
5 – Basics of Processing

Francesco Leotta, Andrea Marrella

Last update : 12/4/2018

Corso di Laurea Magistrale in Design, Comunicazione

Visiva e Multimediale - Sapienza Università di Roma

Interaction Design
A.A. 2017/2018

Ingredients for interacting with a

smart environment

2 Interaction Design 17/18 5 – Basics of Processing

Inputs

Touch,

Movement,

Sensors, etc.

Virtual Environment

of the physical space

of interest

Outputs

as an

interactive

experience

Videogame Metaphor

Design of the interaction similar to a

videogame: a computer is projecting an

interactive “game” and the user interaction

acts similar to a controller.

Computer programming specifies

how controllers affect the physical

environment and the intended user

experience.

Computer Programming

 The purpose of programming is to find a sequence of

instructions that will automate performing a specific

task or solving a given problem.

 Computer programming is a process that leads to

executable computer programs.

 We start by a program as a list of statements using the

vocabulary of a programming language written as

simple text, called source code.

3 Interaction Design 17/18 5 – Basics of Processing

Source Code

 Source code is any collection of computer instructions,

possibly with comments, written using a human-readable

programming language, usually as ordinary text.

 The source code of a program facilitates the work of computer

programmers, who specify the actions to be performed by

a computer mostly by writing source code.

 The source code is interpreted by the computer and thus

immediately executed.

4 Interaction Design 17/18 5 – Basics of Processing

Source Code

 Source code is used to produce an output which may be a

program like the ones you use occasionally.

1. TEXT IN → You write your code as text.

2. TEXT OUT → Your code produces text output on the command line.

3. TEXT INTERACTION → The user can enter text on the command

line to interact with the program.

 This example program returns a string “Hello, World!” in output.

5 Interaction Design 17/18 5 – Basics of Processing

Computer Programming

6 Interaction Design 17/18 5 – Basics of Processing

 A lot of programming languages:
 C, C++, Java, Perl, Python, JavaScript, PHP, Ruby, …

 A lot of terminology:
 Variable, value, type, class, function, method, routine, interface,

reference, array, conditional, loop, …

 A lot of packages used on top of core languages:
 Rails, Django, JQuery, OpenCV, …

 The fundamental principles are simple and similar to all

programming languages.

 You can use a lot of functionalities as “Lego bricks” as

long as you understand how to put them together.

The Power of Computer Programming

 “The programmers of tomorrow are the wizards of the

future. You’re gonna look like you have magic powers”

Gabe Newell, founder of Valve

https://www.youtube.com/watch?v=nKIu9yen5nc

7 Interaction Design 17/18 5 – Basics of Processing

https://www.youtube.com/watch?v=nKIu9yen5nc
http://www.youtube.com/watch?v=nKIu9yen5nc

Computer Programming

8 Interaction Design 17/18 5 – Basics of Processing

 We will look over some basic things to get you started with

programming.

 There is an enormous amount of information online, there

is always someone who had a similar challenge, and usually

there is documentation for it.

 The intention of this course is to teach you programming

using Processing as learning environment.

 The focus will be on the core computational concepts of

Processing, which will carry you forward in your digital life as

you explore other languages and environments.

 It is assumed that you have no previous knowledge or

experience of programming.

Processing programming language

 Download the Processing language and programming

environment from the following link:

 https://processing.org/download/

9 Interaction Design 17/18 5 – Basics of Processing

https://processing.org/download/

Download Processing

10 Interaction Design 17/18 5 – Basics of Processing

Processing Development Environment

11 Interaction Design 17/18 5 – Basics of Processing

sketch name

run sketch

stop sketch

message area

type code here

current mode

 The Processing Development

Environment (PDE) is a

simplified environment to write

computer code.

 Processing programs are

called sketches (and can be

saved in PDE format).

 Each sketch has a name, a

place where you can type

code, and buttons for running

sketches.

Why Processing?

12 Interaction Design 17/18

 It is free and open source (developed at the MIT Lab in 2001)

 It is a fully functional language built on top of the Java

programming language.

 There is very little you can not do with Processing.

 It provides a more intuitive and visually responsive

environment, which is more conducive to artists and

designers learning programming.

1. TEXT IN → You write your code as text.

2. VISUALS OUT → Your code produces

visual feedbacks in a window, to see

what the code is doing.

3. MOUSE INTERACTION → The user

can interact with those visuals via the

mouse. Processing’s “Hello, World!”

might look something like this.

Why Learning Processing?

13 Interaction Design 17/18 5 – Basics of Processing

 “Processing is especially good for any person studying or

working in a visual field, such as graphic design, painting,

sculpture, architecture, video, illustration, web design, etc.”.

 “If you are in one of these fields (at least one that involves

using a computer), you are probably well versed in a particular

software package, possibly more than one, such as

Photoshop, Illustrator, AutoCAD, After Effects, and so on”.

Daniel Shiffman, “Learning Processing”

 The main target is to go beyond, at least in part, from the

confines of existing tools.

 What can you make, what can you design if, instead of using

someone else’s tools, you write your own?

Let’s Start!

14 Interaction Design 17/18 5 – Basics of Processing

 Pull out a piece of graph paper, and draw a line.

 The shortest distance between two points is a good old fashioned

line, and this is where we begin, with two points on that graph paper.

The figure shows a line between

point A (1,0) and point B (4,5).

Let’s Start!

 Let’s now imagine that we want to “draw a line from the point

one-zero to the point four-five” with a computer and instruct

it to display that same line on its screen.

 How to perform this task through Processing?

1. Open Processing

2. Write the following statement:

line(1,0,4,5);

1. Press the Play button.

15 Interaction Design 17/18 5 – Basics of Processing

Our first function in Processing

 We are providing a command (we will refer to as a function)

for the computer in order to draw a line.

 In addition, we are specifying some arguments for how that

line should be drawn, from point A (0,1) to point B (4,5).

line(1,0,4,5);

16 Interaction Design 17/18 5 – Basics of Processing

NAME OF THE

FUNCTION

FUNCTION

ARGUMENTS IN

PARENTHESES

All instructions must be

completed with a semicolon ;

COORDINATES OF THE FIRST

AND THE SECOND POINT

Coordinates

17 Interaction Design 17/18 5 – Basics of Processing

 The screen is like a piece of graph paper.

 Each cell is a pixel (“picture element”).

 The origin (0, 0) is at the top left

 x-axis: + is to the right, - is to the left

 y-axis: + is down, - is up

x-axis

y
-a

x
is

 To draw objects with

Processing it is required to

instruct the computer with

the exact location (pixels)

where the shape starts to

be drawn and its size.

Size of a window

18 Interaction Design 17/18 5 – Basics of Processing

 It is possible to specify the dimension of the window to be

created through two arguments, width and height.

size(640,480);

 In order to show a sketch fullscreen, use fullScreen()

instead of size(w,h)

fullScreen();

 The size(w,h) and fullScreen() functions can be used

just once in a given sketch.

Open a window of width 640

pixels and height 480 pixels.

Open a full screen window.

Points

19 Interaction Design 17/18 5 – Basics of Processing

 A point is the easiest of the shapes.

 To draw a point, we only need an x and y coordinate.

point(x,y);

Note: We are assuming a

window with a width of 10

pixels and height of 10 pixels.

This is not particularly realistic

since we will most likely work

with much larger windows

(10x10 pixels is a few

millimeters of screen space).

Lines

20 Interaction Design 17/18 5 – Basics of Processing

 A line requires two points for being drawn.

line(x1,y1,x2,z2);

Rectangles

21 Interaction Design 17/18 5 – Basics of Processing

 To draw a rectangle, you must specify the coordinate for the top

left corner of the rectangle, as well as its width and height.

rect(x,y,w,h);

Rectangles

22 Interaction Design 17/18 5 – Basics of Processing

 A second way to draw a rectangle involves specifying the center

point, along with width and height.

 If we prefer this method, we first indicate that we want to use the

CENTER mode before the instruction for the rectangle itself (the

default mode is “ CORNER”).

rectMode(CENTER);

rect(x,y,w,h);

Ellipses

23 Interaction Design 17/18 5 – Basics of Processing

 Designing an ellipse is identical to rect(…)

 An ellipse is drawn where the bounding box of the rectangle
would be. The default mode for ellipse(x,y,w,h) is

“CENTER”.

Coordinates of

the center of the

rectangle: <x, y>

Height <h>

Width <w>

Ellipses

24 Interaction Design 17/18 5 – Basics of Processing

 Ellipse in mode “ CORNER ”

ellipseMode(CORNER);

ellipse(3,3,4,4);

 Ellipse in mode “ CENTER”

ellipseMode(CENTER);

ellipse(3,3,5,5);

Other primitive shapes
 A triangle is a plane created by connecting three points.

 The first two arguments (x1,y1) specify the first point, the middle two arguments

(x2,y2) specify the second point, and the last two arguments (x3,y3) specify the

third point.

triangle(x1, y1, x2, y2, x3, y3);

 A quad is a quadrilateral. It is similar to a rectangle, but the angles

between its edges are not constrained to ninety degrees.

 The first pair of parameters sets the first vertex and the subsequent pairs should

proceed clockwise or counter-clockwise around the defined shape.

quad(x1, y1, x2, y2, x3, y3, x4, y4);

Syntax of any available shape:

https://processing.org/reference/

Interaction Design 17/18 5 – Basics of Processing

https://processing.org/reference/

Exercise 1

26 Interaction Design 17/18 5 – Basics of Processing

 Using the blank graph below, draw the primitive shapes

specified by the code.

line(0,0,9,6);

point(0,2);

point(0,4);

rectMode(CORNER);

rect(5,0,4,3);

ellipseMode(CORNER);

ellipse(3,7,3,3);

Solution to Exercise 1

27 Interaction Design 17/18 5 – Basics of Processing

 Using the blank graph below, draw the primitive shapes

specified by the code.

line(0,0,9,6);

point(0,2);

point(0,4);

rectMode(CORNER);

rect(5,0,4,3);

ellipseMode(CORNER);

ellipse(3,7,3,3);

Exercise 2

28 Interaction Design 17/18 5 – Basics of Processing

 Reverse engineer a list of primitive shape drawing

instructions for the diagram below.

 Note: There is more than one correct answer!

A Possible Solution to Exercise 2

29 Interaction Design 17/18 5 – Basics of Processing

point(1,1);

line(1,5,1,9);

line(0,9,5,4);

rect(4,1,6,3);

line(0,9,1,9);

ellipseMode(CORNER);

ellipse(6,7,4,3);

Grayscale colors
 In Processing, color is defined with a range of numbers.

 Simplest case: black, white or grayscale.

 Specific colors can be used for setting any designed shape.

 In Processing, any shape has a stroke(n) or fill(n) or both.

 n is the number associated to the color.

 stroke(n) specifies the color for the outline of the shape

 fill(n) specifies the color for the interior of the shape

 Lines and points can only have stroke(n).

black white

30 Interaction Design 17/18 5 – Basics of Processing

 If you forget to specify a color,

Processing uses black (n=0)
for the stroke(n) and white

(n=255) for the fill(n) by

default.

 By adding the stroke(n) and

fill(n) functions before the

shape is drawn, it is possible

to set the color.

 There is also a function
background(n) that sets a

background color for the

window (that by default is grey).

Using grayscale colors
size(200,200);

rect(50,40,75,100);

size(200,200);

stroke(10);

fill(150);

rect(50,40,75,100);

size(200,200);

background(255);

stroke(10);

fill(150);

rect(50,40,75,100);

31 Interaction Design 17/18 5 – Basics of Processing

 stroke(n) or fill(n) can be eliminated with the noStroke() or

noFill() functions.

 Our instinct might be to say stroke(0) for no outline…

 …however, it is important to remember that 0 is not “nothing” , but rather

denotes the color black.

 Example of noFill():

 Example of noStroke():

noFill() and noStroke()

32 Interaction Design 17/18 5 – Basics of Processing

size(200,200);

background(255);

stroke(0);

noFill();

ellipse(60,60,100,100);

nofill() leaves the

shape with only an outline

size(200,200);

background(0);

fill(255);

noStroke();

ellipse(60,60,100,100);

More shapes at one time

33 Interaction Design 17/18 5 – Basics of Processing

 If we draw two shapes at one time, Processing will always use the most
recently specified stroke(n) and fill(n), reading the code from top

to bottom.

Exercise 3

34 Interaction Design 17/18 5 – Basics of Processing

 Try to guess what the instructions would be for the following screenshot.

Solution to Exercise 3

35 Interaction Design 17/18 5 – Basics of Processing

 Try to guess what the instructions would be for the following screenshot.

size(200,200);

fill(0);

rect(0,0,100,100);

fill(255);

rect(100,0,100,100);

fill(255);

rect(0,100,100,100);

fill(150);

rect(100,100,100,100);

RGB colors
 Digital colors are constructed by mixing three primary colors: red,

green and blue.

 As with grayscale, the individual color elements are expressed as

ranges from 0 (none of that color) to 255 (as much as possible), and

they are listed in the order R, G, and B.

fill(R,G,B) stroke(R,G,B) background(R,G,B)

36 Interaction Design 17/18 5 – Basics of Processing

size(300,300);

background(255,255,255);

noStroke();

fill(255,0,0);

ellipse(60,100,50,50);

fill(127,0,0);

ellipse(140,100,50,50);

fill(255,200,200);

ellipse(220,100,50,50);

Color transparency
 There is an optional fourth component, referred to as the color’s alpha.

 Alpha means transparency and its values range from 0 to 255, with 0

being completely transparent (i.e., 0% opaque) and 255 completely

opaque (i.e., 100% opaque).

fill(R,G,B,α) stroke(R,G,B,α) background(R,G,B,α)

37 Interaction Design 17/18 5 – Basics of Processing

background(0);

noStroke();

fill(0,0,255);

rect(0,0,100,200);

fill(255,0,0,255);

rect(0,0,200,40);

fill(255,0,0,191);

rect(0,50,200,40);

fill(255,0,0,127);

rect(0,100,200,40);

fill(255,0,0,63);

rect(0,150,200,40);

No fourth argument

means 100% opacity.

255 means 100% opacity.

191 means 75% opacity.

127 means 50% opacity.

63 means 25% opacity.

Exercise 4

38 Interaction Design 17/18 5 – Basics of Processing

Design the following alien using simple shapes and colors:

Write the code for the alien using only points, lines,

rectangles, and ellipses, using the Processing commands

covered until now.

Solution to Exrcise 4

39 Interaction Design 17/18 5 – Basics of Processing

Design the following creature using simple shapes and

colors:
size(200,200);

background(255);

ellipseMode(CENTER);

rectMode(CENTER);

fill(150);

rect(100,100,20,100);

fill(255);

ellipse(100,70,60,60);

fill(0);

ellipse(81,70,16,32);

ellipse(119,70,16,32);

line(90,150,80,160);

line(110,150,120,160);

Go with the flow
 If you have ever played a computer game or interacted with a digital art

installation, you have probably given little thought to the fact that the software

that runs these experiences happens over a period of time. There is a flow

of events over time.

 The game starts with a set of initial conditions: you name your character, you start

with a score of zero, and you start on level one.

 Let’s think of this part as the program’s SETUP.

 After these conditions are initialized, you begin to play the game.

 At every instant, the computer checks what you are doing with the mouse,

calculates all the appropriate behaviors for the game characters, and updates the

screen to render all the game graphics.

 This cycle of calculating and drawing happens over and over again, ideally 30 or

more times per second for a smooth animation.

 Let’s think of this part as the program’s DRAW.

 The concept of flow is crucial to move beyond static designs and

sketches.

40 Interaction Design 17/18 5 – Basics of Processing

Blocks of code
 Dynamicity is accomplished by writing two blocks of code:
setup() and draw().

 What is a block of code?

 A block of code is any code enclosed within curly brackets.

{

A block of code

}

 Blocks of code can be nested within each other, too.

{

A block of code

{

A block inside a block of code

}

}

41 Interaction Design 17/18 5 – Basics of Processing

It allows us to separate and

manage our code as individual

pieces of a larger puzzle.

A programming convention is to indent

the lines of code within each block to

make it readable.

setup() & draw()

 Dynamicity is accomplished by writing two blocks of code:
setup() and draw().

void setup() {

// Initialization code goes here

}

void draw() {

// Code that runs forever goes here. This block

// tells to the system what to draw on our screen.

}

42 Interaction Design 17/18 5 – Basics of Processing

setup() & draw()

 Dynamicity is accomplished by writing two blocks of code:
setup() and draw().

void setup() {

// Initialization code goes here

}

void draw() {

// Code that runs forever goes here. This block

// tells to the system what to draw on our screen.

}

43 Interaction Design 17/18 5 – Basics of Processing

Curly brackets open and close a block of code

All statements preceded by //

are “comments” that the

program will ignore.

Behaviour of setup() & draw()

 Dynamicity is accomplished by writing two blocks of code:
setup() and draw().

void setup() {

// Step 1a

// Step 1b

// Step 1c

}

void draw() {

// Step 2a

// Step 2b

}

44 Interaction Design 17/18 5 – Basics of Processing

When we run the program, it will follow

our instructions precisely, executing:

• the steps in setup()first, one time.

• and then loop continuously on to the
steps in draw(), until the sketch is

closed.

The order ends up being something like:

1a, 1b, 1c, 2a, 2b, 2a, 2b, 2a, 2b, 2a,

2b, 2a, 2b, 2a, 2b …

The alien meets setup() & draw()

void setup() {

size(200,200);

}

void draw() {

ellipseMode(CENTER);

rectMode(CENTER);

fill(150);

rect(100,100,20,100);

fill(255);

ellipse(100,70,60,60);

fill(0);

ellipse(81,70,16,32);

ellipse(119,70,16,32);

line(90,150,80,160);

line(110,150,120,160);

}

size(w,h)should always

be first line of setup()

If we run this code, nothing in the

window changes. This looks identical

to a static sketch! What is going on?

Nothing in the draw()function varies.

Each time the program cycles through

the code and executes the identical

instructions. So, yes, the program is

running over time redrawing the

window, but it looks static to us since it

draws the same thing each time!

Variation with the Mouse
 What if, instead of typing a number into one of the drawing functions, you

could type “the mouse’s X location” or “the mouse’s Y location”?

 You must use the keywords mouseX and mouseY, indicating the horizontal or

vertical position of the mouse cursor.

void setup() {

size(200,200);

}

void draw() {

background(255);

fill(175);

rectMode(CENTER);

rect(mouseX,mouseY,50,50);

}

46 Interaction Design 17/18 5 – Basics of Processing

The rectangle will be re-created each

time the mouse pointer is moved.

background()erases the window

during any cycle of draw().

Variation with the Mouse
 Try moving background(n) to setup() and see the difference!

void setup() {

size(200,200);

background(255);

}

void draw() {

// Body

stroke(0);

fill(175);

rectMode(CENTER);

rect(mouseX,mouseY,50,50);

}

47 Interaction Design 17/18 5 – Basics of Processing

Note: The updating of the window

happens only at the end of every
cycle of draw().

background() is invoked just

once when the sketch starts.

The alien starts to move
void setup() {

// Set the size of the window

size(200,200);

}

void draw() {

background(255); // Draw a white background

// Set ellipses and rectangles to CENTER mode

ellipseMode(CENTER);

rectMode(CENTER);

// Draw alien’s body

fill(150);

rect(mouseX,mouseY,20,100);

// Draw alien’s head

fill(255);

ellipse(mouseX,mouseY-30,60,60);

…continue…

48 Interaction Design 17/18 5 – Basics of Processing

Alien’s body is drawn at location
(mouseX, mouseY).

Alien’s head is drawn above the body
at location (mouseX, mouseY-30).

The alien starts to move

// Draw alien's eyes

fill(0);

ellipse(81,70,16,32);

ellipse(119,70,16,32);

// Draw alien's legs

line(90,150,80,160);

line(110,150,120,160);

}

Alien’s legs and eyes are

maintained fixed on the screen.

Variation with the Mouse
 In addition to mouseX and mouseY, we can also use pmouseX and pmouseY.

 These keywords stand for the “previous” mouseX and mouseY locations, that

is, where the mouse was the last time we cycled through draw().

 For example, let’s consider what happens if we draw a line from the previous

mouse location to the current mouse location.

50 Interaction Design 17/18 5 – Basics of Processing

Drawing a continuous line
 By connecting the previous mouse location to the current mouse location with

a line each time through draw(), we are able to render a continuous line

that follows the mouse.

void setup() {

size(200,200);

background(255);

}

void draw() {

stroke(0);

line(pmouseX ,pmouseY ,mouseX ,mouseY);

}

51 Interaction Design 17/18 5 – Basics of Processing

Mouse Clicks and Key Presses

 We know setup() happens once and draw() loops forever. When

does a mouse click occur? Mouse presses (and key presses) as

considered events in Processing .

 If we want something to happen (such as “the background color

changes to red”) when the mouse is clicked (or a key is pressed), we

need to add a third block of code to handle this event.

 Specifically, we need two new functions:

 mousePressed() - Handles mouse clicks.

 keyPressed() - Handles key presses.

52 Interaction Design 17/18 5 – Basics of Processing

Mouse Clicks and Key Presses
 In the following example, we have 5 functions that describe the program’s flow.

 The program starts in setup() where the size and background are initialized.

 It continues into draw(), looping endlessly. Since it contains no code, the window remains

blank. We have added two new functions: mousePressed() and keyPressed().

 The code inside these functions sits and waits. When the user clicks the mouse (or presses

a key), it springs into action, executing the block of instructions once and only once.

53 Interaction Design 17/18 5 – Basics of Processing

void setup() {

size(200,200);

background(255);

}

void draw() {}

void mousePressed() {

fill(175);

rectMode(CENTER);

rect(mouseX,mouseY,16,16);

}

void keyPressed() {

background(255);

}

Nothing happens in
draw() in this example!

Whenever a user clicks the

mouse the code written inside
mousePressed() is executed.

Whenever a user press a key

the code written inside
keyPressed() is executed.

The dynamic alien
void setup() {

// Set the size of the window

size(200,200);

}

void draw() {

background(255); // Draw a white background

// Set ellipses and rectangles to CENTER mode

ellipseMode(CENTER);

rectMode(CENTER);

// Draw alien’s body

fill(150);

rect(mouseX,mouseY,20,100);

// Draw alien’s head

fill(255);

ellipse(mouseX,mouseY-30,60,60);

…continue…

54 Interaction Design 17/18 5 – Basics of Processing

The dynamic alien

55 Interaction Design 17/18 5 – Basics of Processing

// Draw alien's eyes

fill(mouseX,0,mouseY);

ellipse(mouseX-19,mouseY-30,16,32);

ellipse(mouseX + 19,mouseY-30,16,32);

// Draw alien's legs

line(mouseX-10,mouseY + 50,pmouseX-10,pmouseY + 60);

line(mouseX + 10,mouseY + 50,pmouseX + 10,pmouseY + 60);

}

void mousePressed() {

println("Take me to your leader! ");

}

The eye color is determined by

the mouse location.

The legs and the eyes are

drawn according to the mouse

location and the previous

mouse location.

When the mouse is clicked, a message will

be displayed in the message window: “

Take me to your leader! ”

