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Abstract. In this paper we analyze the problem of checking whether a default theory has a sin-
gle extension. This problem is important for at least three reasons. First, if a theory has a single
extension, nonmonotonic inference can be reduced to entailment in propositional logic (which is
computationally easier) using the set of consequences of the generating defaults. Second, a theory
with many extensions is typically weak i.e., it has few consequences; this indicates that the theory is
of little use, and that new information has to be added to it, either as new formulae, or as preferences
over defaults. Third, some applications require as few extensions as possible (e.g. diagnosis).

We study the complexity of checking whether a default theory has a single extension. We con-
sider the combination of several restrictions of default logics: seminormal, normal, disjunction-free,
unary, ordered. Complexity varies from the first to the third level of the polynomial hierarchy. The
problem of checking whether a theory has a given number of extensions is also discussed.
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1. Introduction

One of the most prominent formal approaches to nonmonotonic reasoning is default logic [19]. It is dif-
ferent from standard (propositional) logic because of default rules, which model human reasoning made
in prototypical situations when complete information is lacking. Informally, a default rule states a rule
of inference (given a fact, we can conclude some other fact) that can only be applied if a given premise
cannot be proved to be false. Since the premise is assumed to be true whenever it is not known, a default
rule models a reasoning step in which a conclusion is drawn by default (in absence of a contradictory
information). A default theory is composed of a propositional part, plus a set of default rules. Formally,
it is a pair(D,W ) in whichW is a set of propositional formulas called initial knowledge whileD is a
set of default rules.

Default logic provides a powerful tool for knowledge representation and reasoning, as it allows for
formalizing rules that are easy to state informally, but would require large knowledge bases in propo-
sitional logics. However, there is a price to be paid to gain such advantage. As it is the case for any
nonmonotonic reasoning formalism, inference in default logic is computationally hard to do. As proved
by Gottlob [7], checking whether a fact is implied by a default theory is at the second level of the poly-
nomial hierarchy, and is therefore harder than propositional inference, which is only at the first level.

Another drawback of default logic is that some theories do not have extensions; if this is the case,
no information can be derived from them. This problem motivates the introduction of restricted forms
of the default rules: for example, normal defaults always generate extensions. Another solution is the
introduction of new semantics: for instance, Przymusinska and Przymusinski [18] introduced the notion
of stationary extensions and proved that a stationary extension always exists. Many other variants of the
original semantics exist. All of them are harder than propositional logic.

Complexity is due to two causes: first, reasoning requires propositional inference, which is known
to be intractable; second, a default theory may have exponentially many extensions, and all of them have
to be taken into account in the process of inference. A large number of attempts to lower complexity of
default reasoning have been put forward in the literature. Two main directions have been followed: one
is to use restricted forms of the propositional part (e.g. Horn); the other one is to use only defaults of a
specific form (e.g. normal). However, most restrictions are still intractable.

The large number of extensions can be seens either as a drawback, or as a feature. Since it is due to
a large number of conflicting rules, one can either advocate that default reasoning is good as it allows
to reason in presence of many conflicts (which is impossible in the standard propositional logic); on
the other hand, having too many extensions may be a problem. In any case, knowing the number of
extensions of a default theory is key feature of the default theory, for several reasons:

Compilation. If a default theory has a single extension, then it can be translated into propositional logics
without changing its consequences (and, therefore, the information it carries). This allows for
solving the problem of inference by an algorithm with preprocessing [2, 3, 15]: the preprocessing
step is that of translating the default theory; once it is done, queries can be solved in the (easier)
propositional calculus.

Expressiviness.A default theory being equivalent to a propositional theory can be seen as implying that
we are using a computationally complex formalism (default logic), while the information can be
encoded into the propositional logic. In this sense, having one extension is a drawback.
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Weakness.If a default theory has many extensions, it usually have few consequences, i.e. it is weak.
This may indicate that information has not be encoded incorrectly, or that it is simply deficient. In
the latter case, new information has to be added, either in terms of new plain facts (propositional
formulae), or in terms of priorities among defaults.

Use of extensions.In some applications of default logic, a small number of extensions is to be preferred.
For example, if we encode a model-based diagnosis problem in default logic, then extensions
corresponds to possible diagnoses, and a small number of them is clearly to be preferred.

These points show that a default theory having few extensions can be seen as a drawback or as a
feature, depending on the point of view. Knowing the number of extensions allows for evaluating the
theory, which can be then regarded as good or bad, depending both on the number of extensions and on
the point of view.

In this paper we mainly analyze the complexity of the unique extension existence problem, we denote
by UEE, that is, the complexity of the problem of determining whether a default theory has exact one
extension. We not only study the general case but also analyze various restrictions (normal defaults, etc.)

We begin with the case of prerequisite-free normal defaults in Section 3, and show that UEE is
PNP [logn]-complete. When defaults are normal but prerequisite are allowed, complexity goes up to the
second level of the polynomial hierarchy, as the UEE isΠP

2 -complete. For semi-normal default theories
the UEE problem is inDP

2 , i.e., it can be expressed as the intersection of aΣP
2 problem and aΠP

2

problem. Since every normal default is semi-normal, the UEE problem for semi-normal default theories
is ΠP

2 -hard.
In Section 4, we analyze the problem under the strongest restrictions of default logics: disjunction-

free, unary, and ordered. While it is foreseeable that the problem is simplified by these assumption, it
is somehow surprising to see how much it is. For normal disjunction-free default theories the problem
becomes polynomial. For semi-normal disjunction-free theories the problem is inDP , i.e., it is the
intersection of oneNP problem and one coNP problem. But whether it isDP -complete is open. We
only show that it is at least as hard as the unique satisfiability problem. Even for unary default theories,
the complexity of the UEE problem does not decrease. For ordered theories, since the existence of
extensions is guaranteed, the problem becomes a coNP problem. We show that it is coNP -complete. In
section 5, we first informally prove that the problem EE(k), deciding if a default has exactk extensions,
has the same complexity as the UEE problem, wherek is any fixed natural number. We then roughly
discuss the reason why the problem UEE has high computational complexity. Our main results are
summarized in Table 1.

The complexity analysis reported in this paper extends previous work about complexity of default
logic by analyzing the problem of uniqueness of extensions, that have been missing. Indeed, the decision
problems analyzed so far are: the existence of extensions; credulous reasoning (deciding whether a
formula appears in at least one extension); skeptical reasoning (deciding whether a formula appears in
all extensions); model checking (deciding whether an interpretation is a model of all extensions); and
extension checking (deciding whether a set of defaults represents an extensions).

The first three problems have been analyzed by Gottlob [7], model checking has been analyzed
by Liberatore and Schaerf [16] and by Baumgarden and Gottlob [1], and extension checking has been
studied by Rosati [20].

All these works have shown that default logic is usually at the second level of the polynomial hierar-
chy, and is in general harder than the underlying monotonic reasoning. This leads many researchers to
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NM semi-NM NM ∨-free semi-NM∨-free unary O-unary

member of ΠP
2 DP

2 P DP DP coNP

hard for ΠP
2 ΠP

2 − Unique-SAT Unique-SAT coNP

“NM” stands for “normal”; “∨-free” stands for “disjunction-free”

“O-unary” is for “ordered unary”

Table 1. Complexity of the unique extension existence problem

studying the complexity of default reasoning in special cases [11, 21, 4, 24, 23]. For example, Kautz and
Selman [11] analyzed disjunction-free default theories. Although the underlying monotonic inference is,
in this very restricted case, very easy, default reasoning is still intractable. Kautz and Selman [11] also
introduced some subclasses of disjunction-free default theories, such as unary theories, ordered theories
and ordered unary theories, etc. However, default reasoning for most of them remains intractable. Our
work is related to that of actually finding the “right” extension, which has been considered by Lang and
Marquis [14].

2. Preliminaries

2.1. Default Logic

First we recall some definitions and results on Reiter’s default logic. In this paper we only consider finite
propositional default theories in which the initial knowledge is consistent. A default is a rule of the form

ϕ : ψ
θ

,

whereϕ, ψ, θ are propositional formulas.ϕ is called the prerequisite of the default,ψ is called its
justification, andθ is the consequence. Given a defaultd, we writep(d) for the prerequisite ofd, j(d)
for its justification, andc(d) for its consequence. Given a setD of defaults, define

p(D) = {p(d)|d ∈ D},
j(D) = {j(d)|d ∈ D},
c(D) = {c(d)|d ∈ D}.

A default is normal if its justification and consequence are the same. A semi-normal default is of the
form

ϕ : θ ∧ ψ
θ

.
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A (normal, semi-normal, respectively) default theory is a pair(D,W ) whereD is a set of (normal,
semi-normal) defaults andW is a consistent set of formulas.

Let (D,W ) be a default theory,S be a set of formulas. ThenΓ(S) is the smallest theory such that

1. W ⊆ Γ(S),

2. Γ(S) is closed under propositional deduction,

3. For anyd ∈ D, if p(d) ∈ Γ(S) andS 6` ¬j(d) thenc(d) ∈ Γ(S).

We say a theoryE is an extension of(D,W ) if and only ifE = Γ(E).

2.2. Monotonic Rule Systems

A monotonic rule system(R,W ) consists of a finite set

R =
{
α1

γ1
, · · · , αn

γn

}

of monotonic propositional inference rules and a setW of propositional formulas. Intuitively, a mono-
tonic ruleα

β means that wheneverα is derived,β must be added to the knowledge base. A formulaϕ is
derivable from(R,W ), denoted as(R,W ) ` ϕ, if and only ifϕ can be obtained fromW and the axioms
of propositional calculus and by a finite number of applications of the modus ponens and some rules in
R. The set of all propositional formulas derivable form(R,W ) is denoted asCn(R,W ).

Gottlob [8, Lemma 2.2] proved thatΓ(S) = Cn(D0,W ), where

D0 =
{
α

θ

∣∣∣∣
α : β
θ

∈ D,S 6` ¬β
}
.

2.3. Equivalent Semantics of Default Logic

Reiter [19] has shown that each normal default theory has at least one extension. However, there
exist semi-normal default theories with no extension. Furthermore, normal default logic has semi-
monotonicity property, that is, for any two normal default theories(D′,W ) and (D,W ) such that
D′ ⊆ D, every extensionE′ of (D′,W ) can be extended to an extension of(D,W ). In addition,
we also need to recall the proof theory for normal default theories.

Let (D,W ) be a normal default theory,ϕ a propositional formula. We say that a sequenceδ =
(d1, d2, · · · , dm) of defaults fromD is a default proof ofϕ if

1. d1 is prerequisite-free orW ` p(d1).

2. For eachi, 1 ≤ i ≤ m,W ∪ c({d1, · · · , di−1}) ` p(di)
3. W ∪ c(δ) is consistent andW ∪ c(δ) ` ϕ
It has been proved that for normal default logic a formulaϕ has a default proof if and only if it

appears in an extension. Usually only minimal default proofs are of interest, in other words, default
proofs from which we cannot delete any defaults without losing the properties of a default proof of the
required formula.

The following definitions will be used for characterizing the extensions of normal default theories.
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Definition 2.1. Let (D,W ) be a normal default theory,S a consistent set of formulas such thatW ⊆ S.
DefineSi, Di by induction as follows. First,S0 = S andD0 = ∅. For anyi > 0:

Di+1 = {d ∈ D | Si ` p(d), Si 6` ¬j(d)}

Si+1 =

{
Si ∪ c(Di+1) if it is consistent

Si otherwise

Intuitively, Di+1 is the set of defaults that are applicable inSi, that is, the defaults whose precon-
ditions are implied bySi, and whose justifications are consistent withSi. The setSi+1 is the result of
applying all of them, that is, adding all their consequences toSi. Note thatDi+1 can very well contain
conflicting defaults, which results in an inconsistency. In this case,Si+1 is equal toSi. In words, the
sequence ofSi’s is obtained by applying all applicable defaults until some conflicting defaults are found.
This is important, as conflicting defaults may lead to multiple extensions. More precisely, they always
lead to multiple extensions if all defaults are normal.

Let us defineΛ(S) to be the deductive closure of the sequence ofSi, and∆(S) be the defaults that
are applied in the process of deriving it:

Λ(S) = Cn


⋃

i≥0

Si




∆(S) = {d ∈ D | p(d) ∈ Λ(S) andc(d) ∈ Λ(S)}

Clearly,Λ(S) is the deductive closure ofS ∪ c(∆(S)).

2.4. Complexity Classes

Next we give a brief review of the relevant notions of complexity theory. Recall that the classes∆P
k , ΣP

k ,
andΠP

k of the polynomial hierarchy [10] are defined as follows.

∆P
0 = ΣP

0 = ΠP
0 = P

and fork ≥ 0,
∆P
k+1 = PΣP

k ,ΣP
k+1 = NPΣP

k ,ΠP
k+1 = co-ΣP

k+1.

In particular,NP = ΣP
1 , co-NP = ΠP

1 , and∆P
2 = PNP . Thus∆P

2 is the class of all problems that are
solvable in polynomial time on a deterministic Turing machine with polynomially many calls to anNP
oracle.DP

k is the class of problems which can be described as the intersection of oneΣP
k problem and

oneΠP
k problem. In the literature,DP is used instead ofDP

1 .
The notion of completeness we employ is based on many-one polynomial time transformations. The

problem of determining if a formula appears in at least one extension of a normal default theory isΣP
2 -

complete. A well knownΠP
2 -complete problem (see e.g. [12]) is deciding the validity of a quantified

Boolean formula of the form∀p1 · · · ∀pn∃q1 · · · ∃qmE, whereE is a Boolean formula over variables
{p1, · · · , pn, q1, · · · , qm}. This quantified formula is valid if and only if every truth assignmentv to the
variablesp1, · · · , pn can be extended to the variablesq1, · · · , qm so thatE is true underv.
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The following problem MSA-odd is complete for∆P
2 [13]: given a satisfiable propositional formula

F on variablesp1, · · · , pn, decide whether the lexicographically maximum truth assignment satisfying
F is odd, that is, assigns the truth value 1 topn. The lexicographically maximum truth assignmentv is
recursively defined as

v(p1) =

{
1, if F (1, p2, · · · , pn) is satisfiable

0, otherwise

v(pi+1) =

{
1, if F (v(p1), · · · , v(pi), 1, pi+2, · · · , pn) is satisfiable

0, otherwise

The classPNP [logn], consists of all problems solvable in polynomial time withO(log n) queries to
anNP oracle [22]. It is known thatPNP [logn] coincides with the class of all problems solvable with
paralleln queries toNP oracles. The problem SATnodd is complete for this class, where SATnodd is the
problem of determining whether the number of satisfiable formulas amongn CNF-formulas is odd.

The uniquely satisfiability problem (Unique-SAT, for short) is the problem of determining whether a
propositional formula has exactly one satisfying truth assignment. It has been proved that Unique-SAT
is inDP and coNP -hard. However, theDP -completeness of Unique-SAT is still open [12].

3. Complexity of UEE, General Case

3.1. Prerequisite-free Normal Default Theories

We begin the computational analysis of uniqueness of extensions with one of the simplest cases, that of
defaults that have no preconditions and are normal. When a default has no precondition, its applicability
only depends on the set of justifications. In turns, the justifications coincide with the consequences,
which makes defaults of this kind very intuitive::ββ means thatβ should be taken for true whenever
possible.

The set of formulaeΓ(W ) has a special role, in this case. When no default has precondition,Γ
applies all defaults that are individually applicable. In other words, for each default, its justifications are
checked for consistency withW . No default is however applied during this process. Instead, all defaults
that are not in contradiction withW are applied only at the end.

The setΓ(W ) can therefore be inconsistent. Indeed, whenever the application of one default contra-
dicts the justification of another default and vice versa, applying both defaults at the same time makes
the result inconsistent. On the other hand, applying one default only leads to an extension. This case is
important for us, as it is the only case in which a prerequisite-free normal default theory can have more
than one extension.

Lemma 3.1. A normal default theory(D,W ) has a single extension, ifΓ(W ) is consistent.

Proof:
SupposeΓ(W ) is consistent. Gottlob [8, Theorem 4.1] proved thatΓ(W ) = Γ2(W ). ThenΓ(W ) is
an extension of(D,W ). On the other hand,Γ(W ) is the fixed point ofΓ2i(W ). That is,Γ(W ) is the
smallest stationary extension. SupposeE is an extension of(D,W ). E is also a stationary extension
(note that every extension is stationary). Thus,Γ(W ) ⊆ E. Since any two different extensions are non-
including, it follows thatE = Γ(W ). Consequently,Γ(W ) is the unique extension of(D,W ). ut
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The converse only holds if all defaults are free of prerequisite.

Lemma 3.2. If a prerequisite-free normal default theory(D,W ) has a single extension thenΓ(W ) is
consistent.

Proof:
Suppose thatΓ(W ) is inconsistent. We shall prove that the default theory does not have a single ex-
tension. Notice that we have assumed thatW is consistent. SinceΓ(W ) is defined to be the smallest
theory satisfying three conditions of the operatorΓ, inconsistency means that no consistent theory sat-
isfies these three conditions at the same time. In particular, no consistent and deductively closed theory
W ′ can implyW , and containβ wheneverW is consistent withβ. LetD′ be as follows:

D′ = {d |W ∧ j(d) is consistent}

This is the set of defaults that are applicable inW , as they are exactly those defaults whose justi-
fications are consistent withW . By assumption, the set of all their consequences are inconsistent with
W . However, any single default in it can be applied without leading to inconsistency. This means that
the default theory has at least two extensions: take the first by applying one default at time from the first
one on; then, take the second by first applying one of the remaining default first. The second one cannot
include all defaults of the first one, as the first one is by assumption maximal. ut

As a simple consequence, we have the following corollary.

Corollary 3.1. A prerequisite-free normal default theory has a single extension if and only ifΓ(W ) is
consistent. Moreover,Γ(W ) is the unique extension of(D,W ).

This corollary allows not only for determining whether a prerequisite-free normal default theory has a
single extension, but it also tells the extension itself: indeed, ifΓ(W ) is consistent, it is the only extension
of the theory. From a computational point of view, checking its consistency isPNP [logn]-complete.

Theorem 3.1. The problem of determining whetherΓ(W ) is an extension of a prerequisite-free normal
default theory(D,W ) is PNP [logn]-complete.

Proof:
In order to check consistency ofΓ(W ), we first check all justifications of defaults for consistency with
W ; we then add toW all their consequences. This algorithm shows that the problem can be solved with
an NP-tree: in the leaves we have|D| independent consistency tests; in the root, we have a final check
that depends on the result of the previous tests. As Gottlob [9] have shown, this linear number of calls to
an NP-oracles can be replaced with a logarithmic number of them, thus showing that the problem is in
PNP [logn].

To prove the hardness we employ a method in [8]. We will present a polynomial time reduction from
SATnodd, the problem of determining whether the number of satisfiable formulas amongn formulas in
CNF is odd. LetF1, · · · , Fn ben formulas in CNF. Without loss of generality we assume that formulas
F1, · · · , Fn are mutually disjoint in their propositional variables. We also assume that at least oneFi



X. Zhao and P. Liberatore / Complexity of the Unique Extension Problem in Default Logic 9

is satisfiable (otherwise, we consider formulasp, q, F1, · · · , Fn). Now we construct a default theory
(D,W ) as follows. Letf1, · · · , fn be new variables not occurring in anyFi. Define

D =
{

: f1

f1
, · · · , : fn

fn
,

: f1 ⊕ · · · ⊕ fn
f1 ⊕ · · · ⊕ fn

}

and let

W = {f1 → F1, · · · , fn → Fn},
where⊕ stands for exclusive or. Note that>fi

is in D0 if and only if Fi is satisfiable and that ifFi
is unsatisfiable thenW ` ¬fi. Therefore, for eachfi, eitherfi ∈ Γ(W ) or ¬fi ∈ Γ(W ). In addition,

>
f1⊕···⊕fn

∈ D0 sinceW ∪ {f1 ⊕ · · · ⊕ fn} is consistent by our assumption that someFi is satisfiable.
Now it is easy to see thatCn(D0,W ) is consistent if and only if the number of satisfiable formulasFi is
odd. ut

Note that the above proof also provesPNP [logn]-hardness in the case in which there are precondi-
tions. However, the uniqueness of extensions in this case does not necessarily imply the consistency of
Γ(W ). Indeed, the presence of preconditions may result in all defaults initially applicable consistent, but
inconsistency appears later. The following default theory shows this case:

(
∅,

{ : a
a
,
a : ¬a
¬a

})

SinceW is consistent witha, we havea ∈ Γ(W ) by condition 3 of the definition ofΓ. This implies,
on the other hand, that the precondition of the second default is inΓ(W ), while its justification is still
consistent withW . This implies, still by condition 3, that¬a ∈ Γ(W ), thus proving thatΓ(W ) is
inconsistent.

On the other hand, this theory has only one extension, namelyCn(a). This being an extension is
obvious. It is easy to prove that the theory has no other extensions:∅ is easy to rule out asΓ(W ) =
Γ(∅) and is larger thanCn(a); the only other possibility isCn(¬a), which cannot be an extension as
Γ(Cn(¬a)) = ∅: this holds as∅ verifies the three conditions of being an extension.

This example shows why the consistency ofΓ(W ) is not equivalent to the uniqueness of extensions.
Γ(W ) is the smallest set that contains all consequences of applicable defaults, but preconditions are
checked againstΓ(W ), while justifications are checked againstW . This results ina being inΓ(W ),
while¬a is still consistent withW , thus making the second default applicable, while it should be not as
a is Γ(W ) (intuitively, the second default should be irrelevant, as its precondition is inconsistent with its
justification.)

3.2. Normal Default Theories

In this section, we consider the problem of checking whether a default theory has a single extension,
when defaults are normal but have preconditions. As shown in the previous section, the consistency of
Γ(W ) is only a sufficient condition to ensure uniqueness of extensions, but is not necessary.

We show two conditions that implies the multiplicity of extensions. It will later be proved that they
are, together, necessary and sufficient. We first need an easy corollary of Lemma 3.1.
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Corollary 3.2. For any normal default theory(D,W ), let RD =
{
p(d)
c(d)

∣∣∣ d ∈ D
}

. If Cn(RD,W ) is

consistent then(D,W ) has a unique extension.

The first possible cause of multiple extensions can be explained as follows. Suppose that we start
from S0 = W and compute the sequence ofSi’s, but end up with a theorySi in which two or more
defaults are individually applicable (their justifications are individually consistent withSi) but cannot be
applied together (the union of their justifications is not consistent withSi.) In this case,Si+1 = Si =
Λ(W ), and there are defaults inDi+1 that are applicable inΛ(W ) but are not applied (their consequences
are not inΛ(W ).)

In this case, the sequenceSi does not change from this point on. On the other hand, the process of
applying defaults can be continued by applying only a subset of the applicable defaults. When defaults
are normal, each choice will lead to an extension. We have therefore found a first condition that leads to
multiple extensions.

Lemma 3.3. Let (D,W ) be a normal default theory. Suppose there is a defaultd ∈ D such thatp(d) ∈
Λ(W ) but c(d) 6∈ Λ(W ) and¬c(d) 6∈ Λ(W ). Then(D,W ) has at least two extensions.

Proof:
DefineD∗ as follows.

D∗ = {d ∈ D | p(d) ∈ Λ(W ), c(d) 6∈ Λ(W ) and¬c(d) 6∈ Λ(W )}.
By assumption,D∗ is non-empty. From the definition ofΛ(W ), we see thatΛ(W ) ∪ c(D∗) is

inconsistent. Now we pick two subsetsD∗
1 andD∗

2 so thatΛ(W ) ∪ c(D∗
1) ∪ c(D∗

2) is inconsistent while
bothΛ(W )∪ c(D∗

1) andΛ(W )∪ c(D∗
2) are consistent. By Corollary 3.2,(∆(W )∪D∗

i ,W ) has exactly
one extension, the deductive closure ofΛ(W )∪ c(D∗

i ), i = 0, 1. By the semi-monotonicity,(D,W ) has
two extensionsE1 andE2 such thatΛ(W ) ∪ c(D∗

i ) ⊆ Ei, i = 1, 2. SinceΛ(W ) ∪ c(D∗
1) ∪ c(D∗

2) is
inconsistent,E1 andE2 are different. ut

The condition of the above lemma, however, does not cover all possible theories generating multiple
extensions. The problem is that, when we move fromSi to Si+1, we are applying all defaults that are
applicable inSi at the same time. However, a defaultd can be such thatp(d) is made true whilec(d)
is made false at the same time, but these are consequences of different defaults. For example, let us
consider(D,W ), whereW = ∅, andD = {d1, d2, d3}, where:

d1 =
: a
a
, d2 =

: b
b
, d3 =

a : ¬b
¬b

Clearly,D1 = {d1, d2}, andS1 = Cn({a, b}). In other words, bothd1 andd2 are applicable inW ,
and do not generate inconsistency. This makesd3 not applicable at all inS1. On the other hand, onced1

is applied,d3 can be applied as well, generating a different extensionCn({a,¬b}).
In general, the problem is that a defaultd may be left out fromDi because its justification are false

when its preconditions are made true. In particular, if the defaults that make the justification false are
different from those making the preconditions true, thend can be used to generate an extension. The
following lemma formalizes this condition.
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Lemma 3.4. Let (D,W ) be a normal default theory ,d ∈ D a default such thatΛ(W ) ` ¬c(d). Suppose
there is a subsetD′ ⊆ ∆(W ) such thatp(d) belongs to an extension of(D′,W ) (see Corollary 3.2 and
Definition 2.1) while¬c(d) does not. Then(D,W ) has at least two extensions.

Proof:
It is easy to see thatc(d) belongs to one extension of(D′ ∪ {d},W ). By semi-monotonicity, there is
an extensionE′ of (D,W ) such thatc(d) ∈ E′. On the other hand, there is an extensionE such that
Λ(W ) ⊆ E. Since¬c(d) ∈ Λ(W ), E andE′ are different. ut

The conditions of the two lemmas above can be proved to be the only two cases in which a de-
fault theory has more than one extension. The following lemma, indeed, proves that the uniqueness of
extension is equivalent to the falsity of one of the above conditions.

Lemma 3.5. Let (D,W ) be a normal default theory. Then(D,W ) has only one extension if and only
if the following conditions hold.

1. There is nod ∈ D such thatp(d) ∈ Λ(W ) but c(d) 6∈ Λ(W ) and¬c(d) 6∈ Λ(W ).

2. For every defaultd ∈ D such thatΛ(W ) ` ¬c(d), there is noD′ ⊆ ∆(W ) such thatp(d) appears
in an extension of(D′,W ) while¬c(d) is not.

Proof:
The only if part directly follows from Lemma 3.3-3.4. For theif part we suppose conditions 1 and
2 hold. First we show that, for any default, if it appears in one default proof then it is in∆(W ).
Suppose otherwise, then there is a default proof in which some default is not in∆(W ). Pick such a
default proof(d1, · · · , dm) with the minimum length. Thendi ∈ ∆(W ) for each1 ≤ i < m. Then
p(dm) ∈ Λ(W ). By condition 1, we have¬c(dm) ∈ Λ(W ). However, by using condition 2, we have
W ∪ c({d1, · · · , dm−1}) ` ¬c(dm). That is,(d1, · · · , dm) is not a default proof, a contradiction. Con-
sequently, every extension is a subset ofΛ(W ). Since(D,W ) has at least one extension, it follows that
Λ(W ) is the unique extension of(D,W ). ut

Lemma 3.5 shows that the uniqueness check can be done by first computingΛ(W ), and then checking
whether conditions 1 and 2 in Lemma 3.5 hold.Λ(W ) can be computed with a polynomial number of
queries to anNP oracle. Condition 1 can also be verified with a polynomial number of queries. However,
checking Condition 2 cannot be done in the same way, as it requires checking all subsetsD′ ⊆ ∆(W ),
and these are exponentially many. We can actually show that the problem cannot be simplified (unless
the polynomial hierarchy collapses): the unique extension existence problem isΠP

2 -complete, and cannot
therefore be solved with a polynomial number of queries to anNP oracle.

We first introduce some auxiliary problems. The first one is related to the second condition of the
lemma above; it consists in checking whether a consistent subset of a monotonic rule system implies a
formula.

Problem P1

Instance:A monotonic rule system(R,W ) such thatCn(R,W ) is inconsistent and a formulaϕ.
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Query: Is thereR′ ⊆ R such that(R′,W ) ` ϕ andCn(R′,W ) is consistent?

Lemma 3.6. Problem P1 isΣP
2 -complete.

Proof:
The following procedure to solve P1 shows it is inΣP

2 . Guess a subsetR′ ⊆ R. Then check whether
(R′,W ) ` ϕ andCn(R′,W ) is consistent. If this condition holds then return yes. It is easy to see that
this is a non-deterministic Turing machine with polynomially many calls to the oracle of consistency and
inference checking. Thus problem P1 is inΣP

2 .
Hardness is proved by reduction from credulous default reasoning (determining if a formula occurs

in at least one extension). Given a normal default theory(D,W ) and a formulaϕ, we consider a new
atomp, and defineR as follows.

R =
{
α

β

∣∣∣∣
α : β
β

∈ D
}
∪

{
W

p
,
W

¬p
}

The setR and the formulaϕ are a valid instance of P1, asCn(R,W ) is inconsistent: this is due to
the last two rules, which enforce bothp and¬p to be consequences. By putting only one of the two rules
in R′ ⊂ R we remove this source of inconsistency, butR′ may still be inconsistent due to the other rules,
that corresponding to the defaults of the original theory.

We now prove that this is a reduction from credulous default reasoning to P1:ϕ belongs to at least
one extension of(D,W ) if and only if there existsR′ ⊆ R such that(R′,W ) ` ϕ andCn(R′,W ) is
consistent.

Let us first prove the direction from the left to the right. Supposeϕ appears in one extension. Then
ϕ has a default proof, say,(d1, · · · , dn). Let

R′ =
{
p(d1)
c(d1)

, · · · , p(dn)
c(dn)

}
.

Clearly,(R′,W ) ` ϕ andCn(R′,W ) is consistent.
To prove the converse, suppose there isR′ ⊆ R such that(R′,W ) ` ϕ andCn(R′,W ) is consistent.

The last two rules inR are not helpful for the proof ofϕ; therefore, if either one is inR′, it can be
removed without makingϕ not implied. We therefore assume that none of them is inR′. By replacing
each rule inR′ with the original default, we obtain a default proof ofϕ. Thus,ϕ appears in at least one
extension of(D,W ). ut

The second auxiliary problem we consider is also related to the second condition of uniqueness.
Indeed, P2 is based on the existence of a subset of rules that implies a formula but does not imply
another one.

Problem P2

Instance:A monotonic rule system(R,W ) such thatCn(R,W ) is consistent, two formulasϕ, ψ such
that(R,W ) ` ψ.

Query: Does there existR′ ⊆ R such that(R′,W ) ` ϕ but (R′,W ) 6` ψ?
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This problem has the same complexity of the previous one, that is, it isΣP
2 -complete. In particular,

hardness is proved by reduction from P1.

Lemma 3.7. Problem P2 isΣP
2 -complete.

Proof:
Membership is proved in the same way which has been done for P1 in Lemma 3.6. Hardness is proved
by reduction from P1. Let(R,W ) and a formulaϕ be an instance of P1. We build an instance of P2 as
follows. Lett be a new variable. DefineWt andRt as follows.

Wt = {F ∨ t | F ∈W}
Rt =

{
α ∨ t
β ∨ t

∣∣∣∣
α

β
∈ R

}
.

Cn(Rt,Wt) is consistent thanks to the variablet that is disjoined to all involved formulae. This is
why t has been introduced, indeed. However, sinceCn(R,W ) is inconsistent,(Rt,Wt) ` t. The lemma
follows from the following statement.

There existsR′ ⊆ R such that(R′,W ) ` ϕ andCn(R′,W ) is consistent if and only if there
isR′′ ⊆ Rt such that(R′′,Wt) ` ϕ ∨ t and(R′′,Wt) 6` t.

Informally, this statement is true as deleting rules fromR to remove inconsistency corresponds to
deleting rules fromRt to maket not implied any more.

First we show the direction from the left to the right. SupposeR′ ⊆ R, (R′,W ) ` ϕ andCn(R′,W )
is consistent. It is easy to see that(R′t,Wt) ` ϕ ∨ t and(R′t,Wt) 6` t. Conversely, supposeR′′ ⊆ Rt,
(R′′,Wt) ` ϕ ∨ t and(R′′,Wt) 6` t. LetR′ be obtained fromR′′ by droppingt. Since(R′′,Wt) 6` t,
Cn(R′′,Wt ∪ {¬t}) is consistent. This, together with(R′′,Wt) ` ϕ ∨ t, implies thatCn(R′,W ) is
consistent and(R′,W ) ` ϕ. ut

Now we show that the unique extension existence problem for normal default theories isΠP
2 -complete.

Hardness is shown by reduction from P2.

Theorem 3.2. The problem of determining whether a normal default theory has a unique extension is
ΠP

2 -complete.

Proof:
We show that the problem of determining if a normal default theory(D,W ) has at least two different
extensions is inΣP

2 . We employ the following procedure to determine if(D,W ) has at least two exten-
sions. First, guess two permutations of defaults inD. For each permutation compute the corresponding
extension [17]. If we get two different extensions then return yes. To compute an extension from a per-
mutation costs polynomially many calls to the oracle of consistency and inference checking. Thus, the
problem is inΣP

2 .
Hardness is proved by reduction from problem P2. Given a monotonic rule system(R,W ) such that

Cn(R,W ) is consistent, and given two formulasϕ, ψ such that(R,W ) ` ψ . Define
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D =
{
α : β
β

∣∣∣∣
α

β
∈ R

}
∪

{
: ψ
ψ
,
ϕ : ¬ψ
¬ψ

}
.

We only need to prove the following statement.

There existsR′ ⊆ R such that(R′,W ) ` ϕ and(R′,W ) 6` ψ if and only if (D,W ) has at
least two extensions.

The last two defaults, if they are at some point both applicable, generate two different extensions,
one implyingψ and one implying¬ψ. Applicability of both of them is only possible if, applying the
other defaults, we can makeϕ true whileψ is not implied (i.e.¬ψ is consistent). This corresponds to
finding a subset of rules that impliesϕ but notψ.

Let us formally prove the claim. We first show the direction from the left to the right. Suppose
R′ ⊆ R, (R′,W ) ` ϕ and(R′,W ) 6` ψ. LetD′ be obtained fromR′ by replacing each monotonic rule
α
β with α:β

β . From the assumption, we know that¬ψ appears in an extension of(D′ ∪ {ϕ:¬ψ
¬ψ },W ). By

the semi-monotonicity,¬ψ must occur in an extension of(D,W ). It is easy to seeψ appears in some
extension of(D,W ). Therefore(D,W ) has at least two extensions.

Now we prove the other direction. Suppose(D,W ) has at least two extensions. Let

DR =
{
α : β
β

∣∣∣∣
α

β
∈ R

}
.

SinceCn(R,W ) is consistent, then by Corollary 3.1,(DR,W ) has only one extension which con-
tainsψ because(R,W ) ` ψ. Therefore,(D,W ) must have an extension such that¬ψ ∈ E and¬ψ
is obtained by applyingϕ:¬ψ

¬ψ . As a consequence, there is a default proof containingϕ:¬ψ
¬ψ . From such a

default proof we can easily obtain a subsetR′ ⊆ R such that(R′,W ) ` ϕ but (R′,W ) 6` ψ. ut

As we have seen in the previous section,Γ(W ) has a special role, when there are no preconditions.
Indeed, it is an extension if and only if it is the unique extension of the theory. Preconditions, however,
make it a necessary condition only: ifΓ(W ) is an extension, it is unique, but the converse does not
necessarily hold.

Another necessary condition for uniqueness isΛ(W ) being an extension. We can prove that this
problem is actually easier than checking uniqueness. This is important, as we can solve this problem as
a preliminary step of checking uniqueness: ifΛ(W ) is not an extension, then we know that the default
theory does not have a single extension without solving theΠp

2-hard problem of checking uniqueness.

Theorem 3.3. For a normal default theory(D,W ), the problem of determining whetherΛ(W ) is an
extension is∆P

2 -complete.

Proof:
A finite base ofΛ(W ) can be computed with polynomially many calls to anNP -oracle. It is not hard to
see thatΛ(W ) is an extension if and only if condition 1 in Lemma 3.5 holds. To verify ifΛ(W ) satisfies
condition 1 also needs polynomially many calls to the oracle. Thus, the problem is in∆P

2 .
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Hardness is proved by reduction from the problem MSA-odd: the definition of this problem is in
Section 2; it is∆P

2 -hard [13]. Letϕ be an instance of this problem; letp1, . . . , pn be its variables. For
each variablepi we introduce a new variableti. We also need an additional variablet0. LetW = {ϕ, t0},
andD be the set of the following defaults.

D =
⋃

1≤i≤n

{
ti−1 : pi
pi

,
ti−1 ∧ pi : ti

ti
,
ti−1 ∧ ¬pi : ti

ti

}
∪

{¬pn : a
a

,
¬pn : ¬a
¬a

}

The idea is as follows. When computingΛ(W ), at the first step the only applicable defaults are those
corresponding toi = 1. Indeed,t0 is the only variabileti that is inW . In particular, the first default is
only applicable ifϕ is consistent withp1. This means thatp1 is added to the set we are building if and
only if it is consistent withϕ. In the other case,ϕ |= ¬p1. Either way, eitherp1 or ¬p1 is now implied.
This result in makingt1 be implied as well, which makes the defaults withi = 2 applicable.

Therefore, defaults are applied in order: first the ones withi = 1, then the ones withi = 2, etc. At
each step,pi is added to the extension if and only it is consistent with it. Therefore, at the end of this
process we have the lexicographically maximal model ofϕ. The presence ofpn blocks the application
of the last two defaults and we end up withΛ(W ) being the only extension of the theory. On the other
hand, if the lexicographically maximal model contains¬pn, both the last two defaults are individually
applicable, but cannot be applied together. Therefore, their conclusions are not inΛ(W ), while applying
either one generates an extension.

This informally shows thatΛ(W ) is an extension if and only ifpn is implied by the lexicographically
maximal model ofϕ. Formal proof is omitted as it is easy to derive.

ut

3.3. Semi-Normal Default Theories

The problem of checking whether a default theory has a single extension can be expressed as checking
whether it has at least one extension, and it has no more than one of them. The condition (checking
existence of extensions) has already been studied: Gottlob [7] and Stillman [21] proved it to be inΣP

2 . It
is easy to see that checking whether a default theory has more than one extension is inΣP

2 as well. Since
what we need is the converse of this problem, we conclude that UEE can be expressed as the intersection
of a problem inΣP

2 with a problem inΠP
2 . This holds for all default theories.

Theorem 3.2 implies that UEE isΠP
2 -hard for normal default theories, and this result extends to the

general case. It therefore remains a little gap between the lower and the upper bound we have. However,
it is possible to prove that UEE is at least as hard as another uniqueness problem on QBFs.

We consider quantified Boolean formulas that are valid whenever there exists an unique truth as-
signment on a part of the variables that makes the resulting formula valid. Such formulas are written as
follows.

Φ = ∃!y1 · · · ∃!ym∀x1 · · · ∀xnϕ.

This quantified Boolean formula is defined valid if there exists exactly one truth assignmentv to
the propositional variablesy1, · · · , ym such that, howeverv is extended to the propositional variables



16 X. Zhao and P. Liberatore / Complexity of the Unique Extension Problem in Default Logic

x1, · · · , xn, formulaϕ is true. To check whetherΦ is true, we first check that∃y1 · · · ∃ym∀x1 · · · ∀xnϕ
is true. This is aΣP

2 problem. Then we check that there is at most one truth assignmentv to y1, · · · , ym
such thatv makesϕ to be tautology. This is aΠP

2 problem. Therefore, the problem of deciding the
validity of a quantified Boolean formula with the above form can be described as the intersection of a
problem inΣP

2 and one inΠP
2 . The next lemma shows that it isΠP

2 -hard.

Lemma 3.8. The problem of deciding the validity of a quantified Boolean formula with the form∃!y1 · · · ∃!ym∀x1 · · · ∀xnϕ
is ΠP

2 -hard.

Proof:
This lemma directly follows from the fact that∃y1 · · · ∃ym∀x1 · · · ∀xnϕ is false if and only if∃!y0∃!y1 · · · ∃!ym∀x1 · · · ∀xn(ϕ∧
¬y0) ∨ (y0 ∧ y1 ∧ · · · ∧ ym) is true, wherey0 is a new variable. ut

We now prove that this problem can be reduced to UEE in polynomial time.

Theorem 3.4. The UEE problem for semi-normal default theories is at least as hard as the problem of
deciding the validity of a quantified formula of the form∃!y1 · · · ∃!ym∀x1 · · · ∀xnϕ.

Proof:
Let Φ be the quantified Boolean formula∃!y1 · · · ∃!ym∀x1 · · · ∀xnϕ, and lett1, · · · , tm and t be new
variables. DefineW = ∅ andD to be the set consisting of the following defaults

(I) The defaults

¬ϕ : ¬t1 ∧ · · · ∧ ¬tn ∧ t
t

,
¬ϕ : ¬t1 ∧ · · · ∧ ¬tn ∧ ¬t

¬t ,

(II) For eachi = 1, · · · ,m, the defaults

: yi ∧ ϕ
yi

,
: ¬yi ∧ ϕ
¬yi

(III) For eachi = 1, · · · ,m, the defaults

yi : ti
ti

,
¬yi : ti
ti

(IV) Finally, the default
t1 ∧ · · · ∧ tn : ¬ϕ

¬ϕ
The QBF formula must be valid if and only if the default theory has a single extension. Therefore,

whenever the QBF formula is not valid, the corresponding default theory is made having zero or more
than one extension. In particular, ifϕ is contradictory, the defaults in group (I) generate two extensions.

The default in the group (II) are defined in such a way either one for eachi has to be applied, ifϕ is
not contraditory. Intuitively, each time we apply a default we make an arbitrary choice on settingyi to
true or false. Whenever such an assignment is done, one of the default in group (III) is applicable, which
results inti being set wheneveryi is assigned a value.

Up to this point, the values ofyi are set arbitrarily, whileti is set wheneveryi is assigned a value.
What is still left is a way to guarantee that this is an extension if and only ifϕ is valid in this partial
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assignment, regardless of the value of the variablesxi’s. This would imply that the QBF is valid if and
only if the default theory has exactly one extension. Default (IV) is defined to this purpose: ifϕ is valid,
the last default is not applicable; no other default is applicable, and the theory we have built is already an
extension. Ifϕ is instead not valid, then¬ϕ is consistent, and the last default is applicable. This leads to
contradicting the justification of all defaults in group (II). Therefore, this is not an extension.

Formally, we will prove the following statement.

Φ is valid if and only if(D,W ) has exactly one extension.

Before proving the statement, we show a related claim. Letv be a truth assignment to the proposi-
tional variablesy1, · · · , ym that satisfiesϕ however it is extended tox1, . . . , xn. Let Lv be the set of
literals (variables and their negations) satisfied byv:

Lv := {l | l ∈ {yi,¬yi} for somei andv(l) = 1}.

LetEv = Cn(Lv ∪{t1, . . . , tm}). We prove thatE is an extension of(D,W ). First, by assumption
ϕ is implied fromLv, henceϕ ∈ Ev. The defaults in group (II) make each literal inLv to be inΓ(Ev).
Moreover, thanks to the defaults in group (III), eachti is also inΓ(Ev). ThusEv ⊆ Γ(Ev). By Gottlob’s
Lemma 2.2 in [8] it is easy to see thatΓ(Ev) ⊆ Ev. HenceEv = Γ(Ev). That is to sayEv is an
extension of(D,W ).

SupposeE is an extension of(D,W ) such thatϕ ∈ E. It is easy to see that, for eachi = 1, · · · ,m,
eitheryi or ¬yi is in E, and that allti, (i = 1, · · · ,m) are inE. Define the truth assignmentvE to
y1, · · · , ym as follows. For eachi = 1, · · · ,m,

vE(yi) =

{
1, if yi ∈ E
0, otherwise

Note thatϕ 6∈ W and there is no default whose consequence isϕ. Thus,ϕ must be provable from
E ∩ {y1,¬y1, · · · , ym,¬ym}. As a result, howevervE is extended tox1, · · · , xn, ϕ is true undervE .

Now we come the proof of the statement.
(⇒). SupposeΦ is valid. Letv be the unique truth assignment toy1, . . . , ym such that, in whatever

wayv is extended,ϕ is true underv. We already proved thatEv is an extension of(D,W ). LetE be an
arbitrary extension of(D,W ). We claim¬ϕ 6∈ E. Suppose, by contrary,¬ϕ ∈ E. Then noti is in E.
This can be proved as follows. Supposeti is inE; then, eitheryi or¬yi is inE. Hence one of defaults in
group (II) is applicable. On the other hand,¬ϕ blocks the use of defaults in group (II), a contradiction.
Thus, the final default is not applicable and hence¬ϕ must be a tautology. However,ϕ is satisfiable by
assumption, a contradiction. Therefore,¬ϕ 6∈ E. Then, for eachi, eitheryi or¬yi is inE, hence eachti
is inE. Then we get thatϕ is inE (otherwise,¬ϕ ∈ E by the last default). Consequently,vE is also a
truth assignment satisfyingϕ regardless the truth values ofxi, i = 1, · · · , n. By the uniqueness ofv, we
getv = vE . ThenEv ⊆ E, and henceE = Ev. That is to say,(D,W ) has exactly one extension.

(⇐). Suppose(D,W ) has exactly one extension, sayE. If ¬ϕ ∈ E, then¬ϕ would be a tautology
(see the above paragraph). Therefore, because of the defaults in group (I)(D,W ) would have two
extensions, one containingt and the other containing¬t. Thus¬ϕ is not inE. Then, for eachi, eitheryi
or¬yi is inE, hence eachti is inE. Supposeϕ 6∈ E. Then by the final default¬ϕ ∈ E, a contradiction.
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Thusϕ ∈ E. Then,vE satisfiesϕ regardless the truth values ofxi, i = 1, · · · , n. Supposev is another
truth assignment with the same property asvE . Then,Ev is an extension of(D,W ) different fromE,
contradicting the uniqueness ofE. ThusΦ is valid.

Therefore, we prove the theorem. ut

4. Disjunction-Free Default Theories

A defaultd is disjunction-free if no formula in it contains the disjunction connective∨, that is, it is in the
form:

d =
a1 ∧ · · · ∧ ak : b1 ∧ · · · ∧ bm ∧ c1 ∧ · · · ∧ cn

b1 ∧ · · · ∧ bm ,

whereai, bi, ci are literals. In this case, we considerp(d), j(d), c(d) as sets of literals. Normality
and semi-normality are defined as before. A disjunction-free default theory is a default theory(D,W )
in whichW is a set of literals andD is a set of disjunction-free defaults. For a normal default theory
(D,W ), we identifyΛ(W ) with the set of literals inΛ(W ). It has been shown that disjunction-free
default reasoning is still intractable [11].

Suppose(D,W ) is a disjunction-free default theory. LetD′ be obtained fromD by deleting all the
defaults in which there is a literalx such that¬x ∈ W . It is easy to see that(D,W ) and(D′,W ) have
the same extensions. We can therefore assume, without loss of generality, that the literals of the defaults
in D are all consistent withW .

4.1. Normal Disjunction-Free Default Theories

We have shown, in a previous section, that the unique extension problem for normal default theories is
ΠP

2 -complete. In this section we will show that the problem is polynomial for disjunction-free normal
default theories.

Before technically proving this claim, we give some intuitions about it. First of all, inference is
polynomial when all involved formulas are conjunctions of literals. This clearly makes checking appli-
cability of defaults polynomial. In the general case, Lemma 3.5 shows when a default theory has exactly
one extension: whenΛ(W ) is an extension and no default is applicable after a subset of∆(W ) has been
applied, while it is not inΛ(W ).

The first condition is clearly polynomial: start withW , and then apply all defaults that are applicable
in it, until either contradiction arises or no other default is applicable. Since applicability is polynomial,
the whole process is polynomial.

One of the outcomes of the evaluation ofΛ(W ) is the set of defaults that have been applied so far
∆(W ). This set is needed for checking the second condition of uniqueness. In particular, we have
to consider each possible subset of it, and check which defaults are applicable. In general, there are
exponentially many such subsets. In this case, however, we only need to consider a specific subset.

Definition 4.1. Let (D,W ) be a normal disjunction-free default theory. Letd ∈ D be such that¬a ∈
Λ(W ) for somea ∈ c(d). Define:
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∆(W,d) = ∆(W )\{
d′ ∈ ∆(W ) | there existsx ∈ c(d) such that¬x ∈ p(d′) ∪ c(d′)} .

That is to say, for any defaultd∗ ∈ ∆(W ), d∗ ∈ ∆(W,d) if and only if every literal ind∗ is consistent
with c(d).

The point is that, while checking for subsets of∆(W ) that makesd applicable, we only have to
consider the defaults that do not involve (as a precondition or as a consequence) a literal whose opposite
is in d. We can therefore restrict our attemption to the defaults in∆(W,d).

A further simplification of the problem is due to the fact that the defaults in∆(W ) do not conflict
to each other, as this implies the same for the defaults in∆(W,d). Therefore, application of them
corresponds to generating the unique extension of(∆(W,d),W ), in which only a part of the defaults in
∆(W,d) can be applied. Moreover, by construction, the justification ofd is necessarily consistent with
the unique extension of(∆(W,d),W ).

Lemma 4.1. Let (D,W ) be a normal disjunction-free default theory.(D,W ) has only one extension if
and only if the following conditions hold.

1’. There is no defaultd ∈ D such thatp(d) ⊆ Λ(W ) but c(d) 6⊆ Λ(W ) and¬x 6∈ Λ(W ) for all
x ∈ c(d).

2’. For any defaultd ∈ D such that¬x ∈ Λ(W ) for somex ∈ c(d), p(d) is not included in the unique
extension of(∆(W,d),W ).

Proof:
Condition 1 in Lemma 3.5 and condition 1’ are in fact the same. We only have to prove that 2 and 2’
are the same as well. We first prove theonly if part. Suppose(D,W ) has exactly one extension. Then,
by Lemma 3.5, Condition 2 in Lemma 3.5 hold. By the construction of∆(W,d), the unique extension
of (∆(W,d),W ) is consistent withc(d). Thus, by Condition 2 we know thatp(d) is not included in the
unique extension.

To prove the converse, we assume that Condition 2’ holds, and prove that Condition 2 holds as well.
Suppose, by contrary, that there is a defaultd ∈ D such that¬x ∈ Λ(W ) for somex ∈ c(d) and there
existsD′ ⊆ ∆(W ) such thatp(d) is included in the unique extension of(D′,W ), whilec(d) is consistent
with the extension. Then,D′ ⊆ ∆(W,d). Hencep(d) is included in the extension of(∆(W,d),W ),
contradicting the assumption that Condition 2’ holds. This completes the proof. ut

For a disjuction-free normal default theory(D,W ), computingΛ(W ) needs polynomial time since
consistency checking here becomes trivial. To inspect Condition 1’ also needs only polynomial time
for the same reason. For any defaultd ∈ D, (∆(W,d),W ) has exactly one extension, which can be
computed in polynomial time. It follows that condition 2’ can be checked in polynomial time.

Theorem 4.1. The UEE problem for normal disjunction-free default theories can be solved in polyno-
mial time.
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4.2. Semi-Normal Disjunction-Free Default Theories

Part of the problem of uniqueness is checking whether a default theory has at least one extension. This
problem is already known to beNP -complete [11, 21, 5]. The other part of the problem is that of
checking whether the default theory has two or more extensions or not. This problem isNP -hard. Since
UEE can be solved by checking whether a default theory has at least one extensions, andit has not
two or more extensions, it can be expressed as the intersection of a problem inNP and a problem in
coNP . Therefore, it is inDP when no disjunction is allowed. Proving hardness is however difficult. We
show that the problem is at least as hard as the problem of checking whether a propositional formula has
exactly one extension.

Theorem 4.2. For disjunction-free semi-normal default theories, the UEE problem is at least as hard as
Unique-SAT.

Proof:
Let ϕ = α1 ∧ · · · ∧ αm be a 3-CNF formula withαi = (ai ∨ bi ∨ ci). We introduce a new variablet,
and a new variableti for each clauseαi. DefineW = ∅ andD to be the set consisting of the following
groups of defaults.

(I) For each variablep ∈ var(ϕ), the defaults

: p ∧ t
p

,
: ¬p ∧ t
¬p .

(II) For eachi = 1, 2, · · · ,m, the defaults

ai : ti
ti

,
bi : ti
ti

,
ci : ti
ti

.

(III) For eachi = 1, 2, · · · ,m, the defaults

¬ai ∧ ¬bi ∧ ¬ci : ¬ti
¬ti

(IV) The default
t1 ∧ t2 ∧ · · · ∧ tm : t

t

(V) For eachi = 1, · · · ,m, defaults
¬ti : ¬t
¬t .

Informally, using defaults in (I), we can get a truth assignment. Since we want this theory to have a
single extension if and only ifϕ has a single model, the other defaults must generate a single extension
for each model of the formula, and no extension if the truth assignment does not satisfiesϕ.

Defaults in (II) and (IV) are defined in such a way that, if the truth assigment satisfiesϕ, then
t, t1, . . . , tm are derived. Defaults in (III) are instead aimed at making allti false if the truth assigment
falsifiesϕ. It is easy to see that exactly one extension is obtained in the first case (no other default
is applicable). In the second case, the last default is applicable, generating¬t which contradicts the
justification of the defaults in group (I), and this is therefore not an extension.

Formally, we prove the theorem by showing that the following statement is true.
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ϕ is in Unique-SAT if and only if(D, ∅) has exactly one extension

Before proving the statement we do some preparation.

1. Let v be a truth assignment such thatv(ϕ) = 1. DefineEv = Cn(Lv ∪ {t1, · · · , tm, t}): by
construction,Ev is an extension of(D, ∅).

2. SupposeE is an extension of(D, ∅); we prove that¬t 6∈ E. Suppose otherwise; then¬t must
be obtained from one default in group (V), say¬ti:¬t¬t . Thus¬ti is inE. SinceE is an extension,
¬ti must be obtained by applying the default in group (III). Hence¬ai,¬bi,¬ci belong toE. To
obtain¬ai,¬bi,¬ci we have to apply some defaults in group (I). On the other hand, the fact that
¬t ∈ E would block the use of defaults in group (I), a contradiction. Thus¬t 6∈ E.

3. We showt ∈ E, if E is an extension of(D, ∅). Supposet 6∈ E. Since¬t 6∈ E we have that no
¬ti belongs toE (otherwise from defaults in group (V) we would get¬t). Since neithert nor¬t
is inE, we get that at least oneti is not inE (otherwise,t would be inE by the default in group
(IV)). Now we know that there is somei such that neitherti nor¬ti is inE. From the defaults in
group (III), we get{¬ai,¬bi,¬ci} 6⊆ E. Without loosing any generality, we assume that¬ai 6∈ E.
Then the default:ai∧t

ai
in group (I) is applicable. Henceai ∈ E. Since¬ti 6∈ E the defaultai:ti

ti
is applicable, we haveti ∈ E. However, we have previously proved thatti 6∈ E, a contradiction.
Consequently,t ∈ E. Thent must be obtained by using the default in group (IV). Thus eachti
appears inE. Further,{ai, bi, ci} ∩ E is non-empty. As a result,ϕ ∈ E is satisfiable.

LetE be an extension of(D,W ). We define the truth assignmentvE as follows. For each variable
p ∈ var(ϕ), vE(p) = 1 if p ∈ E, vE(p) = 0 otherwise. Clearly,vE(ϕ) = 1. We now prove the
statement of the theorem.

(⇒). Supposev is the unique truth assignment satisfyingϕ. By the above argument, we knowEv is
an extension of(D, ∅). SupposeE is another extension of(D, ∅). By the above discussion we know that
{t1, · · · , tm, t} ⊆ Ev ∩ E. ThusE andEv must be different at some variablep ∈ var(ϕ). That means
v andvE will be different, contradicts the uniqueness ofv. Thus(D, ∅) has exactly one extension.

(⇐). SupposeE is the unique extension of(D, ∅). ThenvE is a truth assignment satisfyingϕ.
Supposev is another truth assignment ofϕ. ThenEv is an extension of(D, ∅). SincevE andv are
different,E andEv are different by the definition ofvE andEv. This contradicts the uniqueness ofE.
Consequently,ϕ is uniquely satisfiable.

Hence, We prove the theorem. ut

4.3. Unary defaults and Ordered Theories

In this section, we analyze the problem of uniqueness of extensions for the case of unary defaults and
ordered theories. We show that UEE problem for unary default theories is at least as hard as Unique-SAT.
A defaultd is termed unary if it is of the form

d =
p : q
q
, or

p : q ∧ ¬r
q

, or
p : ¬q
¬q ,

wherep, q, r are propositional variables.



22 X. Zhao and P. Liberatore / Complexity of the Unique Extension Problem in Default Logic

Theorem 4.3. The problem of determining whether a unary default theory has exact one extension is at
least as hard as Unique-SAT.

Proof:
We will employ the reduction defined in Definition 5.3 of [11] to prove the hardness (but we use different
notations). Letϕ = α1 ∧ · · · ∧ αn be a 3CNF formula withαi = (ai ∨ bi ∨ ci). Let π be the function
that maps each positive literal to itself, and maps each negative literal to a new variable. For each clause
αi we introduce two new propositional variablesfi, gi. Let f andz be two other new variables. LetD
be made up of defaults in the following groups.

(A) For each variablep, the defaults:
: p
p
,

: ¬p
¬p ;

(B) For each variablep, the defaults:

p : ¬π(¬p)
¬π(¬p) ,

: π(¬p) ∧ ¬p
π(¬p) ;

(C) For each clauseαi, the defaults:

π(¬ai) : gi ∧ ¬π(bi)
gi

,
gi : fi ∧ ¬π(ci)

fi
,
fi : f ∧ ¬z

f
;

(D) The single default:
f : z
z

.

Kautz and Selman [11] pointed out thatϕ is satisfiable if and only if(D, ∅) has an extension. In fact,
from different satisfying truth assignments ofϕ we can construct different extensions of(D, ∅) and vice
versa. Thus,ϕ is uniquely satisfiable if and only if(D, ∅) has exact one extension. ut

Let us now consider ordered disjunction-free default theories. Since they always have extensions
[11, 6], the UEE problem reduces to checking whether they do not have two or more extensions. As a
result, the problem is in coNP . However, the problem remains intractable even for ordered unary default
theories.

Definition 4.2. ([6, 11]) Suppose(D,W ) is a disjunction-free theory, letLit be the set of all literals
occurring in the theory. Define¿ and¿ to be the smallest relation overLit× Lit such that

1. ¿ is reflexive,

2. ¿ is a superset of¿,

3. ¿ and¿ are transitive,

4. ¿ is transitive through¿; that is, for literalsx, y, z ∈ Lit:

[(x¿ y ∧ y¿z) ∨ (x¿y ∧ y ¿ z)] → x¿ z,
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5. for everyd ∈ D, and everya ∈ p(d), b ∈ c(d), andc ∈ j(d)− c(d):

a¿b, ¬c¿ b.

Then(D,W ) is said to be ordered if and only if there is no literalx ∈ Lit such thatx¿ x

Theorem 4.4. The problem of determining whether an ordered unary default theories has exactly one
extension is coNP -complete.

Proof:
We define a reduction from a 3CNF formulaϕ containing a negative clause (i.e., every literal in the
clause is negative) to an ordered unary theory. Pick an additional new variablet. LetD be made up of
defaults in groups (B), (C) of Theorem 4.3 and defaults in the following groups (A’), (E)

(A’) For each variablep, the rules:
: p
p
,
t : ¬p
¬p ;

(E) The single rule:
: t ∧ ¬f

t
.

We first check that(D, ∅) is ordered. For¬p, because¬p does not occur in the prerequisite of any
defaults and becausep does not occur in the justification of any default except for:p

p , we know that there
is no other literalL such that¬p ¿ L or ¬p¿L. Hence it is impossible that¬p ¿ ¬p. For¬π(¬p),
it does not occur as prerequisite in any default andπ(¬p) does not occur as justification in any default.
Therefore,¬π(¬p) 6¿ ¬π(¬p). For any other literalL, from the default in (A’),(B), (C),(E), we can
see that in each maximal path (with respect to¿ and¿) from L, any two literals are different. Hence,
L 6¿ L. Consequently,(D, ∅) is ordered.

Supposeϕ unsatisfiable. Clearly,

{p,¬π(¬p) | p occurs inϕ} ∪ {fi, gi | αi is a negative clause} ∪ {f}

is an extension. Suppose(D, ∅) has another extensionE. If t ∈ E, thenf 6∈ E. ThenE could determine
a satisfying truth assignmentv, contradicting the unsatisfiability. Thus,t 6∈ E. It follows thatf ∈ E
(otherwise,t could be obtained by applying the default in (E)). Then, there must be a variablep such that
p 6∈ E. If ¬p 6∈ E then :p

p would be applicable. Thus¬p ∈ E. Then¬p must be obtained by applying
t:¬p
¬p . Hencet ∈ E. That meansf 6∈ E. This would imply the satisfiability ofϕ. Therefore,(D, ∅) has

exactly one extension.
Suppose(D, ∅) has exactly one extension. Sinceϕ contains a negative clause, it follows that

{p,¬π(¬p) | p occurs inϕ} ∪ {fi, gi | αi is a negative clause} ∪ {f}

is an extension of(D, ∅) (from the defaults constructed from a negative clause we getf , thus the default
in (E) is not applicable). Supposeϕ is satisfiable. Letv be a satisfying truth assignment ofϕ. Fromv
we can construct an extension which containst. Then(D, ∅) has at least two extensions, a contradiction.
Thusϕ is unsatisfiable.

ut
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5. Conclusions

In this paper we mainly analyzed the complexity of the unique extension existence problem. As explained
in the Introduction, the problem of checking whether a default theory has a small number of extensions
is also of interest. For example, for some fixed natural numberk ≥ 1, one may ask whether a default
theory has at mostk extensions. We denote this problem by EE(k), and discuss its complexity.

For normal default theories, membership toΠP
2 is easy to prove: the opposite problem of determining

whether a normal default theory has more thank extensions is inΣP
2 : guessk + 1 permutations of

defaults, for each permutation construct an extension; if we getk + 1 different extensions then return
yes. Thus, EE(k) is in ΠP

2 for normal default theories.
For semi-normal default theories, the problem might get harder, since we also have to check the exis-

tence of extensions. For normal disjunction-free default theories, EE(k) can still be solved in polynomial
time. The proof is similar to that in section 4.1; being long but tedious, it is omitted. For semi-normal
disjunction-free default theories, EE(k) is still in DP for any fixedk.

Summarizing, EE(k) for any fixedk > 1 does not get harder than UEE with respect to polynomial
transformations. On the other hand, EE(k) for fixedk > 1 can not get easier than UEE. This can be seen
as follows (for simplicity, we takek = 3 as example). For any default theory(D,W ), pick new variables
p, q. Define

D′ = D ∪
{

: p
p
,

: ¬p
¬p ,

p : q
q
,
p : ¬q
¬q

}
.

It is easy to see that(D,W ) has exactly one extension if and only if(D′,W ) has exactly three
extensions. The case ofk = 3 easily generalizes to any fixedk > 1: all the hardness results for UEE
hold for EE(k) as well.

Let us now discuss the significance of the results. One might think of a default theory with a small
number of extensions as a rational system. Our results show that the problem of deciding whether
a default theory is rational is also very hard. While it is clear that it cannot be any easier than default
resoning, an additional source of complexity is that of checking conflict accessibility. As we have seen in
the previous section, multiple extensions are due to the presence of defaults that can be applied alone, but
not together (conflicting defaults.) Nevertheless, such conflicts may not be accessible, in the sense that
the conditions to apply such defaults are never met while actually computing extensions. In particular,
a default theory may contain many conflicts, but most of them are never encountered when computing
extensions. Im this case, the default theory has only a small number of extensions. Let us consider the
following example.

D =
{

: p
p
,
p : r
r
,
r : ¬p
¬p

}
.

The default theory(D, ∅) contains a conflict between the first and the third defaults ofD, as their
consequences contradict each other. However, the last default is never applicable, hence the default
theory has only one extension. Let us consider another example.

D′ =
{

: p
p
,
p : r
r
,
r : ¬p
¬p ,

: t
t
,
t : r
r

}
.
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The default theory(D′, ∅) also contains a conflict. Since both the two conflicting defaults:p
p and

r:¬p
¬p are accessible,(D′, ∅) has two extensions. Testing whether a conflict is accessible is what makes

the UEE problem hard. The restricted cases in which the test of accessibility of conflicts is easy, the
complexity of the UEE problem decreases. For example, the problem of determining whetherΓ(W )
is an extension of a normal default theory(D,W ) is PNP [logn]-complete, since conflict accessibility is
easy in this case. In the normal disjuction-free case, the test of accessibility can be done efficiently, hence
the UEE problem is solvable in polynomial time.

Some problems that have been left open by this work. The UEE problem for semi-normal default
theories is inDP , but it is open whether it isDP -complete or not. We have shown that the problem is at
least as hard as the unique satisfiability problem which, is inDP and has been shown to be coNP -hard.
Even for very simple (e.g., unary) theories, the problem is still at least as hard as Unique-SAT.

The problem simplifies when the default theory is very simple: for ordered theories, since the exis-
tence of extensions is guaranteed, the UEE problem is coNP -complete. For ordered unary theories the
problem is still coNP -complete.
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