Esame di Fondamenti di Automatica
15 Aprile 1999

[1] Dato il sistema rappresentato da

\[
A = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}
\]

per il quale si hanno a disposizione due possibili uscite

\[
y_1 = C_1 \dot{x} \quad \text{con} \quad C_1 = \begin{pmatrix} 0.5 & -0.5 \end{pmatrix}
\]

\[
y_2 = C_2 \dot{x} \quad \text{con} \quad C_2 = \begin{pmatrix} 1 & 0 \end{pmatrix}
\]

i) Stabilizzare, se necessario, il sistema tramite una retroazione da una delle due uscite senza far uso di un osservatore asintotico dello stato. Si giustifichi la scelta dell’uscita.

ii) Verificare la stabilità asintotica del sistema di controllo ottenuto tramite il criterio di Nyquist.

iii) Verificare la stabilità asintotica del sistema di controllo ottenuto tramite il criterio di Routh.

[2] Dato il sistema il sistema non lineare descritto dalle seguenti equazioni differenziali

\[
\begin{align*}
\dot{x}_1 &= x_2 - x_1^3 \\
\dot{x}_2 &= -x_1^3 - x_2^5
\end{align*}
\]

i) studiare la stabilità dell’origine tramite la tecnica della linearizzazione;

ii) studiare la stabilità dell’origine tramite il teorema di Lyapunov.

[3] Il più grande telescopio del mondo, completato nel 1990 alle Hawaii ha lo specchio principale di diametro 10 m costituito da 36 esagoni il cui orientamento è controllato attivamente. La dinamica di ogni sottosistema controllato separatamente è data dalla funzione di trasferimento

\[
P(s) = \frac{1}{s(s^2 + s + 1)}
\]

Individuare un controllore statico tale da assicurare un errore a regime permanente minore o uguale di α in corrispondenza di un ingresso di riferimento a rampa unitaria. Contemporaneamente si desidera ottenere una sovracompensazione non eccessiva. Si discuta sulla possibilità di verificare entrambe le specifiche.

[4] Illustrare il legame tra la banda passante del sistema ad anello chiuso a contoreazione unitaria e la pulsazione di attraversamento del sistema in catena diretta.