− k2 −2k2

)
which has characteristic polynomial

pA−KC(λ) = det

(
λ+ 1 + k1 −2 + 2k2
−1−+k2 λ+ 2k2

)
We know one of the two eigenvalues is λ2 = −2 and the other one is to be chosen, for example λ∗ = −10 so
that we should have

pA−KC(λ) = det

(
λ+ 1 + k1 −2 + 2k2
−1−+k2 λ+ 2k2

)
= (λ+ 2)(λ+ 10)

which we should solve in k1 and k2 (long computation ...).
Doing instead the decomposition w.r.t. observability we have

Ker[O] = gen

{(
2
−1

)}
⇒ T−1 =

(
1 2
0 −1

)
= T

and therefore

Ã =

(
1 0
−1 −2

)
, B̃ =

(
6
−2

)
, C̃ =

(
1 0

)
Assigning for example λ∗ = −10 leads to

K̃ =

(
11
0

)
=⇒ K = TK̃ =

(
11
0

)
Let’s check

A−KC =

(
−1 2
1 0

)
−
(

11
0

)(
1 2

)
=

(
−12 −20

1 0

)
=⇒ pA+BF (λ) = (λ+ 10)(λ+ 2)

The observer is therefore

ξ̇ = (A−KC)ξ +Bu+Ky =

(
−12 −20

1 0

)
ξ +

(
2
2

)
u+

(
11
0

)
y

and the controller using u = Fξ has dynamic matrix

A+BF −KC =

(
−14 −20
−1 0

)
, ⇒ pA+BF−KC(λ) = λ2 + 14λ− 20

which has eigenvalues
λ1 = −7 +

√
69 = 1.3066, λ2 = −7−

√
69 = −15.3066

and transfer function

C(s) = F (sI − (A+BF −KC))−1K = · · · = −11s

s2 + 14s− 20

As a check, the loop function is L(s) = C(s)P (s) but since we are doing a positive feedback any transfer function
of the closed loop will have 1−L(s) at the denominator and therefore the pole polynomial will be DL(s)−NL(s)
that is

DL(s)−NL(s) = · · · = (s+ 10)(s+ 2)(s+ 1)

Since there were no cancellations between the controller and the plant but the plant has the eigenvalue λ2 = −2
which is not a pole, we end up with three poles (note however that we are not considering any input or output).

Typical errors:

• Some tried to assign the eigenvalue to the one-dimensional subsytem (fo example the controllable one)
using the Ackermann formula. This is certainly possible. However some chose to assign 2 eigenvalues
(even choosing one of the two coincident with the eigenvalue of the uncontrollable subsystem would be
wrong) and chose a second order polynomial for p∗(λ).
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