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1 Exercise

Let the input u(t) and output y(t) of a system satisfy the following linear differential equation

y(5)(t) + 4y(4)(t) + 3y(3)(t)− 2y(2)(t) + y(1)(t) + y(t)− u(t) = 0

where y(i)(t) denotes the i-th time derivative of y(t). For this system:

1. find a state space representation

2. compute the transfer function and say if there exists any uncontrollable or unobservable mode

3. say if the system is asymptotically stable or not.

2 Exercise

Let the system S respond, from zero initial conditions, with

y(t) =

(
1− t+

t2

2
− e−t

)
δ−1(t)

to the input
u(t) = δ(t)− 2e−3tδ−1(t)

Find the impulse response w(t) of S.

3 Exercise

Find the output forced response (output zero-state response) y(t) of the system represented by

F (s) =
50

s2 + 15s+ 50

to the input u(t) shown in Fig. 1

4 Exercise

For each system having the dynamics matrix Ai discuss the stability property

A1 =

 −1 0 0
0 −3 1
0 1 3

 , A2 =

 −1 4 −2
0 −3 1
0 0 3

 , A3 =

 −1 0 0
−3 −3 0
−3 1 3

 ,

A4 =

 0 1 0
0 0 1
0 1 3

 , A5 =

 0 1 0
0 0 1
−10 −1 −12

 , A6 =

 0 0 0
1 0 0
0 0 −3


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Figure 1: Ex. 3, input u(t)

5 Exercise

Assuming the coincidence of poles and eigenvalues, study the stability property of the following
systems.

P1(s) =
s− 1

s2
, P2(s) =

s− 1

s(s+ 1)
, P3(s) =

s+ 1

s3 + 12s2 + 3s
, P4(s) =

s+ 1

s3 + 12s2 + s+ 10

P5(s) =
s2 − 18

s3 + 12s2 + s− 12
, P6(s) =

−1

s3 + 2s2 + s+ 1
, P7(s) =

s− 10

s5 + s4 + 2s3 + s2 + 3s+ 4

6 Exercise

For the system having dynamics matrix

A =

(
k 1
0 0

)
determine, depending upon the values of k ∈ R, the natural modes and study stability.

7 Exercise

Find the forced response of the system

P (s) =
s− 1

s+ 1

to the input u(t) = etδ−1(t)− 2tδ−1(t).

8 Exercise

For the system

ẋ =

(
0 1
−1 −2

)
x+

(
0
1

)
u

y =
(
1 −1

)
x

find the forced zero-state response to the input u(t) shown in Fig. 2 using

L [sin(ωt) δ−1(t)] =
ω

s2 + ω2
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Figure 2: Ex. 8, input u(t)

9 Exercise

Find the natural modes of the system having dynamics matrix

A =

 1 −1 2
2 −1 3
0 0 1


10 Exercise

Compute the free state and output response of the system

ẋ(t) =

(
−2 −1
−1 −2

)
x(t) +

(
1
2

)
u(t)

y(t) =
(

2 1
)
x(t)

from the initial condition

x(0) =

(
2
0

)

11 Exercise

Determine the initial conditions of the system

ẋ(t) =

(
2 −1
3 −2

)
x(t) +

(
1
2

)
u(t)

y =
(

1 −1
)
x(t)

for which we obtain a non-diverging free output.

12 Exercise

For the system given by

ẋ(t) =

(
6 −3
2 −1

)
x(t)

determine the initial conditions, if any, such that the zero-input output response remains constant.
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A Exercise 1

State will have dimension 5. One possible choice is given by y and its derivatives up to y(4)

xT (t) =
[
y(t) y(1)(t) y(2)(t) y(3)(t) y(4)(t)

]T
With this choice we obtain

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 −1 2 −3 −4

 B =


0
0
0
0
1

 C =
[
1 0 0 0 0

]
D = 0

To find the transfer function we could use the formula involving (A,B,C,D) but this would require
the inversion of the 5× 5 matrix (sI − A). More directly we can recognize in the structure of the
obtained A, B and C the controller canonical form and therefore we can directly state that

F (s) =
1

s5 + 4s4 + 3s3 − 2s2 + s+ 1

Otherwise, since the transfer function relates the input to the output zero-state response (i.e. with
x(0) = 0), applying the derivative theorem to the differential equation leads to

s5Y (s) + 4s4Y (s) + 3s3Y (s)− 2s2Y (s) + sY (s) + Y (s) = U(s)

and to the transfer function F (s) = Y (s)/U(s) previously found. System stability can be inferred
from the eigenvalues, but since the denominator of the transfer function has degree equal to n = 5,
the poles coincide with the eigenvalues. The Routh necessary condition is not satisfied and therefore
the system is not asymptotically stable.

B Exercise 2

We can find the impulse response from the inverse Laplace transform of the transfer function which
can be found as the ratio of the zero-state response transform with the input transform that is,
being

Y (s) =
1

s
− 1

s2
+

1

s3
− 1

s+ 1

U(s) = 1− 2

s+ 3

we have

F (s) =
1/(s3(s+ 1))

(s+ 1)/(s+ 3)
=

(s+ 3)

s3(s+ 1)2

We then just have to do an expansion in partial fractions.
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Figure 3: Ex. 3, input u(t)

C Exercise 3

This exercise requires the correct use of the Laplace transform time shifting property and rewriting
u(t) as a linear combination of functions which have simple Laplace transform. The input u(t), as
shown in Fig. 3, can also be written as

u(t) = tδ−1(t)− 2(t− 1)δ−1(t− 1) + 2(t− 2)δ−1(t− 2)− 2(t− 3)δ−1(t− 3) + (t− 4)δ−1(t− 4)

=
4∑

k=0

ak(t− k)δ−1(t− k)

and therefore

U(s) =
(
1− 2e−s + 2e−2s − 2e−3s + e−4s

) 1

s2

and Y (s) = F (s)U(s).
Recall that if, in general, Y (s) = Y0(s)e

−sT then

y(t) = y0(t− T )δ−1(t− T )

and therefore defining

Y0(s) = F (s)
1

s2
=
R11

s
+
R12

s2
+

R2

s+ 5
+

R3

s+ 10

we have, once the residues have been computed,

y(t) =
4∑

k=0

aky0(t− k)δ−1(t− k)

with R11 = −3/10, R12 = F (0) = 1, R2 = 2/5 and R3 = −1/10. The input and final output are
plotted in Fig. 4.
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Figure 4: Ex. 3, input u(t) and corresponding response y(t)
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D Exercise 4

When possible we try to exploit some particular matrix structure to simplify calculation as much
as possible.
• Note that matrix A1 is block diagonal

A1 =

 −1 0 0
0 −3 1
0 1 3

 =

(
Aα 0
0 Aβ

)
with Aα =

(
−1

)
Aβ =

(
−3 1
1 3

)

and therefore

eig

{(
Aα 0
0 Aβ

)}
= eig {Aα} ∪ eig {Aβ}

We have aut {Aα} = −1 and

pAβ
(λ) = det (λI −Aβ) = λ2 − 10 ⇒ eig {Aβ} =

{
+
√

10,−
√

10
}

Since one eigenvalue
√

10 is positive (and theefore has positive real part) the system is unstable.
As an alternative we could have applied the Routh criterion to the characteristic polynomial

pA1(λ) = λ3 + λ2 − 10λ− 10

The necessary condition is not satisfied and therefore we can only assess that not all the eigenvalues
have negative real part. Note that the Routh table has a row (with only one element) equal to zero
since the first two rows are linearly dependent.

1 -10
1 -10
0

(N.B. There are rules to overcome this situation).

• Being the matrix A2 upper triangular, the eigenvalues coincide with the elements on the diagonal
λ1 = −1, λ2 = 3 and λ3 = 3. The eigenvalue λ3 = 3 makes the system unstable.

• Similarly, being A3 lower triangular again the eigenvalues are the elements on the main diagonal
and therefore, having λ3 = 3, the system is unstable.

• Matrix A4 is block triangular

A4 =

 0 1 0
0 0 1
0 1 3

 =

(
Aα ?
0 Aβ

)

(with ? matrix having the right dimensions) and therefore we have

eig

{(
Aα ?
0 Aβ

)}
= eig {Aα} ∪ eig {Aβ}

Being
pAβ

(λ) = λ2 − 3λ+ 1
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both roots (eigenvalues) of pAβ
(λ) = 0 have positive real part since the elements of the first column

of the Routh table (which coincide for a second order equation with the polynomial coefficients)
change sign twice. The corresponding system is unstable.

• Note that A5 is in the controller canonical form and therefore its characteristic polynomial is

pA5(λ) = λ3 + 12λ2 + λ+ 10

with Routh table

1 1
12 10
1/6
10

The corresponding system is asymptotically stable.

• First note that A6 is lower triangular and therefore the system has the double eigenvalue λ1 = 0
– which prevents the system from being asymptotically stable – and λ2 = −3. Moreover A6 is also
block diagonal with

Aα =

(
0 0
1 0

)
In order to understand if this double eigenvalue in 0 leads to instability or not, recall that the
eigenvalues of a matrix coincide with those of its transpose

eig {Aα} = eig
{
ATα
}

This can be shown with the similarity transformation T such that

ATα =

(
0 1
0 0

)
= TAαT

−1 = T

(
0 0
1 0

)
T−1 with T =

(
0 1
1 0

)
= T−1

and therefore Aα and ATα are similar and share the same eigenvalues. We can then note that ATα
is a Jordan block of dimension 2 (index = 2) for the eigenvalue λ1 = 0 which makes the system
unstable.

E Exercise 5

For the considered systems we have the following results.

• The system has a double pole is s = 0 and therefore it is not asymptotically stable. To see it
is unstable we can either recall that an eigenvalue will appear as a pole with at most multiplicity
equal to its index (dimension of the largest Jordan block). Therefore here we would have an index
equal to 2 and this leads to instability. This is evident from the realization

A1 =

(
0 1
0 0

)
, B1 =

(
0
1

)
, C1 =

(
−1 1

)
, D1 = 0

which shows the presence of the Jordan block.
Alternatively, since the transfer function is the Laplace transform of the impulse response p1(t),

we have

P1(s) =
s− 1

s2
=
R1

s
+
R2

s2
, with R1 = 1, R2 = −1
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and the impulse response

p1(t) = L−1 [P1(s)] = (R1 +R2 t) δ−1(t)

shows the presence of the diverging natural mode tδ−1(t).

• Being the poles of P2(s) equal to p1 = 0 and p2 = −1, the system is marginally stable (or more
properly Lyapunov stable).

• The denominator of P3(s) can be factored as

s3 + 12s2 + 3s = s(s2 + 12s+ 3)

thus we have a pole in s = 0 and two poles with negative real part. The system is therefore
marginally stable (or more properly Lyapunov stable).

• The Routh criterion for P4(s) is satisfied therefore the system is asymptotically stable. The roots
are (found numerically) p1 = −11.9862, p2/3 = −0.0069± 0.9134j.

1 1
12 10
1/6
10

• The system is not asymptotically stable since the necessary condition is not satisfied. Building
the Routh table

1 1
12 -12
2

-12

shows that there is only one change of sign so one root with positive real part. As a check,
numerically the roots are p1 = −11.8297, p2 = −1.0959 and p3 = 0.9256.

• Routh criterion shows asymptotic stability. The roots are p1 = −1.7549, p2/3 = −0.1226±0.7449j.

1 1
2 1

1/2
1

• Being the Routh table

1 2 3
1 1 4
1 -1
2 4
-3
4

the system with transfer function P7(s) is unstable due to the presence of two poles with positive
real part (2 sign variations in the first column). The poles are p1 = −1, p2/3 = −0.7177± 1.3651j
and p4/5 = 0.7177± 1.0801j.
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F Exercise 6

Being the matrix triangular

pA(λ) = (λ− k)λ ⇒ eigenvalues:

{
λ1 = 0, λ2 = k, if k 6= 0;
λ1 = λ2 = 0, if k = 0.

If k 6= 0 the natural modes are eλ1t = ekt and eλ2t = 1; if k > 0 the system is unstable while for
k < 0 we have marginal stability (or preferably Lyapunov stability).

For the case k = 0 we have several equivalent options.
With k = 0 matrix A

A =

(
0 1
0 0

)
has an obvious Jordan block of dimension 2 (index 2) and therefore the zero eigenvalue leads to
instability. The natural modes are e0t = 1 and te0t = t.

Equivalently, with k = 0, the dynamics equations are

ẋ = Ax, x ∈ R2, →
{
ẋ1 = x2
ẋ2 = 0

The second equation has the constant solution x2(t) = x2(0) and therefore x1(t) = x2(0)t+ x1(0).
These are the components of the free (unforced, zero-input) state evolution

xzi(t) = eAtx(0) =

{
x2(0)t+ x1(0)
x2(0)

which clearly shows the diverging behavior for generic initial conditions.
In the Laplace domain, note that

L
[
eAt
]

= (sI −A)−1 =
1

s2

{
s 1
0 s

)
which can be expanded as (Heaviside)

(sI −A)−1 =
1

s

(
1 0
0 1

)
+

1

s2

(
0 1
0 0

)
Being the matrices (residues) independent from s, the inverse Laplace transform is

eAt =

(
1 0
0 1

)
δ−1(t) +

(
0 1
0 0

)
tδ−1(t)

Post-multiplication (right multiplication) by the initial condition x(0) leads to the same unforced
response previously found.

G Exercise 7

The forced response transform is given by

Y (s) = P (s)U(s)
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and therefore, being

U(s) =
1

s− 1
− 2

1

s2
=
s2 − 2s+ 2

s2(s− 1)

we get

Y (s) =
s− 1

s+ 1

s2 − 2s+ 2

s2(s− 1)
=
s2 − 2s+ 2

s2(s+ 1)
=
R11

s
+
R12

s2
+

R2

s+ 1

with R11 = −4, R12 = 2 and R2 = 5. An interesting aspect of this example is that the diverging
exponential component of the input et is not present at the output (while the polynomial component
is) since the system has “filtered” this diverging forcing term through the presence of the zero in
s = 1 in the transfer function P (s).

H Exercise 8

The forced response transform is given by

Y (s) = P (s)U(s)

and therefore the only difficulty lies in finding U(s) from known Laplace transform and properties.
The input u(t) is a truncated sinusoidal function with frequency 1 Hz or 2π rad/s as shown in
Fig. 5-A.

As shown in Fig. 5-D, the input u(t) can be seen as the result of a time shift of 1 sec (Fig. 5-B)
to which an opposite and time shifted of 2 sec sinusoid (Fig. 5-C) has been added and therefore

u(t) = [sin(2π(t− 1))] δ−1(t− 1)− [sin(2π(t− 2))] δ−1(t− 2)

Defining y0(t) as the output corresponding to the input sin 2πt, the output y(t) is given by

y(t) = y0(t− 1)δ−1(t− 1)− y0(t− 2)δ−1(t− 2)

We therefore just need to compute y0(t) as the inverse Laplace transform of

Y0(s) = P (s)
2π

s2 + 4π2

with P (s) the transfer function of the given system (state space representation is in the controller
canonical form)

P (s) =
−s+ 1

s2 + 2s+ 1
= − s− 1

(s+ 1)2

We have

Y0(s) = − s− 1

(s+ 1)2
2π

s2 + 4π2
=

R1

s+ 2πj
+

R∗
1

s− 2πj
+

R21

s+ 1
+

R22

(s+ 1)2

with

R1 = [(s+ 2πj)Y (s)]s=−2πj =
π(4π2 − 3)

(1 + 4π2)2
+

1− 12π2

2(1 + 4π2)2
j

R21 =

[
d

ds

(
(s+ 1)2Y (s)

)]
s=−1

=
−2π((2π)2 − 3)

(1 + (2π)2)2

R22 =
[
(s+ 1)2Y (s)

]
s=−1

=
4π

1 + (2π)2

10



0 1 2 3 4 5

−1

0

1

A

0 1 2 3 4 5

−1

0

1

B

0 1 2 3 4 5

−1

0

1

C

0 1 2 3 4 5

−1

0

1

D

Figure 5: Ex. 8, input u(t)

and therefore, defining the residue R1 as R1 = a+ jb, we have

R1

s+ 2πj
+

R∗
1

s− 2πj
= 2a

s

s2 + (2π)2
+ 2b

2π

s2 + (2π)2

which admits the inverse Laplace transform

2a cos 2πt+ 2b sin 2πt

The overall y0(t) is then given by

y0(t) = 2a cos 2πt+ 2b sin 2πt+R21e
−t +R22te

−t

I Exercise 9

Being the matrix block diagonal, the eigenvalues are the union of the eigenvalues of

A1 =

(
1 −1
2 −1

)
, A2 =

(
1
)

that is λ1 = 1, λ2 = i and λ3 = λ∗2 = −i (the characteristic polynomial of A is pA(λ) = (λ−1)(λ2 +
1)). The natural modes are therefore

eλ1t = et, sin t (or equivalently cos t)

J Exercise 10

The characteristic polynomial is pA(λ) = λ2 + 4λ + 3 = (λ + 1)(λ + 3) and therefore λ1 = −1,
λ2 = −3. The eigenvector associated to λ1 = −1 is

u1 =

(
1
−1

)
or any parallel. the eigenvector associated to λ2 = −3 is

u2 =

(
1
1

)
11



Choose U =
(
u1 u2

)
so that

U−1 =
1

2

(
1 −1
1 1

)
=

(
vT1
vT2

)
From the spectral form we obtain

xzi(t) = eAtx(0) =
(
eλ1tu1v

T
1 + eλ2tu2v

T
2

)
x(0)

=

{
e−t
(

1
−1

)(
1/2 −1/2

)
+ e−3t

(
1
1

)(
1/2 1/2

)}( 2
0

)
=

{
e−t
(

1/2 −1/2
−1/2 1/2

)
+ e−3t

(
1/2 1/2
1/2 1/2

)}(
2
0

)
=

(
1
−1

)
e−t +

(
1
1

)
e−3t

while
yzi(t) = CeAtx(0) = Cxzi(t) = e−t + 3e−3t

As an alternative, we can find the coefficients c1 = vT1 x0 and c2 = vT2 x0 which give the initial
condition x0 in the (u1, u2) basis

x(0) = c1u1 + c2u2 = u1 + u2

and therefore, being vTi uj = δij , c1 and c2 scalars,

eAtx(0) =
(
eλ1tu1v

T
1 + eλ2tu2v

T
2

)
x(0)

=
(
eλ1tu1v

T
1 + eλ2tu2v

T
2

)
(c1u1 + c2u2)

= c1e
λ1tu1 + c2e

λ2tu2

K Exercise 11

The eigenvalues and associated eigenvectors are

λ1 = −1→ u1 =

(
1
3

)
, λ2 = 1→ u2 =

(
1
1

)
The output zero-input response is therefore

yzi(t) = CeAtx(0) = C
{
eλ1tu1v

T
1 + eλ1tu2v

T
2

}
x(0)

=
{
eλ1tCu1v

T
1 + eλ1tCu2v

T
2

}
x(0)

=
{
eλ1tCu1v

T
1

}
x(0)

being Cu2 = 0 and therefore any initial condition solves the problem. This is understandable since
Cu2 = 0 implies that the diverging natural mode eλ2t = et is unobservable.
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L Exercise 12

The eigenvalues and associated eigenvectors are

λ1 = 0→ u1 =

(
1
2

)
, λ2 = 5→ u2 =

(
3
1

)
and therefore we have a constant natural mode (for λ1 = 0) and a diverging one (for λ2 = 5). In
order for the diverging natural mode not to compare in the output free response, the initial state
needs to belong to the eigenspace relative to λ1 = 0, that is

x(0) = αu1 =

(
α
2α

)
Since λ1 = 0 the output response from x(0) not only will be non diverging but also constant.
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