On Non-Conservative Plan Modification

Paolo Liberatore!

Abstract. The problem of minimally modifying a plan in
response to changes in the specification of the planning prob-
lem has already been investigated in the literature. In this
paper we consider the problem of non-minimal modification
of plans from a computational point of view. We prove that
while the general problem is intractable (that is, replanning
from scratch is equally hard), there are scenarios in which the
new plan can be built more efficiently (in polynomial time).

1 INTRODUCTION

The STRIPS formalism [2] has been used in the past years to
carry on a computational-theoretical analysis of the problem
of planning. The basic instance of a problem of planning in
STRIPS is defined as: a description of the initial state of the
world, a specification of the goal, and a set of operators that
can be performed in order to achieve the goal. A plan is a
sequence of operators that, when executed from the initial
state, leads to a state where the goal is satisfied. The problem
of planning is to find a plan, once known the initial state, the
goal and the operators.

It is possible that the specification of the problem is changed
during the execution of the plan, and thus a new plan is
needed. The following two examples illustrate this issue.

Example 1 The planning scenario is that of a robot that de-
livers mail to the various offices on a floor of a building. In
the initial state the robot is in the office where the incoming
mail is stored. The goal is the state in which all the letters
have been delivered and the robot is again in the office where
it started.

The robot bases its planning on the addresses of the letters
and on the layout of the floor. For example the plan may be
to go first to Office 202, then trough a door to Office 203,
and then again in the corridor to Office 209. This may be the
shortest plan. However, if someone closes the door between
Office 202 and Office 203, the robot needs to build a new plan
that takes into account such a change.

In the above scenario, the state of the world is modified
both by the actions of the robot and by external causes,
whereas an assumption in STRIPS is that the world is mod-
ified only by the robot. The following example illustrates a
different kind of situation where the plan still needs to be
modified.

1 Dipartimento di Informatica e Sistemistica, Universitd di

Roma “La Sapienza”, Via Salaria 113, 1-00198, Roma, Italy.
Email: liberato@dis.uniromal.it
WWW: http://www.dis.uniromal.it/~liberato

© 1998 P. Liberatore

ECAI 98. 13th European Conference on Artificial Intelligence
Young Researcher Paper

Edited by Henri Prade

Published in 1998 by John Wiley & Sons, Ltd.

Example 2 This example still involves the deliverer robot.
Suppose that, when it arrives to Office 203 to deliver one of
the letters, it is informed that its reading unit has made a
mistake, and the address on the envelope is that of Office 208.
In this case, the robot has a new initial state and a new goal:
the current position is Office 203 (and not the room where all
the incoming mail is stored), and the goal is to deliver one
letter to Office 208 and one to Office 209.

This situation is different: in this case, the world is not
modified, but the plan is no more valid because the robot’s
knowledge was partially incorrect. Despite the differences, the
problem is exactly the same as in the previous example: the
plan does not work any more, so a new one is needed. This
problem is known as replanning, and can be formalized as
follows: given an instance of a planning problem, a plan for
it, and an update of the instance, find a new plan for the
updated instance. The problem has already been addressed
in the literature, and a common hypothesis is that of minimal
modification of the plan, or conservativism [3]:

By “conservativism” we mean that the strategy should
modify the plan minimally (i.e. salvage as much of the old
plan as possible) while accommodating the changes in
the specification. [...] [this] is needed to ensure efficiency.

Conservativism means that the new plan should not be
built from scratch. The rationale is that part of the old plan
should be encoded in the new one, if possible. This way, part
of the new plan is found without any additional effort. From
an empirical point of view this may look promising. However,
the theoretical analysis of the costs of conservative replanning
shows that in general it is not more efficient, since the problem
may be even more complex that planning from scratch. For
example, Nebel and Koehler claim [4]:

As it turns out, modifying a plan is not easier than plan-
ning from scratch. On the positive side, we show that
modification does not add any complexity to planning if
we consider the general case. However, there exists spe-
cial cases when modifying a plan conservatively, i.e. by
using as much of the old plan as possible, can be harder
than creating one from scratch, as we will show. This
means that plan modification is not uniformly as easy
as plan generation. Further, we show that these results
also hold if we assume that the old and the new planning
situations are similar.

Example 1 and Example 2 can be encoded in a framework of
plan modification as follows: there is an instance of a planning



problem, of which we already have a solution (i.e. a plan).
Then we modify the initial state and/or the goal, and we need
to find a new plan for the modified instance. In Example 1, the
new initial state is that in which the robot is in the Office 202
and the door between Office 202 and Office 203 is closed,
and the goal is to deliver a letter to Office 203 and one to
Office 209. Example 2 is similar, as in the new initial state
the robot is in Office 203, while the goal is to deliver one letter
to Office 208 and one to Office 209. The part of the old plan
that has already been executed is taken into account in the
new initial state and in the new goal.

Clearly, without the assumption of conservativism, replan-
ning is at most as hard as planning from scratch, as we can
just disregard the old plan. On the contrary, with the assump-
tion of conservativism, replanning may be harder than plan-
ning from scratch (see [4] for details). What we prove in this
paper is that there are scenarios in which non-conservative
replanning is indeed easier than planning from scratch.

2 UPDATES

In this paper we consider scenarios in which an instance of a
STRIPS problem may be modified. The simplest case is when
the change consists of adding or removing a condition from
the initial state or the goal.

Definition 1 A simple update is a condition that is either
added or removed from the conditions (either positive or neg-
ative) of the initial state or the goal.

This notion of update takes into account only scenarios in
which the initial state or the goal are modified exactly for
one condition, which is either added or removed. In the more
general case, the change may include an arbitrarily large num-
ber of elementary updates. A complex update is the result of
any number of elementary updates. Intuitively, planning in
presence of complex updates is a very complex task.

3 RESULTS

The basic scenarios of the examples seen above is: there is an
instance of a planning problem, and a plan for it. Then, we
face an update. Our task is to build a new plan for the updated
instance. The instance, the update, and the plan are known.
What is needed is a modified plan. This may be simply done
by updating the instance and then determining a plan for it
with classical techniques. What we do here is to investigate
the usefulness of the knowledge of the old plan.

Note that we do not impose the new plan to be as similar to
the old one as possible. Our idea can be intuitively explained
as follows. The robot is in an initial state and has a goal. It
builds a plan, but in the middle of the execution, it discovers
that something in the world has been changed (or there is
no change, but its initial knowledge was wrong). Then, it has
a new initial state (the state in which it currently is), and
possibly a new goal.

In this paper we consider the restriction of STRIPS in which
all the operators have only positive postconditions. The prob-
lem of planning under this restriction is NP complete [1]. As
a result, the problem of updating a plan is in NP, since in the
worst case we can just update the original instance and find

Planning and Scheduling 519

a new plan completely disregarding the old one. Indeed, it is
possible to prove that the old plan does not help in finding
the new one, even if we allow only two simple updates.

Theorem 1 Deciding if there is a plan for an updated in-
stance is NP complete, even if we know the old plan and the
update is composed only of two elementary updates.

Informally, the reason is that the result of two elementary
updates may be an instance that has no similarities with the
old one. In this case, the old plan is completely useless.

This result holds only if the definition of plan is simply “a
sequence of operators whose execution from the initial state
leads to a state satisfying the goal”. This definition of plan
can be extended as follows.

Definition 2 Given an instance of a STRIPS planning prob-
lem, a general plan is a polynomial data structure such that
determining the plans for the instance itself and for updated
instances is a polynomial-time problem.

The following theorem proves that general plans do exist,
and can be determined at the same cost of regular plans, if
we allow only a constant number of updates.

Theorem 2 Determining a general plan is NP, under the
hypothesis that only a constant number of elementary updates
are allowed.

This theorem proves that updates can be done efficiently, if
the changes are not too big and the fact that updates are pos-
sible is taken into account before building the original plan.
This is the positive result of this work: it is possible to build
a new plan efficiently (in polynomial time), under the condi-
tions above. Finding a general plan is an NP problem, but
a. this is equal to the complexity of building regular plans,
and b. building a plan for an updated instance becomes a
polynomial time problem.

General plans are useful in the case of “small” updates but
do not help if updates composed of an arbitrary number of
elementary updates are allowed.

Theorem 3 If there exist general plans for all the complex
updates, then X5 =I15, i.e. the polynomial hierarchy collapses.

REFERENCES

[1] T. Bylander, ‘Complexity results for planning’, in Proceedings
of the Twelfth International Joint Conference on Artificial In-
telligence (IJCAI-91), pp. 274-279, (1991).

[2] R. Fikes and N. Nilsson, ‘STRIPS: a new approach to the ap-
plication of theorem proving to problem solving’, Artificial In-
telligence, 2, 189-208, (1971).

[3] S. Kambhampati and J. Hendler, ‘A validation-structure-based
theory of plan modification and reuse’, Artificial Intelligence,
55, 193-258, (1992).

[4] B. Nebel and J. Koehler, ‘Plan modification versus plan gen-
eration: a complexity-theoretic perspective’, in Proceedings of
the Thirteenth International Joint Conference on Artificial In-
telligence (IJCAI-93), pp. 1436-1440, (1993).

P. Liberatore



