Completeness-driven Query Answering in Peer Data Management Systems (PDMS)

Armin Roth, Felix Naumann

DASI ´06, Bertinoro
Completeness-driven Query Answering in PDMS

- PDMS
 - Network of mediators
 - (Directed) schema mappings
 [Halevy et al. ICDE 2003, Franconi et al. DBISP2P 2003, Calvanese et al. PODS 2004]

- Information loss in mapping paths:
 - Selections: implicit knowledge about peers
 - Projections in mappings: different information about a real-world entity
Projections in Mappings

• Motivation
 – Select a hotel in Milano in expedia.de:
 Name and location, but no contact data
 – Search for contact data of the hotel on google.de

• Formalization
 – Global schema:
 Hotel(name, loc, phone, eMail, prize)
 – Source 1: Expedia.Hotel(name, loc, prize)
 – Source 2: Google.Hotel(name, loc, phone, eMail)
 – (LaV) mappings (including projections)
 \{ (n, l, pr) | Expedia.Hotel(n, l, pr) \} \subseteq Hotel(n, l, ph, m, pr)
 \{ (n, l, ph, m) | Google.Hotel(n, l, p, m) \} \subseteq Hotel(n, l, ph, m, pr)

• Query answers (may) contain no NULL values
Observations

- Information loss in mappings:
 - Projections introduce NULL values (i.e., unknown)
 - Selections reduce recall
 - Both accumulate along mapping paths

- Query answering in PDMS:
 - Generally undecideable, in PTIME data complexity for reduced expressivity [Halevy et al. ICDE 2003]
 - High redundancy in network of mappings
 - Massive scalability problems even with tens of peers
 - Query execution time extremely depends on configuration of the PDMS
Approach

- Concessions on completeness of query answers in large-scale PDMS
 [Naumann et al. IS 29(7) 2004, Roth, Naumann DBISP2P 2005]

- Pruning mappings based on projections and statistics about result cardinalities
 - Fully local techniques
 - Bounding resource consumption
 [Roth et al. IIWeb 2006]
 - Outlook: Overlap-awareness

- Experiments with implementation
 - Full-fledged PDMS „System P“
 - Generator for PDMS instances