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Abstract

In this paper we investigate the usefulness
of preprocessing part of the input of a given
problem to improve the efficiency. We extend
the results of [Cadoli et al., 1996] by giving
sufficient conditions to prove the unfeasibility
of reducing the on-line complexity via an off-
line preprocessing. We analyze the problems
of diagnosis [Peng and Reggia, 1986], plan-
ning [Bylander, 1991], reasoning about ac-
tions [Gelfond and Lifschitz, 1993], and be-
lief revision [Williams, 1994]. We analyze
other problems from various fields.

1 INTRODUCTION

Many problems in Artificial Intelligence (and in
Knowledge Representation in particular) are computa-
tionally hard to solve. An observation that may lead
to a reduction of the complexity is that often these
problems have a property: the input is divided in two
parts, where one of them is known long before the rest
of the input. In such cases, it makes sense to do some
computation on the first part of the input to speed-
up the solution of the problem when the second part
arrives. This computation made in advance is said
preprocessing, or compilation. Another case in which
a preprocessing is useful is when there are many in-
stances of the problem to be solved that share part of
the input (i.e. there are many instances for which part
of the input is common). In such cases, the prepro-
cessing of the shared part is useful if it decreases the
cost of solving each single instance. We call the part
of the input we preprocess fixed part, while the rest of
the input is called varying part. When the complexity
of the problem decreases thanks to the compilation of
the fixed part, we call the problem compilable.

The general idea of preprocessing part of the input
data has been widely used in many areas of com-
puter science. For example, in computational ge-
ometry the techniques for geometric searching (cf.
[Preparata and Shamos, 1985, Chap. 2]) use a costly
preprocessing phase to speed up the on-line behavior.

In AI, a clear example of a problem with a
fixed/varying part pattern occurs in the diagnosis field.
Suppose we have a set of possible faults, and a set of
rules that, given a fault, determine which (observable)
effects will occur. In diagnosis of physical systems,
the set of faults is the set of possible malfunctioning
parts, while the effects are the (observable) abnormal
behaviors of the system. The problem is to determine
a minimal explanation (a minimal set of faults) that
explains a given set of effects. It is reasonable to as-
sume that the physical system (and its description in
terms of faults-effects rules) is known in advance, and
thus a preprocessing of it is in many case affordable
(even if it is very expensive), in order to obtain a more
efficient algorithm to find a diagnosis when a set of
effects occurs.

Recently, several papers [Cadoli et al., 1995,
Gogic et al., 1995, Kautz and Selman, 1992] focused
on techniques to prove that problems can (or cannot)
be compiled. The precise formalization of compilabil-
ity is given in [Cadoli et al., 1996].

What’s new. In this paper, we give new
sufficient conditions to prove that problems are
not compilable, and apply them to the prob-
lems of diagnosis [Peng and Reggia, 1986], plan-
ning [Bylander, 1991], and reasoning about actions
[Gelfond and Lifschitz, 1993]. Some problems of belief
revision [Williams, 1994] will be proved to be compil-
able.

We also show the generality of these sufficient con-
ditions by applying them to problems from database
theory [Chandra and Merlin, 1977], network analysis



and design [Garey and Johnson, 1979], software engi-
neering [Ntafos and Hakimi, 1979], and graph theory
[Karp, 1972].

Outline. The paper is organized as follows: in the
next section, we report the basic concepts of compil-
ability, as defined in [Cadoli et al., 1996]. In Section 3
we show some new sufficient conditions to prove that a
problem is not compilable. The other sections contain
the analysis of various problems from the point of view
of compilability.

2 DEFINITIONS

In this paper we consider propositional formulas, (di-
rected) graphs, and languages. We assume that the
basic definitions of these concepts are known. Prob-
lems are represented by languages (as usual) over an
alphabet Σ. The length of a string x ∈ Σ∗ is denoted
||x||. The problem of diagnosis, which we will use to
illustrate the rationale of compilation, is defined as fol-
lows.

Definition 1 The problem Minimal Diagnosis (md)
is: given a set of faults F , a set of effects M , a function
e : F → P(M), a set of observed effects M ′ ⊆ M , and
an integer k, decide if there exists a set F ′ ⊆ F of size
at most k, such that

⋃
f∈F ′ e(f) ⊇ M ′.

We illustrate this definition with an example that will
be also useful for explaining the concepts of compil-
ability.

Example 1 A car may overheat for (at least) four
causes: the water pump is broken, the sensor is bro-
ken, the relay does not work, or there is not enough
water in the radiator. Each of these faults generates
an overheating. They may have other effects: if the
water pump is broken, the radiator is not heat, while
a fault in the sensor or the relay causes the fan not to
turn on. On the contrary, the only effect of not having
enough water in the radiator is the overheating1.

The set of faults and manifestations are defined as fol-
lows.

F = {pump, sensor, relay, water}
M = {overheat, fan off, no heat radiator}

The function e, expressing the effects of faults, is de-
fined as follows.

e(pump) = {overheat, no heat radiator}
1Some of the facts reported here are true, but since we

are not really expert about cars, the reader should not try
to repair cars following such diagnostic rules.

e(sensor) = {overheat, fan off}
e(relay) = {overheat, fan off}
e(water) = {overheat}

If the observed effects are M ′ = {overheat, fan off},
then the minimal diagnoses are {sensor} and
{relay}. Thus, there exist diagnoses of size
k = 1. On the contrary, if the observed effects
are M ′ = {overheat, fan off, no heat radiator},
then the minimal diagnoses are {pump, sensor} and
{pump, relay}, thus there is no diagnosis of size less
or equal than k = 1.

In this paper we are concerned with problems whose
input can be divided in two parts. One part is accessi-
ble off-line, that is, we can preprocess it. This part is
called fixed part. The rest of the input is called vary-
ing part. In the example of diagnosis, we can spend
much time of computation on the description of the
physical system, while once a set of effects occurs, we
want to obtain a diagnosis very quickly (in real time,
if possible).

Formally, problems whose input is composed of two
parts can be represented by sets of pairs of strings
S = {〈x, y〉}, where the first element of each pair is
the fixed part of the input. In the case of diagnosis,
the first part of the input is the description of the
system, while the varying part is the set of observed
effects. Since the function e represent the description
of the system, while M ′ and k depend on the observed
effect, we express Minimal Diagnosis as a problem of
pairs of strings as follows.

md = {〈e, (M ′, k)〉 | ∃F ′ of size at most k,

such that
⋃

f∈F ′
e(f) ⊇ M ′}

We do not write F and M for the sake of simplicity,
and assume that F and M are simply the domain and
the co-domain of the function e.

We remark that “fixed” is different from a more com-
mon concept of computational complexity, “constan-
t”. In computational complexity, the word “constan-
t”, when refers to a string, means that the string will
always be of small length. On the contrary, “fixed”
means that the part of the input will be known to the
preprocessor, while the varying part is not. A fixed
part, in our definition, may be arbitrarily large. This
holds both in cases in which the fixed part is known
in advance and in cases in which many input instances
share the same fixed part.

In order to formalize the concept of preprocessing, we
recall the definitions of polysize functions, compilable



classes and reductions. These concepts have been in-
troduced in [Cadoli et al., 1996], where more examples
and motivations are provided. A function f is called
polysize if there exists a polynomial p such that for all
x it holds ||f(x)|| ≤ p(||x||), that is, the size of the
result of f is bounded by a polynomial in the size of x.

Our intuitive notion of compilability states that a
problem S can be reduced into a simpler problem by
preprocessing only its fixed part. Given a complexity
class C, we introduce the class of problems compil-
able into C, denoted by ;C. The class we mostly use
is ;P, which contains all the problems that become
polynomial, once the preprocessing is done.

Definition 2 A language of pairs of strings2 S ⊆
Σ∗ × Σ∗ belongs to ;C if and only if there exist a
polysize function f and a language of pairs S′ such
that for all x, y ∈ Σ∗ we have that

1. 〈x, y〉 ∈ S iff 〈f(x), y〉 ∈ S′.

2. S′ ∈ C.

Notice that no restriction is imposed on the time
needed to compute f , but only on the size of the re-
sult. This definition can be represented in terms of a
computing machine as in Figure 1.

-
-

-
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y

f

S ′
yes/no

Figure 1: The ;C machine.

This machinery captures our intuitive notion of com-
pilability into C of a problem S with fixed and varying
parts. We process off-line the fixed part x, obtaining
f(x). Now we can decide 〈f(x), y〉 ∈ S′ with an al-
gorithm in C. The whole process is convenient if the
latter is easier than deciding 〈x, y〉 ∈ S. In this pa-
per we use mainly the class ;P, that is the class of
problems that can be solved in polynomial time after
a preprocessing of the fixed part. The condition that
f must be polysize is due to the fact that the fixed
part x of the input may be arbitrarily large. If x were
small, there would be no problem in having f(x) of
exponential size. Since x may be large, the condition

2In the sequel we omit the two words “of strings”: in
the sequel, languages of pairs are always languages of pairs
of strings.

ensures that the result of the preprocessing f(x) will
be of reasonable size.

Let us show how the idea of compilation can be used
in the scenario of Example 1.

Example 2 Consider the diagnosis problem of Ex-
ample 1. The problem can be solved by considering
each possible set F ′ ⊆ F with size at most k, and
verifying whether the effects of F ′ includes M ′. In
our example, we should check each subset of F =
{pump, sensor, relay, water}.
The complexity of the problem can be reduced via a
compilation of the function e. Since e is known much
in advance, we can preprocess it. The result of the
compilation is a table, whose rows are pairs (set of
manifestations, minimal size of diagnosis). When ap-
plied to the problem of the car, the result of the com-
pilation is the following.

{overheat} 1
{fan off} 1
{no heat radiator} 1
{overheat, fan off} 1
{overheat, no heat radiator} 1
{fan off, no heat radiator} 2
{overheat, fan off, no heat radiator} 2

The table can be built by considering each possible
F ′ ⊆ F and then calculating its effects. This is very in-
efficient, because we need to consider each possible F ′.
However, this is done during the compilation phase,
and thus we are not very concerned about efficiency.
When a set of manifestation occurs, the problem can
be solved by a single check in the table. If the set
of manifestations is for example {overheat, fan off},
the size of the minimal diagnosis can be determined by
looking up the table for a row whose first element is the
set {overheat, fan off}. Since the second element of
the row is 1, there is a diagnosis of size 1.

Note that the table has been calculated during the com-
pilation phase, only knowing the function e. The so-
lution of a specific instance of the problem can then be
determined very efficiently. In this case, we were able
to build the table because M was small. In general,
such a table requires 2m rows, where m is the num-
ber of possible manifestations. While an exponential
running time may be considered affordable during the
compilation phase, it is always impossible to store an
exponential-size table.

So far, we have defined when a problem is compilable.
What is missing is a way to prove that a problem is
not compilable. Let us consider how this is done for



general problems (without a fixed/varying part pat-
tern). The usual way to prove intractability (that is,
the non-membership in the class P) of a problem is to
give a polynomial reduction from an NP-hard prob-
lem to it. Since language of pairs of strings can also
been seen as problems of strings, this definition can be
specialized for languages of pairs.

Definition 3 A polynomial reduction from a language
of strings R to a language of pairs (of strings) S is a
pair of polynomial functions 〈r, h〉 such that, for any
x ∈ Σ∗ it holds x ∈ R iff 〈r(x), h(x)〉 ∈ S.

This is the obvious specialization of the usual defini-
tion of polynomial reduction to the case in which the
target language is a language of pairs. The following
is the specialization of the definition of hardness. We
use these definitions in the next section.

Definition 4 A language of pairs S is C hard if any
language R in C can be polynomially reduced to it.

The NP hardness of a problem proves that the prob-
lem is not polynomial. However, the NP hardness of
a problem of pairs S does not suffice to show its in-
compilability: an NP hard problem may be very well
compilable into P. On the converse, the main aim of
compilation is to solve NP hard problems in polyno-
mial time, using a preprocessing of part of the input.

In order to obtain a class of reductions that preserve
the compilability property and are powerful enough to
allow the definition of complete problems, we intro-
duce the notion of comp reduction:

Definition 5 A comp reduction between two problems
of pairs A and B is a triple 〈f1, f2, g〉 such that f1 and
f2 are polysize functions, g is a polynomial function,
and for every pair of strings 〈x, y〉 it holds

〈x, y〉 ∈ A iff 〈f1(x), g(f2(x), y)〉 ∈ B

If there exists a comp reduction between two problems
of pairs A and B we say that A is comp reducible to B.

Intuitively, A is comp reducible to B if 1) the fixed part
of B can be obtained from the fixed part of A using
a polysize function (f1), and 2) the variable part of B
can be constructed using both a polysize function (f2)
applied to the fixed part of A, and a polynomial-time
function (g) applied to the variable part of A. These
reductions satisfy all the basic properties of reductions.
Indeed, if C is a class of the polynomial hierarchy (e.g.
P, NP), we have that:

Theorem 1 The comp reductions are transitive and
compatible3 with the class ;C.

Therefore, it is possible to define a notion of complete-
ness for ;C.

Definition 6 Let B be a language of pairs. B is ;C-
hard iff all problems A ∈ ;C are comp reducible to B.

Using the above definition we can find hard prob-
lems. Nevertheless, for many natural problems
the non-compilability proofs appeared in the lit-
erature [Kautz and Selman, 1992, Cadoli et al., 1997,
Cadoli et al., 1995, Gogic et al., 1995] cannot be
rephrased as proofs of compNP hardness. For exam-
ple, the problem of diagnosis introduced in the last
section is not compNP hard. However, we can prove
its incompilability (its non-membership in ;P), using
the non-uniform classes and reductions. For languages
of strings, the non-uniform classes were introduced by
Karp and Lipton [1980]. The extension for languages
of pairs is given in [Cadoli et al., 1996], where the non-
uniform compilability classes are also compared with
Karp and Lipton’s classes.

Definition 7 A language of pairs S belongs to ‖;C
(non-uniform ;C) iff there exists a polysize function
f and a language of pairs S′ such that for all 〈x, y〉 we
have that:

1. 〈x, y〉 ∈ S iff 〈f(x, ||y||), y〉 ∈ S′;

2. S′ ∈ C.

In order to prove the non-compilability of problems,
the concepts of nucomp reduction and hardness are
defined.

Definition 8 A nucomp reduction (non-uniform
comp reduction) between two problems of pairs A and
B is a triple 〈f1, f2, g〉 such that f1 and f2 are poly-
size functions, g is a polynomial function, and for each
pair 〈x, y〉 it holds

〈x, y〉 ∈ A iff 〈f1(x, ||y||), g(f2(x, ||y||), y)〉 ∈ B

We say that A is nucomp reducible to B if there exists
a nucomp reduction from A to B. The definition of
hardness follows.

Definition 9 A problem of pairs B is said ‖;C hard
(non-uniform ;C hard) if any problem in ‖;C is nu-
comp reducible to it B.

3For the definition of compatibility see [Johnson, 1990,
pg. 79].



Now, from [Cadoli et al., 1996] it follows that a ‖;NP
hard problem cannot be compiled into P, unless Πp

2 =
Σp

2 (that is, unless the polynomial hierarchy collapses).

The concepts defined in this section might look com-
plex. However, what is really needed for understand-
ing the sequel of the paper can be summarized in the
following small box.

S is in ;P ⇒ S can be compiled into P

S is ‖;NP hard ⇒ S cannot be compiled into P

A problem S can be compiled into P if it can be solved
with a polynomial algorithm, after preprocessing part
of the input.

The ‖;NP hardness of a problem is the way to prove
that a problem cannot be compiled into P. However,
this requires to prove that there is a nucomp reduction
from a previously proved ‖;NP hard problem. This is
not simple. The proofs of ‖;NP hardness (the nucomp
reductions) are usually complex and hard to find. In
the next section we give some sufficient conditions to
prove the ‖;NP hardness of problems.

3 MONOTONIC POLYNOMIAL
REDUCTIONS AND DIAGNOSIS

In this section we give new sufficient conditions for
proving the ‖;NP hardness of problems. These con-
ditions are based on the concept of monotonic poly-
nomial reductions, which are particular polynomial
reductions from languages of strings to languages of
pairs. The use of monotonic reductions greatly sim-
plifies the proofs of incompilability. The proofs of
‖;NP hardness that can be found in the literature
[Cadoli et al., 1995, Cadoli et al., 1997] are often long
and complex. We show in the sequel how the proofs
based on monotonic reductions are instead very simple
and intuitive.

A proof of NP hardness of a language S is usually a
polynomial reduction from a (previously) proved NP
hard problem R to S. Suppose, for example, that we
have proven the NP hardness of a language of pairs S
by means of a polynomial reduction from the problem
3sat. We state the following definition.

Definition 10 A polynomial reduction 〈r, h〉 from
3sat to a language of pairs S is said to be monotonic
if, for any two sets of clauses Π1 and Π2 over the same
alphabet, with Π1 ⊆ Π2, it holds

〈r(Π1), h(Π1)〉 ∈ S ⇔ 〈r(Π2), h(Π1)〉 ∈ S (1)

It can be proved that, given a monotonic polynomial
reduction, one can build a proof of ‖;NP hardness for
the problem S.

Theorem 2 If there exists a monotonic polynomial
reduction from 3sat to a problem of pairs S, then S
is ‖;NP hard.

As a result, in order to prove that a problem S is not
compilable, it suffices to find a polynomial reduction
from 3sat to S, and then to prove that this reduction
has the property of monotonicity (1). This is useful,
because often there already exists a proof of hardness
of the problem S that uses a reduction that can be
easily proved to be monotonic.

The following theorem, and its proof, shows how this
result can be applied to the problem of diagnosis. The
inputs of the problem are the set of all the possible
faults and effects F and M , the function e, the set of
the observed effects M ′ and the number k. The set of
possible effects, faults, and the function e are the fixed
part (since it is determined by a static analysis of the
system to be diagnosed), while the set of the current
effect (that is, the abnormal behavior to be analyzed)
and k are the varying part.

Theorem 3 The problem md is ‖;NP hard (and thus
it is not in ;P).

Proof. The problem md has been proved to be
NP hard via the following reduction from 3sat
[Allemang et al., 1987]. Without loss of generality, as-
sume that the given set of clauses Π1 contains all the
clauses xi∨¬xi for each xi in the given alphabet. The
set of faults F is equal to the set of literals of the al-
phabet, and the set of effects M is equal to the set of
clauses. The function e is defined as

e(f) = { m | the clause m contains the literal f }
Finally, the set of current effects M ′ is equal to M ,
and the number k is equal to the number of atoms in
the considered alphabet.

Now, consider two sets of clauses Π1 and Π2 over
the same alphabet, with Π1 ⊆ Π2. The instance
〈r(Π1), h(Π1)〉 is built as in the previous construc-
tion. The instance 〈r(Π2), h(Π1)〉 has new effects (the
clauses in Π2\Π1), and the function e is modified ac-
cordingly. However, these new effects need not to be
explained (since the set of the current effects is the
same of the previous case), thus a diagnosis of size k
exists for the second instance if and only if it exists for
the first one.

Note an interesting feature of this kind of proofs:



we do not need to prove that the given reduction
works, that is, we do not need to prove that a set
of clauses is satisfiable if and only if the corresponding
diagnosis problem has a solution of size less or equal
than k. This can be proved elsewhere (in this case,
in [Allemang et al., 1987]). All we have to do is to
prove that this reduction is monotonic. This is proved
just by comparing two similar instances of the prob-
lem of diagnosis (completely disregarding the instances
of 3sat).

Of course, not all the proofs of NP hardness use a
reduction from 3sat. Giving an appropriate definition
of monotonicity of a reduction from the problems node
cover, clique, exact cover, three-exact cover, one can
prove that the existence of a monotonic reduction to
a problem implies the ‖;NP hardness of it.

Definition 11 A reduction 〈r, h〉 from Node Cover
(NC) or clique to a problem of pairs S is said to be
monotonic if, for any two sets of edges E1 ⊆ E2 over
the same set of nodes N , it holds

〈r((N, E1), k), h((N, E1), k)〉 ∈ S ⇔
〈r((N,E2), k), h((N, E1), k)〉 ∈ S

The monotonic reductions from NC and clique have the
same property of the monotonic reductions from 3sat.
Namely, they prove the ‖;NP hardness of problems.

Theorem 4 If there exists a monotonic polynomial
reduction from in NC or clique to a problem of pairs
B, then B is ‖;NP hard (and thus it does not belong
to ;P, unless the polynomial hierarchy collapses).

The above theorem is useful for reductions whose start-
ing point is a problem on graphs. For problems of sets,
we give the definition of monotonic reduction using the
problem Exact Cover (ec).

Definition 12 A reduction 〈r, h〉 from the problem
Exact Cover (ec) or Three-Exact Cover (x3c) to a
problem of pairs B is said to be monotonic if, for any
two subsets S1, S2 of W , with S1 ⊆ S2, it holds

〈r(S1), h(S1)〉 ∈ B ⇔ 〈r(S2), h(S1)〉 ∈ B

These monotonic reductions have the same property
of the other monotonic reductions.

Theorem 5 If there exists a monotonic polynomial
reduction from ec or x3c to a problem of pairs B, then
B is ‖;NP hard (and thus it does not belong to ;P,
unless the polynomial hierarchy collapses).

4 PLANNING

STRIPS [Fikes and Nilsson, 1971] is a formalism for
expressing planning problems. In the last years, it has
been mainly used for studying the theoretical complex-
ity of planning.

A STRIPS planning problem is a 4-tuple 〈P,O, I,G〉,
where P is a set of conditions, O is the set of opera-
tors (actions that can be performed to accomplish the
goal), I is the initial state, and G is the goal.

The conditions are facts that can be true or false in
the world of interest. A state S is a set of conditions,
and represents the state of the world in a certain time
point. The conditions in S are those representing facts
that are true in the world, while those not in S repre-
sent facts currently false.

The initial state is a state, thus a set of conditions.
The goal is specified by giving a set of conditions that
should be achieved, and another set specifying which
conditions should not be made true. Thus, a goal G is
a pair 〈M,N〉, where M is the set of conditions that
should be made true, while N is the set of conditions
that should be made false.

The operators are actions that can be performed to
achieve the goal. Each operator is a 4-tuple 〈φ, η, α, β〉,
where φ, η, α, and β are sets of conditions. When
executed, such an operator makes the conditions in α
true, and those in β false, but only if the conditions in
φ are currently true and those in η are currently false.
The conditions in φ and η are called the positive and
negative preconditions of the operator. The conditions
in α and β are called the positive and negative effects
or postconditions of the operator.

Given an instance of a STRIPS planning problem
〈P,O, I,G〉, we define a plan for it as a sequence of
operators that, when executed in sequence from the
initial state, lead to a state where all the conditions
in M are true and all those in N are false. More de-
tails about the definition of STRIPS can be found in
[Fikes and Nilsson, 1971] and [Bylander, 1991].

The instances of a STRIPS planning problem have a
clear fixed-varying part pattern. The set of conditions
and operators are the fixed part of the input, since they
represent the general description of the world. It is
very likely that we need to solve many planning prob-
lems w.r.t. the same world. Consider, for example, a
robot that delivers the mail on a floor of a building.
After delivered the first mail, it is necessary to find a
new plan to deliver the second one, etc. Even if we
formalize the problem in such a way the goal is to de-
liver all the mail of the day, the day after there is a



need of a new plan, as the new mail to be delivered
is different. This example shows that, given a general
description of the world (conditions and operators), it
is likely that there are many planning problems that
differ only for the initial state and the goal.

As a result, STRIPS planning is a problem for which
compilation may be useful. The fixed part of the in-
put is composed of P and O, where a compilation is
allowed, while the varying part is composed of the ini-
tial state I and the goal G.

The problem analyzed here is PLANSAT+: given a
STRIPS instance such that all the operators have only
positive postconditions, decide whether there exists a
plan. This problem has been proved NP complete by
Bylander [1991]. We prove that Bylander’s proof is
monotonic. First of all, a STRIPS problem is expressed
as a language of pairs as

PLANSAT+ = {〈〈P,O〉, 〈I,G〉〉 | there exists a plan}

Bylander’s reduction is from 3sat. Let Π1 be a set
of clauses, each composed of three literals, over the
alphabet X. For each variable in X there are two con-
ditions Ti and Fi. There is also a condition Cj for
each clause in Π1. For each variable there are two op-
erators 〈∅, {Fi}, {Ti}, ∅〉 and 〈∅, {Ti}, {Fi}, ∅〉. There
is also an operator for each literal of each clause. If
the literal is xi in the clause γj then the operator is
〈{Ti}, ∅, {Cj}, ∅〉, otherwise it is 〈{Fi}, ∅, {Cj}, ∅〉. The
initial state is empty, while the goal is G = 〈M, ∅〉,
where M = {Cj | γj ∈ Π}. As in the example of di-
agnosis, there is no need to prove that this reduction
works. We trust Bylander.

Given two set of clauses of three literals Π1 and Π2

such that Π1 ⊆ Π2, the result of r(Π2) differs from
r(Π1) only for the fact that there are new conditions Cj

corresponding to the clauses γj ∈ Π2\Π1. Moreover,
there are new operators with Cj as postcondition.

Let us compare 〈r(Π1), h(Π1)〉 and 〈r(Π2), h(Π1)〉.
The new conditions have no effect on the existence
of a plan, since a. they are not precondition of any
operator, and b. they are not part of the goal. As a
result, if a plan contains some of the new operators,
then they can be removed from the plan. This reduced
plan still leads to a state in which the goal is satisfied,
because the new operators do not affect the precondi-
tions of the old operators, neither they make true or
false the conditions of the goal.

This proves that the given reduction is monotonic,
thus the problem PLANSAT+ is ‖;NP hard, and thus
it cannot be compiled into P.

5 REASONING ABOUT ACTIONS

In this paper we consider the language A which ex-
presses domains of actions. A detailed description
of A is given in [Gelfond and Lifschitz, 1993], where
more examples are also provided. For the sake of com-
pleteness, we recall here the syntax of A, with a short
explanation of the semantics.

There are two nonempty sets of symbols, called fluent
names and action names. Fluents are facts that can be
true or false. They are called “fluents” because their
value may change over time. A fluent expression is a
fluent name possibly preceded by the negation symbol
¬. If F is a fluent expression and A1, . . . , Am are action
names, then

F after A1; . . . ; Am

is a value proposition. Such a proposition means
that after the execution of the sequence of actions
A1; . . . ; Am the fluent expression F becomes true. If
m = 0, the above statement is written

initially F

This expresses the value of a fluent in the initial state.

An effect proposition is an expression of the form

A causes F if P1, . . . , Pm

where A is an action name and F, P1, . . . , Pm are flu-
ent expressions. It means that the action A, when
performed, makes the fluent expression F true, if the
fluent expressions P1, . . . , Pm are true. The fluents
P1, . . . , Pm are called preconditions, while F is the ef-
fect or postcondition of the proposition.

A domain description is a set of value and effect propo-
sitions.

A model of a domain description is a pair (initial state,
transition function), where the transition function is a
function that expresses how the states change in re-
sponse to actions. We do not formally give the seman-
tics of A here. The problem of interest is the entail-
ment: D |= V holds if and only if all the models of D
are also models of V , where D is a domain description
and V is a single value proposition.

The problem of entailment D |= V in A is proved to
be coNP complete in [Liberatore, 1997b]. Since a sin-
gle domain description D may be queried many times
w.r.t. several different propositions V , it makes sense
to compile D once, if this simplifies the problem. Thus,
it is worthwhile to analyze entailment in A w.r.t. our
framework of compilation: the domain description D
is the fixed part of the input, while V is the varying
part.



For the sake of simplicity, in this paper we only
consider NP problems. This does not prevent us
from analyzing the problem of entailment in A. In-
deed, D |= F after A1; . . . ;Am if and only if D ∪
{¬F after A1; . . . ; Am} is not consistent, and consis-
tency in A is NP complete. As a result, if we can show
that the problem of consistency of D ∪ {V } (where V
is a value proposition) is compilable (where D is the
fixed part) then the problem of entailment is compi-
lable, and vice versa. Indeed, what we prove is that
the problem of deciding the consistency of a domain
description with a value proposition is not compilable.
In terms of languages of pairs, the problem can be
formalized as:

Asat = {〈D,V 〉 | D ∪ {V } is consistent}

The reduction that proves NP hard the problem of
consistency given in [Liberatore, 1997b] is not mono-
tonic. Consider the two set of clauses Π1 = {x} and
Π2 = {x,¬x} which are built on the same alphabet.
We have

r(Π1) = { initially ¬F, A causes F if x}
r(Π2) = { initially ¬F, A causes F if x,

A causes F if ¬x}
h(Π1) = ¬F after A

Thus r(Π1) ∪ {h(Π1)} is satisfiable while r(Π2) ∪
{h(Π1)} is not. As a result, the reduction is not mono-
tonic.

We give now a monotonic reduction. Let Π1 be a set of
clauses, each composed by three literals. The functions
r and h are defined as follows. For each clause γi =
li1 ∨ li2 ∨ li3 there is an action Ai.

r(Π1) = { initially ¬F} ∪⋃

li1∨li2∨li3∈Π1

{Ai causes F if ¬li1 ,¬li2 ,¬li3}

h(Π1) = ¬F after A1; . . . ;An

where Π1 = {γ1, . . . , γn}

This is indeed a reduction from 3sat to Asat.

Theorem 6 The set Π1 is satisfiable if and only if
r(Π1) ∪ {h(Π1)} is consistent.

We can also prove that the given reduction is mono-
tonic. Let Π2 be a set of clauses over the same alphabet
of Π1, and such that Π1 ⊆ Π2. The function r on Π2

gives:

r(Π2) = { initially ¬F} ∪

⋃

γi=li1∨li2∨li3∈Π2

{Ai causes F if ¬li1 ,¬li2 ,¬li3}

That is, there are some new effect propositions:
for each γi ∈ Π2\Π1 there is a proposition
Ai causes F if ¬li1 ,¬li2 ,¬li3 .

However, these new actions do not affect the con-
sistency, since a. there is only one effect proposition
for each Ai, and b. there is no value proposition in
which Ai appears. In semantical terms, such new ef-
fect propositions only modify the transition function
but not the initial state. This implies that the consis-
tency is not affected.

In this case, we needed to find a monotonic reduction.
However, we did it in two steps: first we found the
reduction, and afterwards we proved that it is mono-
tonic. These steps are easier than finding a nucomp
reduction.

6 BELIEF REVISION

So far we proved only “negative” results, that is,
we showed problems for which a compilation does
not give a gain in efficiency. In this section we an-
alyze the problem of iterated belief revision. Due
to the lack of space, we omit the definitions and
the proofs. The basic model we refer to is that
of ordinal conditional functions, as can be found,
for example, in [Williams, 1994]. The results pre-
sented here can be easily extended to other revision
operators [Boutilier, 1993, Nayak, 1994, Spohn, 1988,
Nayak and Foo, 1997].

The formalism is the following: there is a current
knowledge base K and an ordering of plausibility (the
ordinal conditional function) that associates a number
to each interpretation. This knowledge base K has
to be revised with a sequence of revising formulas4

P1, . . . , Pm. The problem we are interested in is to de-
termine whether K, revised according to P1, . . . , Pm,
implies another formula Q. This problem is ∆p

2 com-
plete [Liberatore, 1997a].

The result of the revision may be queried many times
w.r.t. several formulas Q. As a result, it is worthwhile
to compile K and P1, . . . , Pm if this allows for more
efficient algorithms.

We can prove that, given K and P1, . . . , Pm, there ex-
ists a polynomial size formula K ′ such that K, revised
with P1, . . . , Pm, implies Q if and only if K ′ |= Q

4Technically, we assume that the plausibility of each of
these formulas is 1.



This is a proof of compcoNP membership of the prob-
lem. We can determine K ′ from K and P1, . . . , Pm,
during the compilation, and then the problem reduces
to K ′ |= Q, which is in coNP. As a result, the compi-
lation reduces the complexity from ∆p

2 to coNP. Note
that it is impossible to do any better, since deciding
|= Q is already a coNP complete problem (this argu-
ment can be used to prove that the problem is comp-
coNP complete).

7 OTHER APPLICATIONS

In this section we show that several problems from var-
ious fields cannot be made tractable by preprocessing
part of the input.

7.1 STEINER TREE

The Steiner Tree problem is defined as: given a graph
G whose edges are labeled with integers, a number k
and a set of nodes N ′, decide whether G has a subtree
of weight less or equal than k that contains all the
nodes of N ′.

This is a classical problem of graph theory, and is
used to formalize problems of deciding whether a set
of points can be connected without exceeding a cer-
tain cost. For example, in network design, one wants
to know if a set of nodes in a network will remain con-
nected with a given probability (given the probability
of failure of the edges). The graph and the weight of
the edges are in general fixed (they depends on the
structure of the network), while one may ask about
the reliability of the network w.r.t. many possible sets
of nodes. Thus, the variable part is the set of nodes
that the tree must connect.

7.2 NETWORK FLOW

This problem is defined as: given a graph and a collec-
tion of disjoint source-sink pairs {(s1, t1), . . . , (sk, tk)},
decide if there exists a set of k disjoint paths, each from
si to ti.

This problem deals with the ability of a network to
support a given traffic. The set of source-sink pairs
represents the set of nodes that want to communicate,
and thus they are the varying part of the problem.

7.3 REQUIRED PAIRS

The definition of this problem is: given a graph G,
a set of pairs {(s1, t1), . . . , (sl, tl)}, two nodes s and t
and an integer k, decide if there exist a set of k paths

from s to t such that for any pair (si, ti) there is a path
containing both si and ti.

This problem comes from program testing. To certify
a program, one must test all the execution sequences
in the program. Even for small programs, the number
of them can be extremely large. A compromise is to
test only a subset of the execution sequences. Ask-
ing that a pair of nodes are together in at least one
path is equivalent to ask for a test set that ensure that
two segments of code interact in the correct way (see
[Ntafos and Hakimi, 1979] for a more detailed expla-
nation). A given program must be tested many times,
thus it would be useful to compile its structure in order
to speed up the search of test sets.

7.4 HAMILTONIAN CYCLE

The classical problem of Hamiltonian Cycle is: given
a graph, decide if there exists a cycle that contains
each node exactly once. Here we consider the problem
in which we request that the cycle contains exactly a
subset of nodes N ′ ⊆ N .

The problem Hamiltonian Cycle is a formalization of
problems in which one must visit a set of points, min-
imizing the total distance traveled. One can hardly
see a fixed and a varying part in this problem. How-
ever, the variant in which only a subset of nodes must
be reached is a typical example of a problem with a
fixed and a varying part: the positions of the points
(and thus the underlying graph) is fixed, while the set
of points that must visited may change from time to
time. An example is that of the traveling salesman
who has to visit a subset of the cities, or a postman
who has to deliver mail only to a subset of people that
live in a city. If this is the case, one can afford a long
preprocessing time on the graph, if this make easier
the finding of the Hamiltonian Cycle.

7.5 CONJUNCTIVE QUERY

Given a conjunctive query in the relational calculus,
and a set of relations, the problem is to decide whether
the query is true.

This is the decision problem derived from a problem
that occurs in relational database systems: given a
query, find the tuples that satisfies it. In practical set-
tings, there is a set of typical queries that occur often,
while the specific database is not known in advance. In
this case it makes sense to compile the query in order
to allow a fast answering.

Note that Theorem 7, proving the incompilability of
this problem, is not in contrast to a result well known



to databases researchers, that proves that Conjunc-
tive Query can be solved in logarithmic space (thus
in polynomial time) if the query is constant. This is
a good opportunity to remark the difference between
“constant” and “fixed”. When we say that part of the
input data is constant, we mean that this part will be
small, or that we are not interested in analyzing the
complexity when the size of it becomes large. Instead,
when part of the input is fixed, we mean that it can be
arbitrarily large but we can afford a long preprocessing
on it, because either it is known in advance, or there
will be many input instances with the same fixed part.

7.6 SUBGRAPH ISOMORPHISM

The problem of subgraph isomorphism is defined as:
given two graphs G and H, decide if there exists a
subgraph of G that is isomorphic to H.

This problem is not compilable, either if the fixed part
is the “big” graph, or the “small” one. We conjec-
ture that the graph isomorphism problem (given two
graphs, decide if they are isomorphic) is compilable
into P.

Theorem 7 The problems: Steiner Tree, Network
Flow, Required Pairs, Sub-Hamiltonian Cycle, Con-
junctive Query, and Subgraph Isomorphism are ‖;NP
hard, and thus they cannot be compiled into P (unless
the polynomial hierarchy collapses).

8 CONCLUSIONS

In this paper we have shown how the framework of
compilation can be used for many problems of Artifi-
cial Intelligence. Indeed, we shown that it is theoreti-
cally impossible to reduce the complexity of diagnosis,
planning, and reasoning about actions via a precom-
pilation of part of the input. A positive result is the
reduction from ∆p

2 to coNP of iterated belief revision.

The negative results are obtained by employing the
concept of monotonic polynomial reduction. The tech-
nique of monotonic polynomial reductions is useful for
proving the non-compilability of problem. We proved
the generality of the method by applying it to some
problems coming from various fields.
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A PROOFS

In this appendix we report the proofs of two of the
theorems stated in the text. The first is Theorem 2,
which state that the existence of a monotonic reduc-
tion from 3sat to a problem implies its ‖;NP hardness.
Then, we prove the ‖;NP hardness of the Steiner Tree
problem.

Theorem 2 If there exists a monotonic polynomial
reduction from 3sat to a problem of pairs S, then S is
‖;NP hard.

Proof. Suppose there exists a monotonic polyno-
mial reduction 〈r, h〉 from 3sat to B. We prove
that there exists a nu-comp reduction f1, f2, g
from the problem ∗3sat (which is compNP hard: see
[Cadoli et al., 1996]) to B.

Let ||Π|| denote the size of Π (that is, the size of
the string used to represent it), and Var(Π) be the
number of atoms in it. Furthermore Πm is the set of
all the clauses of three literals over a set of variables
{x1, . . . , xm}.
Let f1, f2, g be defined as follows

f1(s,m) = r(Πm)
f2(s,m) = ε

g(a,Π) = h(Π ∪ {xVar(Π)+1 ∨ ¬xVar(Π)+1, . . . ,

x||Π|| ∨ ¬x||Π||})



Let Π′ = Π ∪ {xVar(Π)+1 ∨ ¬xVar(Π)+1, . . . , x||Π|| ∨
¬x||Π||}. Using the fact that 〈r, h〉 is a monotonic poly-
nomial reduction we have that

〈x,Π〉 ∈ ∗3sat iff Π is satisfiable
iff Π′ is satisfiable
iff 〈r(Π′), h(Π′)〉 ∈ B

iff 〈r(ΠVar(Π′)), h(Π′)〉 ∈ B

iff 〈r(Π||Π||), h(Π′)〉 ∈ B

But r(Π||Π||) = f1(x, ||Π||) and
h(Π′) = g(a,Π), thus 〈x, Π〉 ∈ ∗3sat if and only if
〈f1(x, ||Π||), g(f2(x, ||Π||), Π)〉 ∈ B.

Theorem 8 Steiner Tree (st) is ‖;NP hard.

Proof. The reduction given by Karp in A.D. 1972 is
not monotonic. The proof is by means of a reduction
from Node Cover. The problem is that the instance of
the Node Cover problem must be a graph with labels
on edges, and this is not allowed by Theorem 4. How-
ever, with few changes the proof can be made mono-
tonic.

Let S = {S1, . . . , Sm} be a generic instance of the
problem x3c. Let

⋃
S = {u1, . . . , un}. The corre-

sponding instance of the problem st is

N = {n0} ∪ S ∪ {〈ui, Sj〉 | ui ∈ Sj}
E = {〈n0, Sj〉} ∪ {〈Sj , 〈ui, Sj〉〉} ∪

{〈〈ui, Sj〉, 〈ui, Sz〉〉}
w : w(〈n0, Sj〉) = 3ln

w(〈Sj , 〈ui, Sj〉〉) = 0
w(〈〈ui, Sj〉, 〈ui, Sz〉〉) = 1

N ′ = {n0} ∪ {〈ui, Sj〉}
k = ln2 +

∑
(p(ui)− 1)

where l is the number of all the possible subsets of
three elements of a set of m elements, and p(ui) is the
number of sets in which ui is present.

Suppose there exists a subset S′ ⊆ S such that
⋃

S′ =⋃
S and Sj ∩ Sz = ∅ for each Sj , Sz ∈ S′. A Steiner

tree in the graph above is the following.

T = {〈no, Sj〉 | Sj ∈ S′} ∪ {〈Sj , 〈ui, Sj〉〉 | Sj ∈ S′}
∪{〈〈ui, Sj〉, 〈ui, Sz〉〉 | Sj ∈ S′}

It is easy to see that this tree has weight

3ln · n/3 +
∑

(p(ui)− 1) = k

Suppose there exists a Steiner tree T of weight less or
equal than k. We define

S′ = {Sj | 〈n0, Sj〉 ∈ T}

First of all, we have |S′| ≤ n/3: otherwise, the weight
of the tree would be greater than k, as one can easily
prove.

We have also
⋃

S′ =
⋃

S. The node n0 is the root of
the tree (we recall that the graph is direct). Given an
element ui, each node 〈ui, Sj〉 must be reached by the
tree, thus it must be the case that

〈n0, Sj〉, 〈Sj , 〈ui, Sj〉〉 ∈ T

or 〈n0, Sz〉, 〈Sz, 〈ui, Sz〉〉, 〈〈ui, Sz〉, 〈ui, Sy〉〉, . . . ,
〈〈ui, Sx〉, 〈ui, Sj〉〉 ∈ T

In the first case, ui ∈ Sj and Sj ∈ S′. In the second
one, ui ∈ Sz and Sz ∈ S′. Thus in both cases ui ∈⋃

S′.

Now, since |S′| ≤ n/3 and
⋃

S′ =
⋃

S, it must be also
that the sets in S′ are mutually disjoint.

The monotonicity of this reduction is not trivial
to prove. Let S2 be a set of sets of elements
in {u1, . . . , un} such that S ⊆ S2. The instance
〈r(S), h(S)〉 is that of the previous construction. The
instance 〈r(S2), h(S)〉 has some new nodes Sz and
〈ui, Sz〉 for each Sz ∈ S2\S and ui ∈ Sz, and the
corresponding edges. Since the weight of the tree and
the set of nodes to reach are the same, it follows that
a Steiner tree for the instance 〈r(S), h(S)〉 is also a
Steiner tree for 〈r(S2), h(S)〉.
The hard part of the proof is to show that if the
instance 〈r(S2), h(S)〉 has a Steiner tree of weight
at most k, then the same holds for the instance
〈r(S), h(S)〉. This is proved by showing that the
Steiner tree for 〈r(S2), h(S)〉 does not contain the new
nodes. Informally, the Steiner tree for 〈r(S2), h(S)〉
may have at most n/3 nodes of the type Sz. Suppose
that one of these nodes corresponds to a set Sz ∈ S2\S.
Since the tree must also contain all the nodes 〈ui, Sj〉,
it follows that each node 〈ui, Sz〉 must be linked to all
the corresponding nodes 〈ui, Sj〉. This makes a total
weight of p(ui). As a result, the total weight of the
tree is greater than k.


