
Ontology-based Data Management

Maurizio Lenzerini
Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti

Part II

Seminars in Advanced Topics in Computer Science Engineering
April 27 - May 4, 2018

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (1/85)

The course

Part I
Ontology-based data management: The framework
Queries in OBDM
The nature of query answering in OBDM

Part II
Ontology languages
Modeling the domain through the ontology
Modeling the mapping with the data sources

Part III
Algorithms for query answering
Beyond classical first-order queries

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (2/85)

Outline

1 Ontology languages

2 Modeling the domain through the ontology

3 Modeling the mapping with the data sources

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (3/85)

Complexity of conjunctive query answering in DLs

Combined complexity Data complexity

Plain databases NP-complete in LogSpace (1)

OWL 2 ? coNP-hard (2)

(1) Going beyond probably means not scaling with the data.
(2) Already for a TBox with a single disjunction (see example above).

Questions

Can we find interesting DLs for which the query answering problem can be
solved efficiently (in LogSpace wrt data complexity)?

If yes, can we leverage relational database technology for query answering
in OBDM?

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (4/85)

A very popular logic: DL-LiteA,id

DL-LiteA,id is the most expressive logic in the DL-Lite family

Expressions in DL-LiteA,id:

B −→ A | ∃Q | δ(U) E −→ ρ(U) C −→ B | ¬B
Q −→ P | P− V −→ U | ¬U R −→ Q | ¬Q
T −→ >D | T1 | · · · | Tn

Assertions in DL-LiteA,id:

B v C (concept inclusion) E v T (value-domain inclusion)
Q v R (role inclusion) U v V (attribute inclusion)
(id B π1, ..., πn) (identification assertions) (funct Q) (role functionality)
(funct U) (attribute functionality)

In identification and functional assertions, roles and attributes cannot
specialized, and each πi denotes a path (with at least one path with length 1),
which is an expression built according to the following syntax rule:

π −→ S | B? | π1 ◦ π2

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (5/85)

Semantics of DL-LiteA,id

Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child PI ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ PI}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. B v C Father v ∃child BI ⊆ CI

role incl. Q v R hasFather v child− QI ⊆ RI

funct. asser. (funct Q) (funct succ) ∀d, e, e′.(d, e) ∈ QI ∧ (d, e′) ∈ QI → e = e′

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , c
I
2) ∈ PI

DL-LiteA,id (as all DLs of the DL-Lite family) adopts the Unique Name
Assumption (UNA), i.e., different individuals denote different objects.

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (6/85)

Capturing basic ontology constructs in DL-LiteA,id

ISA between classes A1 v A2

Disjointness between classes A1 v ¬A2

Domain and range of properties ∃P v A1 ∃P− v A2

Mandatory participation (min card = 1) A1 v ∃P A2 v ∃P−

Functionality of relations (max card = 1) (funct P) (funct P−)

ISA between properties Q1 v Q2

Disjointness between properties Q1 v ¬Q2

Note 1: DL-LiteA,id cannot capture completeness of a hierarchy. This would
require disjunction (i.e., OR).

Note 2: DL-LiteA,id can be extended to capture also min cardinality constraints
(A v ≤ n Q), max cardinality constraints (A v ≥ n Q) [Artale et al, JAIR
2009], n-ary relations, and denial assertions (not considered here for simplicity).

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (7/85)

Example of DL-LiteA,id ontology

name: String
age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean

Faculty v ∃age
∃age− v xsd:integer

(funct age)

∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor
(funct isHeadOf)
(funct isHeadOf−)

...

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (8/85)

Graphol

Graphol is a graphical language developed at Sapienza with the following key
features:

Looks similar to UML Class Diagrams and Entity-Relationship Diagrams

Is a graphical counterpart of full OWL 2

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (9/85)

Classes and Object Properties

A class represents a set of objects (i.e., its instances) sharing common
properties.

E.g., “Student”, “Worker”

Graphol OWL Semantics

Class(Student) StudentI ⊆ ∆I
o

An object property represents a binary relation between objects, i.e., a set
of tuples (ordered pairs) of objects.

E.g., “enrolled” represents the set of tuples (pairs) such that the first
component is the object that is enrolled nd the second component is the
object in which it is enrolled.

Graphol OWL Semantics

ObjectProperty(enrolled) enrolledI ⊆ ∆I
o ×∆I

o

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (10/85)

Data Properties and Datatypes

A data property represents a local property of a class, i.e., a property
whose value depends only on the object itself and has no relationships with
the other elements of the ontology.

E.g., “studentId” is a local property

Graphol OWL Semantics

DataProperty(studentId) studentIdI ⊆ ∆I
o ×∆v

A datatype represents a set of values (NOT objects!). Datatypes can be
predefined ones in OWL or can be defined in the ontology itself (through
DatatypeDefinition assertion).

E.g.,“xsd:string”, “xsd:interger”, “rdfs:Literal” (predefined datatypes)
“StringOrInt”

Graphol OWL Semantics

(predefined OWL datatype) xsd:stringI ⊆ String

Datatype(StringOrInt) StringOrIntI ⊆ ∆I
v

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (11/85)

Complex Graphol expressions

Starting from atomic expression by using OWL operators (e.g.,
ObjectUnionOf, ObjectIntersectionOf, ObjectComplementOf, etc.),
we can build complex concept/role expressions.

In Graphol each operator is identified by its name and characterized by the
number and types of its input parameters

In Graphol, to express that a (Graphol) expression is an input of an
operator, we use a directed dashed edge

•

•

•

•

•

•

form the expression
to the operator (the target is where the small diamond appears)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (12/85)

Complex Graphol Class expressions

Graphol OWL Semantics

ClassUnionOf(Student Worker) StudentI∪ WorkerI

ClassIntersectionOf(Student Worker) StudentI∩ WorkerI

ObjectComplementOf(Student) ∆I
o \ StudentI

ObjectOneOf(BCE BancaDItalia) {BCEI ,BancaDItaliaI}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (13/85)

Class expression involving property domain

Using the OWL operator ObjectSomeValuesFrom we can represent sets of
object that form the domain of an object property e or data property

Graphol OWL Semantics

ObjectSomeValuesFrom(enrolled
University)

{e | ∃e′ s.t. (e, e′) ∈
enrolledI , e′ ∈
UniversityI}

DataSomeValuesFrom(code rdfs:Literal) {e | ∃e′ ∈ ∆I
v s.t.

(e, e′) ∈ codeI}

DataSomeValuesFrom(code xsd:string) {e | ∃v s.t. (e, v) ∈
codeI , v is a string}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (14/85)

Class expression involving property range

The range of ab object property is the domain of its inverse
; the range can be represented by combining ObjectSomeValuesFrom

and ObjectInverseOf

Graphol includes a convenient shortcut to denote the range

Graphol (1) Graphol (2) OWL Semantics

ObjectSomeValuesFrom(
ObjectInverseOf(enrolled)
owl:Thing)

{e | ∃e′ ∈ ∆I
o

s.t. (e′, e) ∈
enrolledI}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (15/85)

Other class expressions

Graphol OWL Semantics

ObjectAllValuesFrom(enrolled
Ente pubblico)

{e | ∀e′ s.t. (e, e′) ∈
enrolledI → e′ ∈
PublicBodyI}

ObjectHasSelf(grants) {e | (e, e) ∈ grantsI}

DataAllValuesFrom(code xsd:string) {e | ∀v s.t. (e, v) ∈
codeI → v is a string}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (16/85)

Other class expressions (cont.)

Graphol OWL Semantics

ObjectMinCardinality(1 enrolled
University)

{e | s.t. card({e′ ∈
UniversityI |(e, e′) ∈
enrolledI}) ≥ 1}

ObjectMaxCardinality(3 enrolled
University)

{e | s.t. card(|{e′ ∈
UniversityI |(e, e′) ∈
enrolledI}) ≤ 3}

ObjectExactCardinality(1 enrolled
University)

{e | s.t. card({e′ ∈
UniversityI |(e, e′) ∈
enrolledI}) = 1}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (17/85)

Other class expressions (cont.)

Graphol OWL Semantics

DataMinCardinality(2 name xsd:string) {e | s.t. card({v string

|(e, v) ∈ nameI}) ≥ 2}

DataMaxCardinality(4 name xsd:string) {e | s.t. card({v string

|(e, v) ∈ nameI}) ≤ 4}

DataExactCardinality(2 name
xsd:string)

{e | s.t. card({v string

|(e, v) ∈ nameI}) = 2}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (18/85)

Observation on the Graphol exists operator

The label exists which represent projection on the domain or range can be

omitted. Hence: cab be written also as

When the operator exists gets as input either owl:Thing o
rdfs:Literal, we typically omit it. Hence the following are equivalent:

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (19/85)

Inclusion assertions

In Graphol we represent classi inclusions (or ISA) assertions, by linking the
subclass to the superclass with an oriented edge as follows:

Graphol OWL Semantics

SubClassOf(Student
Person)

Person

Student

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (20/85)

Inclusion assertions: object/data property domain typing

Graphol OWL Semantics

SubClassOf(
ObjectSomeValuesFrom(
worksFor owl:Thing)
Person)

P1	

P2	

P4	

P3	

O1	

O2	

O3	

Person	

(P2,O3)	

(P1,O1)	

(P2,O2)	

(P3,O3)	

worksFor	

O4	

SubClassOf(
ObjectSomeValuesFrom(
age xsd:integer) Person)

S1	
S2	

S4	
S3	

Person	

37	
29	

34	

integer	age	

41	S5	

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (21/85)

Inclusion assertions: object/data property range typing

Graphol OWL Semantics

SubClassOf(
ObjectSomeValuesFrom(
ObjectInverseOf(
worksFor) owl:Thing)
Department)

P1	

P2	

P4	

P3	

O1	

O2	

O3	

Department	

(P2,O3)	

(P1,O1)	

(P2,O2)	

(P3,O3)	

worksFor	

O4	

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (22/85)

Inclusion assertions: mandatory participation
(unqualified/qualified)

Graphol OWL

SubClassOf(Worker ObjectSomeValues(worksFor
owl:Thing))

SubClassOf(PublicServant ObjectSomeValues(
worksForPublicBody))

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (23/85)

Generalizations (more advanced forms of ISAs)

Using inclusion assertions we can easily represent generalizations.
Graphol OWL Semantics

SubClassOf(Student
Person) SubClassOf(Worker
Person)

Person

Student Worker

SubClassOf(Studente
Persona)
SubClassOf(Worker
Person) SubClassOf(Person
ObjectUnionOf(Student
Person))

Student

Person

Worker

SubClassOf(Man
ObjectComplementOf(
Woman))

Woman

Person

Man

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (24/85)

Outline

1 Ontology languages

2 Modeling the domain through the ontology

3 Modeling the mapping with the data sources

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (25/85)

Two methodological aspects

The notion of role

Modeling evolving properties of objects

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (26/85)

The notion of role

In many situations, we tend to identify the agent or actor with the role
he/she play

e.g. Person vs. Customer

In all these situations, properties characterizing in fact the actor are
perceived as if they were characterizing the role

e.g., we refer to the name and the Social Security Number of a customer,
while the latter are properties characterizing the persons who play the role
of customers

Several modeling options of the notion of role are possible
; we will investigate which is the most appropriate depending on the
situation we need to model

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (27/85)

First option: using a single class

associating the properties of the actor to the object representing the role

Problem: How can we model properties that characterize actors who do
not play the role that is modeled?

instances of Customer represent customers!

When is this modeling pattern correct?

each time we do not need to predicate on actors who do not play the role
we model

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (28/85)

Second option: two classes connected by an ISA relation

Problem: The bank account number typically identifies the customer
within the bank.
What happens if a person has two bank accounts?

on one side we would like to model that there cannot exist two persons with
the same SSN, on the other side, this can happen if a customer has two
bank accounts

When is this modeling pattern correct?

each time the actor can play at most once the role we want to model

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (29/85)

Third option: two classes connected by an object property

This is the most general pattern modeling both actors and roles:

the actor can play several instances of the same role
we can predicate on both the actor and the role

Problem: it is not possible to model in OWL that the SSN of a customer
has to coincide with the SSN of the person playing the role of the customer

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (30/85)

Example about modeling actors and roles

A university offers several Ph.D. programs, each one characterized by a name. For
each of them, each year, we are interested in modeling: the professors that were
members of the final Ph.D. defense (one per year) and the students that passed the
defense, together with the score they obtained (we assume that there is only one
defense per stufent). Each professor is identified by her SSN and has a date of birth.
Each member of a Ph.D. committee is characterized by the number of years of service
and the area of expertise. Each student that passed the defense is characterized by
the SSN and the date of birth. Each Ph.D. programs is characterized by the professor
who coordinated the Ph.D. in the various years.

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (31/85)

The ontology

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (32/85)

When does one need to model evolving aspects?

In many situations we are interested in modeling objects and relations that
evolve

e.g. we might be interested in the following properties of persons

the SSN and the biological parents - these are properties that do not evolve
the residential address and the conjugality - these are properties that evolve
over time

Important: the fact that a property evolves does not imply that we have to
model its changes

e.g. we might be interested in modeling the changes of the residential
address while we might be interested in modeling only the current
conjugality

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (33/85)

Evolving aspects within an ontology

By definition, the domain objects represented within an ontology are
time-independent, in the sense that they do not change their identity over
time

It can happen that we are interested in modeling some properties of such
objects that evolve over time, which we call evolving properties
; we resort to the notion of states of an object, representing a “snapshot”
of a certain subset of its evolving properties during a certain period, called
validity period
; a state is therefore characterized by the corresponding object, the set of
properties it represents and the period of time it refers to

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (34/85)

How to model object states

Identify the evolving properties to be modeled

Identify the temporal granularity needed to model the changes of each
evolving property

e.g., the age of a person evolves every year (the day of her/his birthday)
e.g., the conjugality of a person might never change or change twice per
year! (each time she/he gets divorced or married)

; Important: the temporal granularity depends on the occurrence of some
event that triggers the change of state

Choose the descriptive granularity we want to model through a state

e.g., the age and the conjugality may be represented by the same state
which would change as soon as one event occurs which triggers the change
either of the age or of the conjugality

⇒ Depending on the descriptive granularity, one or more classes are needed to
model a snapshot of the object at any point of its life, each with its own
validity period

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (35/85)

Descriptive granularity and states

Suppose that we are interested in the evolving properties P1, P2, . . . , Pn of the
objects of a class X.
Several options are possible for the choice of the descriptive granularity. Two
extremes:

if we decide to model through a single state the values of all Pi’s at any
time t of the life of each instance o of X, a single class State of X is
sufficient, since it represents the whole set of values of every Pi that
characterizes o at t

if we decide to model through different states the value of each Pi at any
time t of the life of o, n classes State i of X are necessary, for
i = 1, . . . , n, each representing the value of Pi at t.

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (36/85)

A simple modeling pattern for evolving aspects

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (37/85)

Another simple modeling pattern for evolving aspects

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (38/85)

Example: modeling the domain of vessels carrying
Petroleum

Suppose we are interested in modeling the following aspects of vessels

their identity, i.e., the IMO (International Maritime Organization) number,
the name, the current state of operation and the owner

their movements, i.e., their spatial position

All above mentioned properties, but the IMO number, are properties that
evolve, however, as for the state of operation, we are not interested in modeling
its evolution but only the current state of operation
; the evolving properties are the vessel name, owner and position
Also, as for the temporal granularity of each of them, for each vessel:

the name and of the owner typically evolve with a low frequency

the spatial position typically evolves every 3 minutes (since the GPS
provider provides such information every 3 minutes)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (39/85)

Example: modeling the domain of vessels carrying
Petroleum (Cont’d)

As for the descriptive granularity, given the temporal granularity described
above, we choose to model the set of evolving properties of a vessel throw two
classes representing the object states, such that at each time the snapshot of a
vessel can be obtained by merging the instance of each class that valid at that
time

one class to represent the evolving properties name and owner

one class to represent the position of a vessel

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (40/85)

Example: modeling the domain of vessels carrying
Petroleum (Cont’d)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (41/85)

Guidelines for making the right choices to model evolving
properties

In order to choose the most appropriate descriptive granularity, we can
adopt the following “guidelines”:

1 properties evolving at the same time should be represented by the same
state (e.g., longitude and latitude)

2 properties that are semantically related, and hence are often accessed
together should be represented by the same state (e.g., a person address
and telephone)

3 the longer is the validity period of a state the better: hence, one should not
represent by the same state properties that evolve with very different
frequencies

Important: While the first guideline can be always followed, the other
guidelines might lead to different choices ; one has to face a trade-off to
get the ”best modeling”

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (42/85)

Tradeoff between guidelines 1 and 2

w1

states of P1

states of (P1,P2)

states of P2

v1 v2 v4v3

w2

(v1,w1) (v2,w1) (v4,w1)(v3,w1) (v4,w2)

time
t1 t2 t4t3

if we aggregate P1 and P2, we will have several states in which the value
of P1 evolves while the value of P2 is replicated
if we do not aggregate P1 and P2, we will not have any value replicated
but to obtain the value of P1 and P2 at the same t3, we need to access
two states

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (43/85)

Pattern enrichment

In order to satisfy the information needs of users and simplify the queries over
the ontology, the general pattern proposed can be enriched with the following
elements and set of axioms:

The object property has successor state of X, connecting two
consecutive states

the domain and range will be typed over State of X

has successor state of X and its inverse are both functional

the class Initial state of X whose instances are the states describing
the first values of the evolving properties of each instance of X

Initial state of X is disjoint from the set of states that have a successor
every object having a state must be connected to exactly one instance of
Initial state of X

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (44/85)

Pattern enrichment (Cont’d)

The class Final state of X whose instances are the states describing the
last values of the evolving properties of each instance of X, i.e. the values
at the time an object stops evolving or being of interest

Final state of X is disjoint from the states that have a successor

The class Current state of X whose instances are the states describing
the current values of the evolving properties of each instance of X

Current state of X is disjoint from the states that have a successor
Current state of X is disjoint from the states that have a final timestamp
every object having a state must be connected to exactly one instance of
Current state of X

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (45/85)

A general modeling pattern for evolving aspects

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (46/85)

Example: modeling the domain of vessels carrying
Petroleum (Cont’d)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (47/85)

Observations

The general pattern can be simplified in several ways and need to be adapted in
every scenario, depending on the features of the domain itself as well as on the
information needs of users
Examples of simplifications are the following:

the classes Initial state of X and Final state of X might not be
necessary

the states might follow one another with no gaps, in which case the final
timestamp might not be necessary

the class representing the evolving objects X might represent as well the
current values of some/all evolving properties

the class Current state of X

the classes representing the states would then represent only states been
passed

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (48/85)

Outline

1 Ontology languages

2 Modeling the domain through the ontology

3 Modeling the mapping with the data sources

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (49/85)

Data Sources

In OBDA, data reside in autonomous data sources, typically pre-existing
the ontology.

Data sources are seen as a unique relational database that constitutes the
Source component of an OBDA specification.

Off-the-shelf Data Federation/Virtualization tools can be used to wrap
multiple, possibly non-relational, sources, and present them as they were
structured according to a single relational schema.

Source
1

Source
3

Source
2

Source'Schema'

Data'Sources'

Data$Federa)on$Tool$

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (50/85)

The problem

Problem: How do we relate
the ontology with the source
schema?

Source'Schema'

Ontology'

Main Design Challenges

Different representation languages, i.e., a DL TBox vs. a relational schema.

Different modeling: Data sources serve applications, and thus typically their
structure does not directly reflect the abstract conceptualization given by
the ontology,

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (51/85)

Example

Ontology

lives_in

name

Man Woman

exists

City

Person

existsexists

Source Schema

RomanCitizens
SSN Name Gender

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (52/85)

Mapping relational schemas to ontologies: impedance
mismatch

Two different data models are used (relational databases vs. ontologies)

In relational databases, information is represented in forms of tuples of
values.
In ontologies information is represented using both individuals (denoting
objects of the domain) and values (as fillers of individuals’s attributes) ...

Solution: We need constructors to create individuals of the ontology out of
tuples of values in the database.

Note: from a formal point of view, such constructors can be simply Skolem
functions!

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (53/85)

Mapping in OBDA: formal definition

A Mapping in OBDA is a set of assertions having the following forms

Φ(~x) ; C(f(~x))
Φ(~x) ; R(f1(~x1), f2(~x2))
Φ(~x) ; A(f(~x1), ~x2)

where:

Φ(~x) is an arbitrary SQL query over the source schema, returning
attributes ~x

C is an atomic concept, R is atomic role, and A is an attribute

f, f1, f2 are function symbols

~x1 and ~x2, possibly overlapping, contains only variables in ~x

The left-hand side of a mapping assertion is called body, whereas the
right-hand side is called head.

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (54/85)

Example

Ontology

exists

Citylives_in

exists

Person

exists

name

Source Data

RomanCitizens

SSN Name Gender

1234 Marco M

...

Mapping

SELECT SSN

FROM RomanCitizens

; Person(pers(SSN))

SELECT SSN, ’Rome’ AS City

FROM RomanCitizens

; lives in(pers(SSN),ct(City))

SELECT SSN, Name

FROM RomanCitizens

; name(pers(SSN),Name)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (55/85)

Semantics

Def.: Semantics of mapping

Given an OBDA specification 〈O,S,M〉, we say that a FOL interpretation I
satisfies Φ(~x) ; C(f(~x)) if

∀~t ∈ eval(Φ(~x),S), I |= C(f(~t))

Analogously for the other forms of mapping assertions.

I satisfies M wrt D if I satisfies all assertions in M wrt D.

Def.: Semantics of OBDA specification

I is a model of 〈O,S,M〉 wrt D if:

I is a model of O
I satisfies M wrt D

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (56/85)

Semantics

Def.: Semantics of mapping

Given an OBDA specification 〈O,S,M〉, we say that a FOL interpretation I
satisfies Φ(~x) ; C(f(~x)) if

∀~t ∈ eval(Φ(~x),S), I |= C(f(~t))

Analogously for the other forms of mapping assertions.

I satisfies M wrt D if I satisfies all assertions in M wrt D.

Def.: Semantics of OBDA specification

I is a model of 〈O,S,M〉 wrt D if:

I is a model of O
I satisfies M wrt D

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (56/85)

“Generalized” GAV Mapping

In OBDA we can even use mapping assertions that present a conjunction
of atoms in their head and using as variables only those returned by the
query in the body. This form of mapping is often called Generalized GAV.

It is easy to see that a Generalized GAV mapping can be transformed into
a GAV one (roughly, it is sufficient to “split” a mapping assertion with n
atoms in the head into n mapping assertions with the same body and one
single atom in the head)

Example

SELECT SSN, Name, ’Rome’ AS City

FROM RomanCitizens

; Person(pers(SSN)),
lives in(pers(SSN),ct(City)),
name(pers(SSN),Name)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (57/85)

R2RML syntax for mappings

The head of a mapping assertion is an RDF triple, where (object-)terms of
the form f(~x) are specified as IRI templates, i.e., format strings that
reference names of variables in the SQL query by enclosing them in curly
braces.

Example

Person(pers(SSN)) → :pers({SSN}) a :Person .

lives in(pers(SSN),ct(City)) → :pers({SSN}) :lives in :ct({City}) .

name(pers(SSN),Name) → :pers({SSN}) :name {Name} .

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (58/85)

Example – Ontology Rewriting

Ontology

exists

Citylives_in

exists

Person

exists

name

User Query

Select $x
Where { $x a :Person }

Ontology Rewriting

Select $x
Where {
{ $x a :Person }
UNION
{ $x :lives in $ndv1 }
UNION
{ $x :name $ndv2 }

}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (59/85)

Example – Mapping Rewriting

Mapping

SELECT SSN, Name, ’Rome’ AS City

FROM RomanCitizens

; :pers({SSN}) :lives in :ct({City}) .

Ontology Rewriting

Select $x
Where {
{ $x a :Person }
UNION
{ $x :lives in $ndv1 }
UNION
{ $x :name $ndv2 }

}

Mapping Rewriting (final rewriting)

SELECT CONCACT(CONCAT(’pers(’,V.SSN),’)’)

FROM (SELECT SSN, Name, ’Rome’ AS City

FROM RomanCitizens) AS V

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (60/85)

Further Example on Query Rewriting

Consider now a source schema with the relations TabPers(SSN,Name) and
TabRes(SSN,CityCode), and the following mapping

Mapping

SELECT SSN, Name

FROM TabPers

; :pers({SSN}) :name {Name} .

SELECT SSN, CityCode

FROM TabRes

; :pers({SSN}) :lives in :ct({CityCode}) .

User Query

Select $x
Where {

$y :name $x .
$y :lives in ct(’RM’)

}

Final rewriting

SELECT V1.Name

FROM (SELECT SSN,Name FROM TabPers) AS V1,

(SELECT SSN,CityCode FROM TabRes) AS V2

WHERE V1.SSN=V2.SSN

AND V2.CITYCODE=’RM’

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (61/85)

Some critical issues in mapping specification

We now discuss some main issues that a designer have to deal with when
specifying mappings. The following list is definitely not complete but contains
crucial aspects that necessarily need to be addressed.

Define constructors, i.e., the functions used to construct individuals, which
means deciding both the function symbols and their arguments.

Select which ontology predicates to map.

In the following we assume to deal with DL-Lite ontologies.

Notice that DL-Lite adopts the UNA: different individuals denote different
objects of the domain.

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (62/85)

Principles on how to construct individuals

An aspect a designer should take care is to avoid specifying mapping
assertions in such a way that different domain objects are denoted by the
same individual.

Example of wrong mapping

Let’us assume to have in the source schema two different tables representing
disjoint sets of persons coming from different databases:

TabPers1
ID SSN Gender
1 123 M
...

TabPers2
ID SSN Gender
1 456 F
...

and the following mapping assertions
SELECT ID FROM TabPers1 ; :pers({ID}) a :Person .

SELECT ID FROM TabPers2 ; :pers({ID}) a :Person .

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (63/85)

Principles on how to construct individuals

Possible solution 1 - use different constructors

TabPers1
ID SSN Gender
1 123 M

TabPers2
ID SSN Gender
1 456 F

SELECT ID FROM TabPers1 ; :pers1({ID}) a :Person .

SELECT ID FROM TabPers2 ; :pers2({ID}) a :Person .

Possible solution 2 - use a business identifier

TabPers1
ID SSN Gender
1 123 M

TabPers2
ID SSN Gender
1 456 F

SELECT SSN FROM TabPers1 ; :pers({SSN}) a :Person .

SELECT SSN FROM TabPers2 ; :pers({SSN}) a :Person .

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (64/85)

Principles on how to construct individuals

Since DL-Lite adopts the UNA, the mapping has also to guarantee that an
object of the domain is always denoted with the same individual.

Example of wrong mapping

TabPers
ID SSN Occupation
1 123 ‘stud’
...

SELECT ID FROM TabPers

WHERE Occupation=‘stud’

; :stud({ID}) a :Student .

SELECT ID FROM TabPers ; :pers({ID}) a :Person .

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (65/85)

Principles on how to construct individuals

Possible solution - use the same constructor

TabPers
ID SSN Occupation
1 123 ‘stud’

SELECT ID FROM TabPers

WHERE Occupation=‘stud’

; :pers({ID}) a :Student .

SELECT ID FROM TabPers ; :pers({ID}) a :Person .

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (66/85)

Principles on how to construct individuals

Generally speaking, constructing individuals from the values retrieved at
the data sources is a very complex activity, for which no consolidated
methods exists.

Solving this task requires understanding how objects are identified in the
domain, and finding out the identifier at the sources (e.g. for a person, her
SSN).

We have to guarantee that (i) different domain objects are not denoted
with the same individual and also that (ii) a domain object is never
denoted with different individuals (due to the UNA).

data matching methods need often to be adopted to find out different
representations of the same object [?].

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (67/85)

Principles on how to construct individuals

Consider the simplified scenario in which for every object we can retrieve
from the sources the values that identify it, and that such identification is
uniform over all the source tables (e.g., a person is always identified by her
SSN). We may proceed as follows:

1 Let MGC (Most General Concepts) be the set of all ontology concepts that
are subsumed only by owl:Thing (the Top concept all individuals are
instance of);

2 For each concept C in MGC, find out how instances of C are identified in
the sources and define a constructor based on such identifier;

3 Use the same constructor for all concepts subsumed by C

Comments: (a) if there are equivalent concepts, put only a representative
one in MGC (b) for objects that are instance of more than one concept in
MGC, select one constructor among the possible one (typically, concepts in
MGC are in fact all pair-wise disjoint) (c) define additional constructors for
objects that are not instance of any concept in MGC (typically, there are
no such objects, since MGC is a partition of owl:Thing).

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (68/85)

Principles on how to construct individuals

Ontology O (TBox)

Employee v ∃worksFor
Employee v ∃empCode
Employee v ∃salary
Project v ∃worksFor−

Project v ∃projectName
∃worksFor v Employee
∃worksFor− v Project

empCode: Integer
salary: Integer

Employee

projectName: String

Project
1..*

worksFor
1..*

Federated schema of the DB S
D1[SSN:String,PrName: String]

Employees and Projects they work for

D2[Code: String, Salary : Int]
Employee’s Code with salary

D3[Code: String, SSN: String]
Employee’s Code with SSN

. . .

MappingM

M1: SELECT SSN,PrName

FROM D1

; V1(SSN,PrName) ; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
workFor(pers(SSN), proj(PrName))

M2: SELECT SSN,Salary

FROM D2, D3
WHERE D2.Code = D3.Code

; V2(SSN,Salary) ; Employee(pers(SSN)),
salary(pers(SSN), Salary)

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (69/85)

Select which ontology predicates to map

Let us consider the (extreme) case where the ontology is empty, i.e., it has
no axioms and thus it is simply a set of predicates.

In this case we have to map every ontology predicate. Indeed, the ontology
cannot infer new facts besides those directly constructed through the
mapping.

The most interesting case, however is the one of non-empty ontologies.

In this case, we can exploit inclusions in the ontology to reduce the number
of mapping assertions to write. Intuitively, we avoid to write assertions
that are implied by the OBDA specification.

Furthermore, we have to avoid writing mappings that are intensionally
inconsistent, i.e., such there are no source instances for which the
specification has a model (e.g., two disjoint concepts mapped to the same
query, using the same constructor) [?].

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (70/85)

Example

A role mapping assertions together with the typing of the role domain over a
concept C implies a concept mapping assertion for C.

Ontology

exists

Citylives_in

exists

Person

exists

name

Source Data

RomanCitizens

SSN Name Gender

1234 Marco M

...

Mapping

SELECT SSN

FROM RomanCitizens

; :pers({SSN}) a :Person

SELECT SSN, ’Rome’ AS City

FROM RomanCitizens

; :pers({SSN}) :lives in :ct({City})

SELECT SSN, Name

FROM RomanCitizens

; :pers({SSN}) :Name {Name}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (71/85)

Example

Ontology

exists

Citylives_in

exists

Person

exists

name

Source Data

RomanCitizens

SSN Name Gender

1234 Marco M

...

Mapping

SELECT SSN, ’Rome’ AS City

FROM RomanCitizens

; :pers({SSN}) :lives in :ct({City})

SELECT SSN, Name

FROM RomanCitizens

; :pers({SSN}) :Name {Name}

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (72/85)

Example

Ontology

WomanMan

Person Source Data

RomanCitizens

SSN Name Gender

1234 Marco M

...

If we know that ’F’ and ’M’ are the only allowed values for Gender, and that it is not
not nullable, we can avoid to write a mapping per Person.

Mapping

SELECT SSN FROM RomanCitizens

WHERE Gender=’M’

; :pers(SSN) a :Man

SELECT SSN FROM RomanCitizens

WHERE Gender=’F’

; :pers(SSN) a :Woman

Maurizio Lenzerini Ontology-based Data Management Seminars 2017-2018 (73/85)

	Ontology languages
	Modeling the domain through the ontology
	Modeling the mapping with the data sources

