Laura Haas
IBM Distinguished Engineer
Director, Computer Science

Beauty and the Beast: The Theory and Practice of Information Integration
Bertinoro
September 30, 2007
Agenda

• The Beast
 – What makes integration hard?
 – A customer success story

• Taming the Beast
 – The state of the art in commercial integration technology
 – A simple integration scenario
 – The beast remains

• Breaking the Spell?
 – Raising the level of abstraction
 – Increasing automation
What Makes Integration Hard?

- Diverse sources and types of information
 - Different models and operations
 - Different interfaces

- Limited knowledge about the information
 - Where is it from? How was it derived? How related to other information?
 - Complex environments the norm
 - Much of the knowledge is only in people’s heads

- Overlapping and incomplete information
 - Choice of source(s)
 - Entity resolution
 - Reconciliation of information

- Solution requirements may vary
 - Is performance or availability (or both) important?
 - How current must the data be? How accurate?
 - Are there limits on storage space? Processing power?
 - What policies must be respected?
Integration is a process

• Understand
 – What data is available
 – Important properties and values
 – Meaning or intent

• Standardize
 – Schema, field level, terminology and abbreviations
 – How to identify information about the same object
 – How to handle missing or inconsistent values

• Specify
 – Choose an integration engine or engines
 – Produce the executable(s) for integration

• Execute (Integrate)

• Iterate!!
Taikang Life Insurance: Getting a complete view of the customer

Challenge

- Provide a clear picture of customers and associated services
- Capitalize on new business and growth opportunities with an up-to-the-minute view of the organization

Background

- 4th largest Chinese insurance company
- 8,000 employees, 150,000 agents
- 3.5 million customers
- Need information from DB2 UDB, Informix, Oracle, SQL Server, XML, e-mail, CRM and Portal
Taikang Integrated Information Platform Architecture

Channels
- Phone
- Fax
- SMS
- Email
- Web
- Store Front
- Mail
- Agents
- Financial Planner

Application Platform

Information Integration Platform
- Data Service
- Integrated Information
- Mapping (nicknames)
- ODS
- Cache
- XML
- SQL
- Web Services

Core Systems
- Informix
- DB2/400
- Oracle
- Group & Banking
- CSC Personal Life
- Financials

Groups & Banking
- CSC Personal Life
- Financials

Informix

DB2/400

Oracle

Group & Banking

CSC Personal Life

Financials
IBM Information Server

Delivering information you can trust

Understand

Discover, model, and govern information structure and content

Standardize

Standardize, merge, and correct information

Specify

Describe how to combine and restructure information for new uses

Execute

Synchronize, virtualize and move information for in-line delivery

Unified Metadata Management

Parallel Processing

Rich Connectivity to Applications, Data, and Content

IBM is the acknowledged industry leader for vision and execution in information integration
Reality:
Lots of products, lots of choices

IBM Information Server

Unified Deployment
- WebSphere Information Services Director

Understand
- WebSphere Information Analyzer
- WebSphere Business Glossary
- Data Architect

Standardize
- WebSphere QualityStage
- WebSphere Business Glossary

Specify and
- Rational Data Architect
- WebSphere Federation Server
- WebSphere DataStage
- WebSphere Replication Server
- WebSphere Data Event Publisher

Execute

Unified Metadata Management
- WebSphere Metadata Server

Parallel Processing
Rich Connectivity to Applications, Data, and Content

+ additional products for content federation, search, and special architectures or sources

IBM is the acknowledged industry leader for vision and execution in information integration
- We can provide an end-to-end solution
- Otherwise, the problem is much worse – many vendors, mismatched products
Information Integration is Just _____
Merging Chico and Grande

Grande Corporation

Customer DB

<table>
<thead>
<tr>
<th>Cname</th>
<th>CID</th>
<th>Cmpy</th>
<th>Addr</th>
<th>City</th>
<th>ST</th>
<th>Zip</th>
<th>Slvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Doe</td>
<td>134</td>
<td>ABC</td>
<td>24, Grimm</td>
<td>Boston</td>
<td>MA</td>
<td>02138</td>
<td>Gold</td>
</tr>
<tr>
<td>Bob Dole</td>
<td>573</td>
<td>Banan</td>
<td>1832 15th St</td>
<td>San Jose</td>
<td>CA</td>
<td>95139</td>
<td>Silver</td>
</tr>
</tbody>
</table>

Chico

Orders
- Mail Orders (CustId, ProdID, ServiceTyp)
- Billing (CustID, Address)

Defect Tracking
- Defects (ContactName, ProdID, Phone)

Warranties (Text)
- Extended Warranty for Gyro Model 2
- Super Service Guarantee T & Cs

Web Sales
- <Customer> ShipAddr, CC#
- <Order> Cust, ServiceLvl, Date
Understanding What’s There

- Where is the customer information?
- Assess the information quality
 - Is it complete? Any conflicts? Duplication?
- Understand statistical properties
 - Volumes? Important fields and distributions?
- Understand intent (semantics, meaning, ...)
 - How are fields related? Any constraints?
- And so on...
- Available tools
 - Data explorers or profiling tools
 - Discovery engines
 - Enterprise catalogs
 - Modeling tools
 - Ontologies and business glossaries

ABC is both a mail order and web customer of Chico – and of Grande

Chico service levels relate to products’ warranty and purchase of additional warranties, if any

Customer DB

<table>
<thead>
<tr>
<th>Cname</th>
<th>CID</th>
<th>Cmpy</th>
<th>Addr</th>
<th>City</th>
<th>ST</th>
<th>Zip</th>
<th>Slvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane Doe</td>
<td>134</td>
<td>ABC</td>
<td>2, Grimm</td>
<td>Bosto n</td>
<td>MA</td>
<td>02138</td>
<td>Gold</td>
</tr>
<tr>
<td>Bob Dole</td>
<td>573</td>
<td>Banan</td>
<td>1832 15th St</td>
<td>San Jose</td>
<td>CA</td>
<td>95135</td>
<td>Silve r</td>
</tr>
</tbody>
</table>
RDA: Discover and visualize data sources

Available servers detected automatically

Visualize topology of data sources

Detailed view of properties
Information Analyzer: Looking at Data
Information Analyzer: Looking at Data

![Image of IBM Information Analyzer](image)

Table B1

<table>
<thead>
<tr>
<th>Column</th>
<th>Frequency Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>45</td>
</tr>
<tr>
<td>RECA</td>
<td>284</td>
</tr>
<tr>
<td>REFL</td>
<td>544</td>
</tr>
<tr>
<td>REGA</td>
<td>763</td>
</tr>
<tr>
<td>REMO</td>
<td>252</td>
</tr>
<tr>
<td>RDMC</td>
<td>700</td>
</tr>
<tr>
<td>RYKW</td>
<td>264</td>
</tr>
<tr>
<td>RYOF</td>
<td>594</td>
</tr>
<tr>
<td>RYUS</td>
<td>17</td>
</tr>
<tr>
<td>RYUP</td>
<td>37</td>
</tr>
<tr>
<td>RYRX</td>
<td>45</td>
</tr>
<tr>
<td>RYLR</td>
<td>204</td>
</tr>
<tr>
<td>RYRA</td>
<td>144</td>
</tr>
<tr>
<td>RYMO</td>
<td>252</td>
</tr>
<tr>
<td>RYNQ</td>
<td>790</td>
</tr>
</tbody>
</table>

Table B1 Details

- **Name**: Table B1
- **Data Source**: Data Source A
- **Alias**:
- **Keyword**:
- **Type**: Table
- **Entity Type**: Primary
- **Data Group**: Customer
- **Review Date**: 02/10/04
- **Revised By**: Name Here

Columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Identifier</th>
<th>Code</th>
<th>Indicator</th>
<th>Large Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>REMO</td>
<td>Primary Key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related

- View Column Profile
- View Table Data
Standardizing the Representation

• Determine how the information should be represented
 – Target schema
 – Field level data formats
 – Abbreviations and terminology

• Rules for repairing information
 – Detecting overlap (object resolution)
 – Dealing with missing data
 – Handling inconsistencies

• Available tools
 – Schema modeling
 – Data cleansing
 – Business glossaries, ontologies
 – Triggers or other rule engines

Grande address: separate fields for street, city, state and zip. **Chico address**: a single string

Last name, first name or first then last?

Street = Str or St?

ABC has different customer ids, and phone numbers and addresses in Grande and Chico dbs
Create a standard model for loan information

Import or visually create a standardized loan information model

Associate a naming standard with model
- Can be used to generate physical names
- As a thesaurus for relating schemas
QualityStage Designer
Specification and Execution

- What execution engine(s) should be used?
 - Materialize
 - Extract, Transform, Load (ETL)
 - Replication
 - Virtualize (Federate)
 - Search

- What input is needed to drive the execution engine of choice?
 - ETL: Dataflow graph or script
 - Replication: subscription definitions, e.g.
 - Federation: SQL queries
 - Search: Keywords
 - Plus, configuration of each engine (connectivity, tuning, ...)

- Available tools
 - Each engine usually provides some configuration tool
 - Query builders for SQL
 - Many engines... all different, few standards
Choosing an Execution Engine: Example 1
Materialize or Federate

Key need:
very current data

Data volume:
moderate result sets

Data types:
heterogeneous

Availability need:
best effort

Copying:
independent of policy

Data processing:
SQL-based & optimized

high performance queries
large result sets
largely relational
highly available
must be allowed
data flow for special purpose engine
Choosing an Execution Engine: Example 2
Materialize or Federate

Copies or Remote Access Criteria

ETL
- Large Answer Sets
- Response Time Critical
- Data Availability Critical
- Predictable Requests
- Resources Used at Copy and Update
- Tailorable impact

Data Characteristics
- Requirements
- Usage
- Cost
- Production impact

Federate
- Volatile Data
- Data Currency Critical
- Unpredictable Requirements
- Resources Used at Access
- Potential impact

Copies at Process Center

REMOTE DIRECT ACCESS

IBM Software
A Very Simple DataStage Job
Discover and relate existing schemas to standard

Semantic discovery automatically relates schemas
- Schema and data-based
- Exploits glossary
- Reports relative ranking

Annotate mapping with transformations and conditions
Relate and map existing schemas to standard

- Visualize relationships at table level
- Maps can combined and composed
- Discovers join conditions
Generate compliant view over existing schema

Generate a view that renames and restructures existing schema in terms of standard model.
Customers Want Integration, Not Federate, Materialize, Search, ...

- Hard and dangerous choices
 - Too many products with too much functional overlap
 - Too hard to choose, have to choose too early
 - Too hard to switch among products

- Too hard to use to build effective solutions
 - Too many knobs, too much training to use well
 - Too stove-piped (hard or expensive to use in combination)
 - Too little easy life-cycle flow among products

- Time to delivered value is too long
 - Need consulting-services engagements to survive
 - No way to kick-start the process

- Integration never ends
 - Integration usually starts with a project or two
 - Future projects should extend, reuse – avoid duplicate work
We Need to Simplify the Process

- Integration is the new data access
 - Applications need information that comes from multiple sources
 - Thus, writing applications that access data => integration
 - But integration is too difficult

- We need to raise the level of abstraction
 - Use “semantics” (more information)
 - Generate configuration and execution artifacts automatically

- Goal: non-procedural integration
 1. Automated understanding and standardization
 2. Complete, high level specification
 - Logical: what information is wanted
 - Practical: what qualities must the solution have
 3. Tools to turn the high level description into actionable specifics
 4. Powerful engine (or engines?) to do the specified integration

- Research issues for both systems and theory communities
Some “formal” issues

• Creating a complete picture of information integration
 – What are the fundamental operations for information integration?
 – Can we provide a theoretical basis for the information integration process?
 – Can data integration and data exchange even be viewed as different implementations of the same task?

• Hypothesis: there is a set of requirements (the desiderata) that must be represented and reasoned about as part of any complete integration solution.
 – What are the critical solution desiderata?
 – How do they relate to the integration techniques needed?
 – Can we represent them formally? Which? How?
 – If they were formally represented, what could we learn? Do?

• Will a formal theory help create a single integration engine for all integration tasks?
 – Is this a worthy goal? (It sounds simpler...)
 – What is the analog of the relational calculus for integration?
 – How close can we come to fully automating integration?
Some systems issues

- **What software do we need?**
 - Automate understanding and standardization
 - Specify the solution desiderata
 - Integration Advisor to suggest the engine?
 - “Compiler” to generate the integration “script”?
 - How much can we automate?

- **How should the integration engine be structured?**
 - A “blade” approach: Specialized engines as needed to federate, do bulk transforms, search, ...?
 - Or a “super-engine” that does it all?
 - How to make it simple yet able to meet a range of requirements?
 - Parallel infrastructure for performance, scalability?
 - Services-oriented architecture for flexibility?
Saying What Is Desired: Desiderata

- **Logical:** How to specify what information is needed?
 - Naming?
 - "Information about customers", e.g. (not "cname from client")
 - Form of the request?
 - From precise query to imprecise search
 - Language or a set of operators or ?
 - Metadata?

- **Practical:** What other properties of the solution are desired?
 - Qualities of service
 - Performance, availability, scalability, etc
 - Qualities of data
 - Currency, completeness, accuracy, etc
 - Physical constraints that must be met
 - Available storage, processing power, floor space, ...
 - Policies that must be obeyed
 - Privacy, security, cost sharing, legal, ...
 - Which of these are critical for determining integration techniques?
 - How can they be modeled?
Summary: Can Beauty Tame the Beast?

• Information integration is a beast
 – Hard and pervasive
 – A multi-stage process
 – Many (incompatible) choices of technology for each phase
 – Little guidance on how to choose

• Research has looked only at aspects of the big picture
 – Progress on some fundamental issues
 – Integration technologies for pieces of the problem
 – There are many open problems

• The desiderata are key
 – Logical: target schema, constraints
 – Practical: Qualities of service and data, physical constraints, policies
 – No precise decision rules today

• Can we automate more of the integration process?
 – Raise the level of abstraction
 – Derive appropriate decision rules
 – Use them to create nonprocedural integration
Thanks

- Phokion Kolaitis, Ron Fagin, Lucian Popa
- The Clio team
 - Renee Miller, Mauricio Hernandez, Lucian Popa, Howard Ho...
- IBM Information Integration Solutions development team
 - Lee Scheffler, Mike Beckerle...
 - Technical enablement and strategy teams
- The Garlic team
 - Peter Schwarz, Mary Roth...
- And many colleagues world-wide