
Database Design for NoSQL Systems

Francesca Bugiotti1,�, Luca Cabibbo2, Paolo Atzeni2, and Riccardo Torlone2

1 Inria & Université Paris-Sud
2 Università Roma Tre

Abstract. We propose a database design methodology for NoSQL systems. The
approach is based on NoAM (NoSQL Abstract Model), a novel abstract data
model for NoSQL databases, which exploits the commonalities of various No-
SQL systems and is used to specify a system-independent representation of the
application data. This intermediate representation can be then implemented in
target NoSQL databases, taking into account their specific features. Overall, the
methodology aims at supporting scalability, performance, and consistency, as
needed by next-generation web applications.

1 Introduction

NoSQL database systems are today an effective solution to manage large data sets dis-
tributed over many servers. A primary driver of interest in NoSQL systems is their
support for next-generation web applications, for which relational DBMSs are not well
suited. These are OLTP applications for which (i) data have a structure that does not fit
well in the rigid structure of relational tables, (ii) access to data is based on simple read-
write operations, (iii) scalability and performance are important quality requirements,
and (iv) a certain level of consistency is also desirable [7,20].

NoSQL technology is characterized by a high heterogeneity [7,21], which is prob-
lematic to application developers. Currently, database design for NoSQL systems is
usually based on best practices and guidelines [12], which are specifically related to the
selected system [19,10,17], with no systematic methodology. Several authors have ob-
served that the development of high-level methodologies and tools supporting NoSQL
database design are needed [2,3,13].

In this paper we aim at filling this gap, by presenting a design methodology for
NoSQL databases that has initial activities that are independent of the specific target
system. The approach is based on NoAM (NoSQL Abstract Model), a novel abstract data
model for NoSQL databases, which exploits the observation that the various NoSQL
systems share similar modeling features. Given the application data and the desired data
access patterns, the methodology we propose uses NoAM to specify an intermediate,
system-independent data representation. The implementation in target NoSQL systems
is then a final step, with a translation that takes into account their peculiarities.

Specifically, our methodology has the goal of designing a “good” representation of
these application data in a target NoSQL database, and is intended to support scalability,
performance, and consistency, as needed by next-generation web applications. In gen-
eral, different alternatives on the organization of data in a NoSQL database are possible,

� Part of this work was performed while this author was with Università Roma Tre.

E. Yu et al. (Eds.): ER 2014, LNCS 8824, pp. 223–231, 2014.
c© Springer International Publishing Switzerland 2014

224 F. Bugiotti et al.

but they are not equivalent in supporting performance, scalability, and consistency. A
“wrong” database representation can lead to the inability to guarantee atomicity of im-
portant operations and to performance that are worse by an order of magnitude.

The design methodology is based on the following main activities:

– conceptual data modeling, to identify the various entities and relationships thereof
needed in an application;

– aggregate design, to group related entities into aggregates [9,11];
– aggregate partitioning, where aggregates are partitioned into smaller data elements;
– high-level NoSQL database design, where aggregates are mapped to the NoAM

intermediate data model, according to the identified partitions;
– implementation, to map the intermediate data representation to the specific model-

ing elements of a target datastore; only this activity depends on the target system.

The remainder of this paper presents our methodology for NoSQL database design. As
a running example, we consider an application for an on-line social game. This is a
typical scenario in which the use of a NoSQL database is suitable. For space reasons,
many details have been omitted; they can be found in the full version of the paper [6].

2 The NoAM Abstract Data Model

In this section we present the NoAM abstract data model for NoSQL databases. Pre-
liminarily, we briefly sum up the data models used in NoSQL databases.

NoSQL database systems organize their data according to quite different data mod-
els. They usually provide simple read-write data-access operations, which also differ
from system to system. Despite this heterogeneity, a few main categories of systems
can be identified according to their modeling features [7,20]: key-value stores, extensi-
ble record stores, document stores, plus others that are beyond the scope of this paper.

In a key-value store, a database is a schemaless collection of key-value pairs, with
data access operations on either individual key-value pairs or groups of related pairs
(e.g., sharing part of the key). The key (or part of it, thereof) controls data distribution.

In an extensible record store, a database is a set of tables, each table is a set of rows,
and each row contains a set of attributes (columns), each with a name and a value. Rows
in a table are not required to have the same attributes. Data access operations are usually
over individual rows, which are units of data distribution and atomic data manipulation.

In a document store, a database is a set of documents, each having a complex struc-
ture and value. Documents are organized in collections. Operations usually access indi-
vidual documents, which are units of data distribution and atomic data manipulation.

NoAM (NoSQL Abstract Data Model) is a novel data model for NoSQL databases
that exploits the commonalities of the data modeling elements available in the various
NoSQL systems and introduces abstractions to balance their differences and variations.

The NoAM data model is defined as follows.

– A NoAM database is a set of collections. Each collection has a distinct name.
– A collection is a set of blocks. Each block in a collection is identified by a block

key, which is unique within that collection.
– A block is a non-empty set of entries. Each entry is a pair 〈ek, ev〉, where ek is the

entry key (which is unique within its block) and ev is its value (either complex or
scalar), called the entry value.

Database Design for NoSQL Systems 225

Player

mary

username ”mary”

firstName ”Mary”

lastName ”Wilson”

games[0] 〈 game : Game:2345, opponent : Player:rick 〉
games[1] 〈 game : Game:2611, opponent : Player:ann 〉

Game

2345

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0] 〈 moves : ..., comments : ... 〉
rounds[1] 〈 moves : ..., actions : ..., spell : ... 〉

Fig. 1. A sample database in the abstract data model (abridged)

Figure 1 shows a sample NoAM database. In the figure, inner boxes show entries, while
outer boxes denote blocks. Collections are shown as groups of blocks.

In NoAM, a block is a construct that models a data access and distribution unit, which
is a data modeling element available in all NoSQL systems. By “data access unit” we
mean that the NoSQL system offers operations to access and manipulate an individual
unit at a time, in an atomic, efficient, and scalable way. By “distribution unit” we mean
that each unit is entirely stored in a server of the cluster, whereas different units are
distributed among the various servers. With reference to major NoSQL categories, a
block corresponds to: (i) a record/row, in extensible record stores; (ii) a document, in
document stores; or (iii) a group of related key-value pairs, in key-value stores.

Specifically, a block represents a maximal data unit for which atomic, efficient, and
scalable access operations are provided. Indeed, in the various systems, the access to
multiple blocks can be quite inefficient. For example, NoSQL systems do not provide
an efficient “join” operation. Moreover, most NoSQL systems do not provide atomic
operations over multiple blocks. For example, MongoDB [14] provides only atomic
operations over individual documents.

In NoAM, an entry models the ability to access and manipulate just a component of
a data access unit (i.e., of a block). An entry is a smaller data unit that corresponds to:
(i) an attribute, in extensible record stores; (ii) a field, in document stores; or (iii) an
individual key-value pair, in key-value stores. Note that entry values can be complex.

Finally, a NoAM collection models a collection of data access units. For example, a
table in extensible record stores or a document collection in document stores.

In summary, NoAM describes in a uniform way the features of many NoSQL sys-
tems. We will use it for an intermediate representation in the design process.

3 Conceptual Modeling and Aggregate Design

The methodology starts, as it is usual in database design, by building a conceptual
representation of the data of interest. See, for example, [5]. Following Domain-Driven
Design (DDD [9]), which is a popular object-oriented methodology, we assume that
the outcome of this activity is a conceptual UML class diagram, defining the entities,
value objects, and relationships of the application. An entity is a persistent object that
has independent existence and is distinguished by a unique identifier. A value object is
a persistent object which is mainly characterized by its value, without an own identifier.

For example, our application should manage various types of objects, including play-
ers, games, and rounds. A few representative objects are shown in Fig. 2. (Consider, for
now, only boxes and arrows, which denote objects and links between them.)

The methodology proceeds by identifying aggregates [9]. Intuitively, each aggregate
is a “chunk” of related data, with a complex value and a unique identifier, intended

226 F. Bugiotti et al.

mary : Player

username = "mary"

firstName = "Mary"

lastName = "Wilson"

rick : Player

username = "rick"

firstName = "Ricky"

lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Fig. 2. Sample application objects

to represent a unit of data access and manipulation for an application. Aggregates are
also important to support scalability and consistency, as they provide a natural unit for
sharding and atomic manipulation of data in distributed environments [11,9]. An im-
portant intuition in our approach is that each aggregate can be conveniently mapped to
a NoAM block (Sect. 2), which is also a unit of data access and distribution. Aggre-
gates and blocks are however distinct concepts, since they belong, respectively, to the
application level and the database level.

Various approaches to aggregate design are possible. For example, in DDD [9], enti-
ties and value objects are then grouped into aggregates. Each aggregate has an entity as
its root, and optionally it contains many value objects. Intuitively, an entity and a group
of value objects define an aggregate having a complex structure and value.

Aggregate design is mainly driven by data access operations. In our running example,
when a player connects to the application, all data on the player should be retrieved,
including an overview of the games she is currently playing. Then, the player can select
to continue a game, and data on the selected game should be retrieved. When a player
completes a round in a game she is playing, then the game should be updated. These
operations suggest that the candidate aggregate classes are players and games. Figure 2
also shows how application objects can be grouped in aggregates. (There, a closed curve
denotes the boundary of an aggregate.)

Aggregate design is also driven by consistency needs. Specifically, aggregates should
be designed as the units on which atomicity must be guaranteed [11] (with eventual
consistency for update operations spanning multiple aggregates [18]). Assume that the
application should enforce a rule specifying that a round can be added to a game only
if some condition that involves the other rounds of the game is satisfied. A game (com-
prising, as an aggregate, its rounds) can check the above condition, while an individual
round cannot. Therefore, a round cannot be an aggregate by itself.

Let us now illustrate the terminology we use to describe data at the aggregate level.
An application dataset includes a number of aggregate classes, each having a distinct
name. The extent of an aggregate class is a set of aggregate objects (or, simply, aggre-
gates). Each aggregate has a complex value [1] and a unique identifier. In conclusion,
our application has aggregate classes Player and Game.

Database Design for NoSQL Systems 227

Game

2345 ε

〈id : ”2345”,
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

〈 moves :..., comments : ... 〉,
〈 moves :..., actions : ..., spell : ... 〉

} 〉
(a) The EAO data representation

Game

2345

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds
{〈 moves: ..., comments: ..., 〉
〈 moves: ..., actions: ..., spell: ... 〉 }

(b) The ETF data representation

Fig. 3. Data representations (abridged)

4 Data Representation in NoAM and Aggregate Partitioning

In our approach, we use the NoAM data model as an intermediate model between appli-
cation datasets of aggregates and NoSQL databases. Specifically, an application dataset
can be represented by a NoAM database as follows. We represent each aggregate class
by means of a distinct collection, and each aggregate object by means of a block. We
use the class name to name the collection, and the identifier of the aggregate as block
key. The complex value of each aggregate is represented by a set of entries in the cor-
responding block. For example, the application dataset of Fig. 2 can be represented by
the NoAM database shown in Fig. 1. The representation of aggregates as blocks is mo-
tivated by the fact that both concepts represent a unit of data access and distribution, but
at different abstraction levels. Indeed, NoSQL systems provide efficient, scalable, and
consistent (i.e., atomic) operations on blocks and, in turn, this representational choice
propagates such qualities to operations on aggregates.

In general, an application dataset can be represented by a NoAM database in several
ways. The various data representations for a dataset differ in the choice of the entries
used to represent the complex value of each aggregate.

A simple data representation strategy, called Entry per Aggregate Object (EAO),
represents each individual aggregate using a single entry. The entry key is empty. The
entry value is the whole complex value of the aggregate. The data representation of the
aggregates of Fig. 2 according to the EAO strategy is shown in Fig. 3(a). (For the sake
of space, we show only the data representation for the game aggregate object.)

Another strategy, called Entry per Top-level Field (ETF), represents each aggregate
by means of multiple entries, using a distinct entry for each top-level field of the com-
plex value of the aggregate. For each top-level field f of an aggregate o, it employs an
entry having as value the value of field f in the complex value of o (with values that
can be complex themselves), and as key the field name f . See Fig. 3(b).

The data representation strategies described above can be suited in some cases, but
they are often too rigid and limiting. The main limitation of such general representations
is that they refer only to the structure of aggregates, and do not take into account the
required data access operations. Therefore, they do not usually support the performance
of these operations. This motivates the introduction of aggregate partitioning.

In NoAM we represent each aggregate by means of a partition of its complex value v,
that is, a set E of entries that fully cover v, without redundancy. Each entry represents
a distinct portion of the complex value v, characterized by a location in its structure
(specified by the entry key) and a value (the entry value). We have already applied this

228 F. Bugiotti et al.

key (/major/key/-) value
/Game/2345/- { id: ”2345”, firstPlayer: ”Player:mary”, ... }

(a) EAO in Oracle NoSQL

key (/major/key/-/minor/key) value
/Game/2345/-/id 2345
/Game/2345/-/firstPlayer Player:mary
/Game/2345/-/secondPlayer Player:rick
/Game/2345/-/rounds [{ ... }, { ... }]

(b) ETF in Oracle NoSQL

Fig. 4. Implementation in Oracle NoSQL (abridged)
key (/major/key/-/minor/key) value

Game/2345/-/id 2345

Game/2345/-/firstPlayer ”Player:mary”
Game/2345/-/secondPlayer ”Player:rick”
Game/2345/-/rounds[0] {moves: ..., comments: ...}
Game/2345/-/rounds[1] {moves: ..., actions: ..., spell: ...}

Fig. 5. Implementation in Oracle NoSQL for the sample database of Fig. 1 (abridged)

intuition in the ETF data representation (shown in Fig. 3(b)), which uses field names as
entry keys and field values as entry values.

Aggregate partitioning can be driven by the following guidelines (which are a variant
of guidelines proposed in [5] in the context of logical database design):

– If an aggregate is small in size, or all or most of its data are accessed or modified
together, then it should be represented by a single entry.

– Conversely, an aggregate should be partitioned in multiple entries if it is large in
size and there are operations that frequently access or modify only specific portions
of the aggregate.

– Two or more data elements should belong to the same entry if they are frequently
accessed or modified together.

– Two or more data elements should belong to distinct entries if they are usually
accessed or modified separately.

The application of the above guidelines suggests a partitioning of aggregates, which
we will use to guide the representation in the target database. For example, the data
representation for games shown in Fig. 1 is motivated by the following operation: when
a player completes a round in a game she is playing, then the aggregate for the game
should be updated. In order to update the underlying database, there would be two al-
ternatives: (i) the addition of the round just completed to the aggregate representing the
game; (ii) a complete rewrite of the whole game. The former is clearly more efficient.
Therefore, each round is a candidate to be represented by an autonomous entry.

5 Implementation

In the last step, the selected data representation in NoAM is implemented using the
specific data structures of a target datastore. For the sake of space, we discuss the im-
plementation only with respect to a single system: Oracle NoSQL. We have also imple-
mentations for other systems [6].

Oracle NoSQL [16] is a key-value store, in which a database is a schemaless collec-
tion of key-value pairs, with a key-value index. Keys are structured; they are composed
of a major key and a minor key. The major key is a non-empty sequence of strings. The
minor key is a sequence of strings. On the other hand, each value is an uninterpreted
binary string.

Database Design for NoSQL Systems 229

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 2 4 8 16 32 64 128 256 512

Game Retrieval

EAO Rounds

(a) Game Retrieval

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 2 4 8 16 32 64 128 256 512

Round Addition

EAO Rounds

(b) Round Addition

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 2 4 8 16 32 64 128 256 512

Mixed Load (50/50)

EAO Rounds

(c) Mixed Load

Fig. 6. Experimental results

A NoAM database D can be implemented in Oracle NoSQL as follows. We use a
key-value pair for each entry 〈ek, ev〉 in D. The major key is composed of the collection
name C and the block key id, while the minor key is a proper coding of the entry key
ek. The value associated with this key is a representation of the entry value ev. The
value can be either simple or a serialization of a complex value, e.g., in JSON.

For example, Fig. 4(a) and 4(b) show the implementation of the EAO and ETF data
representations, respectively, in Oracle NoSQL. Moreover, Fig. 5 shows the implemen-
tation of the data representation of Fig. 1.

An implementation can be considered effective if aggregates are indeed turned into
units of data access and distribution. The effectiveness of this implementation is based
on the fact that in Oracle NoSQL the major key controls distribution (sharding is based
on it) and consistency (an operation involving multiple key-value pairs can be executed
atomically only if the various pairs are over a same major key).

6 Experiments

We now discuss a case study of NoSQL database design, with reference to our running
example. For the sake of simplicity, we focus only on the representation of aggregates
for games. Data for each game include a few scalar fields and a collection of rounds.
The important operations over games are: (1) the retrieval of a game, which should read
all the data concerning the game; and (2) the addition of a round to a game. To manage
games, the candidate data representations are: (i) using a single entry for each game (as
shown in Fig. 3(a), in the following called EAO); (ii) splitting the data for each game
in a group of entries, one for each round, and including all the remaining scalar fields
in a separate entry (a variant of the representation shown in Fig. 1, called ROUNDS).

We ran a number of experiments to compare the above data representations in situ-
ations of different application workloads and database sizes, and measured the running
time required by the workloads. The target system was Oracle NoSQL, a key-value
store, deployed over Amazon AWS on a cluster of four EC2 servers. (This work was
supported by AWS in Education Grant award.)

The results are shown in Fig. 6. Database sizes are in gigabytes, timings are in mil-
liseconds, and points denote the average running time of a single operation. The exper-
iments show that the retrieval of a game (Fig. 6(a)) is always favored by the EAO data
representation, for any database size. They also show that the addition of a round to
an existing game (Fig. 6(b)) is always favored by the ROUNDS data representation. Fi-
nally, the experiments over the mixed workload (Fig. 6(c)) show a general advantage of

230 F. Bugiotti et al.

ROUNDS over EAO, which however decreases as the database size increases. Overall,
it turns out that the ROUNDS data representation is preferable.

We also performed other experiments on a data representation that does not conform
to the design guidelines proposed in this paper. Specifically, we divided the rounds of
a game into independent key-value pairs, rather than keeping them together in a same
block. In this case, the performance of the various operations worsened by an order of
magnitude. Moreover, it was not possible to update a game in an atomic way.

Overall, these experiments show that: (i) the design of NoSQL databases should be
done with care as it affects considerably the performance and consistency of data access
operations, and (ii) our methodology provides an effective tool for choosing among
different alternatives.

7 Related Work

Several authors have observed that the development of methodologies and tools sup-
porting NoSQL database design is demanding [2,3,13]. However, this topic has been
explored so far only in some on-line papers, published in blogs of practitioners, in terms
of best practices and guidelines for modeling NoSQL databases (e.g., [12,15]), and usu-
ally with reference to specific systems (e.g., [19,10,17]). To the best of our knowledge,
this is the first proposal of a system-independent approach to the design of NoSQL
databases, which tackles the problem from a general perspective.

Domain-Driven Design [9] is a widely followed object-oriented approach that in-
cludes a notion of aggregate. Also [11] advocates the use of aggregates (there called
entities) as units of distribution and consistency. We also propose, for efficiency pur-
poses, to partition aggregates into smaller units of data access and manipulation.

In [4] the authors propose entity groups, a set of entities that, similarly to our aggre-
gates, can be manipulated in an atomic way. They also describe a specific mapping of
entity groups to Bigtable [8]. Our approach is based on a more abstract database model,
NoAM, and is system independent, as it is targeted to a wide class of NoSQL systems.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Atzeni, P., Jensen, C.S., Orsi, G., Ram, S., Tanca, L., Torlone, R.: The relational model is

dead, SQL is dead, and I don’t feel so good myself. SIGMOD Record 42(2), 64–68 (2013)
3. Badia, A., Lemire, D.: A call to arms: revisiting database design. SIGMOD Record 40(3),

61–69 (2011)
4. Baker, J., et al.: Megastore: Providing scalable, highly available storage for interactive ser-

vices. In: CIDR 2011, pp. 223–234 (2011)
5. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-Relationship

Approach. Benjamin/Cummings (1992)
6. Bugiotti, F., Cabibbo, L., Torlone, R., Atzeni, P.: Database design for NoSQL systems.

Technical Report 210, Università Roma Tre (2014), Available from http://www.dia.
uniroma3.it/Plone/ricerca/technical-reports/2014

7. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Record 39(4), 12–27 (2010)
8. Chang, F., et al.: Bigtable: A distributed storage system for structured data. ACM Trans.

Comput. Syst. 26(2) (2008)
9. Evans, E.: Domain-Driven Design. Addison-Wesley (2003)

10. Hamrah, M.: Data modeling at scale (2011)

http://www.dia.uniroma3.it/Plone/ricerca/technical-reports/2014
http://www.dia.uniroma3.it/Plone/ricerca/technical-reports/2014

Database Design for NoSQL Systems 231

11. Helland, P.: Life beyond distributed transactions: an apostate’s opinion. In: CIDR 2007, pp.
132–141 (2007)

12. Katsov, I.: NoSQL data modeling techniques. Highly Scalable Blog (2012)
13. Mohan, C.: History repeats itself: sensible and NonsenSQL aspects of the NoSQL hoopla.

In: EDBT, pp. 11–16 (2013)
14. MongoDB Inc. MongoDB, http://www.mongodb.org (accessed 2014)
15. Olier, T.: Database design using key-value tables (2006)
16. Oracle. Oracle NoSQL Database, http://www.oracle.com/technetwork/

products/nosqldb (accessed 2014)
17. Patel, J.: Cassandra data modeling best practices (2012)
18. Pritchett, D.: BASE: An ACID alternative. ACM Queue 6(3), 48–55 (2008)
19. Rathore, A.: HBase: On designing schemas for column-oriented data-stores (2009)
20. Sadalage, P.J., Fowler, M.J.: NoSQL Distilled. Addison-Wesley (2012)
21. Stonebraker, M.: Stonebraker on NoSQL and enterprises. Comm. ACM 54(8), 10–11 (2011)

http://www.mongodb.org
http://www.oracle.com/technetwork/products/nosqldb
http://www.oracle.com/technetwork/products/nosqldb

	Database Design for NoSQL Systems
	1 Introduction
	2 The NoAM Abstract Data Model
	3 Conceptual Modeling and Aggregate Design
	4 Data Representation in NoAM and Aggregate Partitioning
	5 Implementation
	6 Experiments
	7 Related Work
	References

