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Abstract. In this paper we analyze the problem of checking whether a default theory has a sin-
gle extension. This problem is important for at least three reasons. First, if a theory has a single
extension, nonmonotonic inference can be reduced to entailment in propositional logic (which is
computationally easier) using the set of consequences of the generating defaults. Second, a theory
with many extensions is typically weak i.e., it has few consequences; this indicates that the theory is
of little use, and that new information has to be added to it, either as new formulae, or as preferences
over defaults. Third, some applications require as few extensions as possible (e.g. diagnosis).

We study the complexity of checking whether a default theory has a single extension. We con-
sider the combination of several restrictions of default logics: seminormal, normal, disjunction-free,
unary, ordered. Complexity varies from the first to the third level of the polynomial hierarchy. The
problem of checking whether a theory has a given number of extensions is also discussed.
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1. Introduction

One of the most prominent formal approaches to nonmonotonic reasoning is default logic [19]. It is dif-
ferent from standard (propositional) logic because of default rules, which model human reasoning made
in prototypical situations when complete information is lacking. Informally, a default rule states a rule

of inference (given a fact, we can conclude some other fact) that can only be applied if a given premise
cannot be proved to be false. Since the premise is assumed to be true whenever it is not known, a default
rule models a reasoning step in which a conclusion is drawn by default (in absence of a contradictory
information). A default theory is composed of a propositional part, plus a set of default rules. Formally,
itis a pair(D, W) in which W is a set of propositional formulas called initial knowledge wHilés a

set of default rules.

Default logic provides a powerful tool for knowledge representation and reasoning, as it allows for
formalizing rules that are easy to state informally, but would require large knowledge bases in propo-
sitional logics. However, there is a price to be paid to gain such advantage. As it is the case for any
nonmonotonic reasoning formalism, inference in default logic is computationally hard to do. As proved
by Gottlob [7], checking whether a fact is implied by a default theory is at the second level of the poly-
nomial hierarchy, and is therefore harder than propositional inference, which is only at the first level.

Another drawback of default logic is that some theories do not have extensions; if this is the case,
no information can be derived from them. This problem motivates the introduction of restricted forms
of the default rules: for example, normal defaults always generate extensions. Another solution is the
introduction of new semantics: for instance, Przymusinska and Przymusinski [18] introduced the notion
of stationary extensions and proved that a stationary extension always exists. Many other variants of the
original semantics exist. All of them are harder than propositional logic.

Complexity is due to two causes: first, reasoning requires propositional inference, which is known
to be intractable; second, a default theory may have exponentially many extensions, and all of them have
to be taken into account in the process of inference. A large number of attempts to lower complexity of
default reasoning have been put forward in the literature. Two main directions have been followed: one
is to use restricted forms of the propositional part (e.g. Horn); the other one is to use only defaults of a
specific form (e.g. normal). However, most restrictions are still intractable.

The large number of extensions can be seens either as a drawback, or as a feature. Since it is due to
a large number of conflicting rules, one can either advocate that default reasoning is good as it allows
to reason in presence of many conflicts (which is impossible in the standard propositional logic); on
the other hand, having too many extensions may be a problem. In any case, knowing the number of
extensions of a default theory is key feature of the default theory, for several reasons:

Compilation. If a default theory has a single extension, then it can be translated into propositional logics
without changing its consequences (and, therefore, the information it carries). This allows for
solving the problem of inference by an algorithm with preprocessing [2, 3, 15]: the preprocessing
step is that of translating the default theory; once it is done, queries can be solved in the (easier)
propositional calculus.

Expressiviness.A default theory being equivalent to a propositional theory can be seen as implying that
we are using a computationally complex formalism (default logic), while the information can be
encoded into the propositional logic. In this sense, having one extension is a drawback.
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Weakness.If a default theory has many extensions, it usually have few consequences, i.e. it is weak.
This may indicate that information has not be encoded incorrectly, or that it is simply deficient. In
the latter case, new information has to be added, either in terms of new plain facts (propositional
formulae), or in terms of priorities among defaults.

Use of extensionsIn some applications of default logic, a small number of extensions is to be preferred.
For example, if we encode a model-based diagnosis problem in default logic, then extensions
corresponds to possible diagnoses, and a small number of them is clearly to be preferred.

These points show that a default theory having few extensions can be seen as a drawback or as a
feature, depending on the point of view. Knowing the number of extensions allows for evaluating the
theory, which can be then regarded as good or bad, depending both on the number of extensions and on
the point of view.

In this paper we mainly analyze the complexity of the unique extension existence problem, we denote
by UEE, that is, the complexity of the problem of determining whether a default theory has exact one
extension. We not only study the general case but also analyze various restrictions (normal defaults, etc.)

We begin with the case of prerequisite-free normal defaults in Section 3, and show that UEE is
PNPlogn]_complete. When defaults are normal but prerequisite are allowed, complexity goes up to the
second level of the polynomial hierarchy, as the UEE]Scomplete. For semi-normal default theories
the UEE problem is inDl’, i.e., it can be expressed as the intersection &f aproblem and dlf’
problem. Since every normal default is semi-normal, the UEE problem for semi-normal default theories
is 15 -hard.

In Section 4, we analyze the problem under the strongest restrictions of default logics: disjunction-
free, unary, and ordered. While it is foreseeable that the problem is simplified by these assumption, it
is somehow surprising to see how much it is. For normal disjunction-free default theories the problem
becomes polynomial. For semi-normal disjunction-free theories the problemI¥’jni.e., it is the
intersection of oneéV P problem and one d¥ P problem. But whether it i©9*-complete is open. We
only show that it is at least as hard as the unique satisfiability problem. Even for unary default theories,
the complexity of the UEE problem does not decrease. For ordered theories, since the existence of
extensions is guaranteed, the problem become#&@tproblem. We show that it is @8 P-complete. In
section 5, we first informally prove that the problem EE@eciding if a default has exaktextensions,
has the same complexity as the UEE problem, wheigany fixed natural number. We then roughly
discuss the reason why the problem UEE has high computational complexity. Our main results are
summarized in Table 1.

The complexity analysis reported in this paper extends previous work about complexity of default
logic by analyzing the problem of uniqueness of extensions, that have been missing. Indeed, the decision
problems analyzed so far are: the existence of extensions; credulous reasoning (deciding whether a
formula appears in at least one extension); skeptical reasoning (deciding whether a formula appears in
all extensions); model checking (deciding whether an interpretation is a model of all extensions); and
extension checking (deciding whether a set of defaults represents an extensions).

The first three problems have been analyzed by Gottlob [7], model checking has been analyzed
by Liberatore and Schaerf [16] and by Baumgarden and Gottlob [1], and extension checking has been
studied by Rosati [20].

All these works have shown that default logic is usually at the second level of the polynomial hierar-
chy, and is in general harder than the underlying monotonic reasoning. This leads many researchers to
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NM | semi-NM | NM v-free | semi-NMV-free unary O-unary
member of | TI1% D¥ P DF D? CON P
hard for | TIY ny — Unique-SAT | Unique-SAT | coNP

“NM” stands for “normal”; “v-free” stands for “disjunction-free”

“O-unary” is for “ordered unary”

Table 1. Complexity of the unique extension existence problem

studying the complexity of default reasoning in special cases [11, 21, 4, 24, 23]. For example, Kautz and
Selman [11] analyzed disjunction-free default theories. Although the underlying monotonic inference is,

in this very restricted case, very easy, default reasoning is still intractable. Kautz and Selman [11] also
introduced some subclasses of disjunction-free default theories, such as unary theories, ordered theories
and ordered unary theories, etc. However, default reasoning for most of them remains intractable. Our
work is related to that of actually finding the “right” extension, which has been considered by Lang and
Marquis [14].

2. Preliminaries

2.1. Default Logic

First we recall some definitions and results on Reiter’s default logic. In this paper we only consider finite
propositional default theories in which the initial knowledge is consistent. A default is a rule of the form

ey
9 )
wherey, 1, 6 are propositional formulasy is called the prerequisite of the default,is called its

justification, and) is the consequence. Given a defaijlive write p(d) for the prerequisite of, j(d)
for its justification, and:(d) for its consequence. Given a detof defaults, define

p(D) = {p(d)|d € D},
J(D) ={j(d)|d € D},
¢(D) = {c(d)|d € D}.

A default is normal if its justification and consequence are the same. A semi-normal default is of the
form

p:OANY
—g
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A (normal, semi-normal, respectively) default theory is a pair W) whereD is a set of (normal,
semi-normal) defaults and’” is a consistent set of formulas.
Let (D, W) be a default theory§ be a set of formulas. Thdn(.S) is the smallest theory such that

1. W C I(S),

2. T'(S) is closed under propositional deduction,

3. Foranyd € D, if p(d) € T'(S) andS t/ —j(d) thenc(d) € T'(S).
We say a theory is an extension of D, W) if and only if E = I'(E).

2.2. Monotonic Rule Systems

A monotonic rule systerR, W) consists of a finite set

R:{Oﬂ,...,an}
et Tn

of monotonic propositional inference rules and aldebf propositional formulas. Intuitively, a mono-
tonic rule% means that wheneveris derived,7 must be added to the knowledge base. A formuia
derivable from(R, W), denoted aéR, W) | ¢, if and only if o can be obtained frofi” and the axioms
of propositional calculus and by a finite number of applications of the modus ponens and some rules in
R. The set of all propositional formulas derivable foff, W) is denoted a&'n(R, W).

Gottlob [8, Lemma 2.2] proved th&f(S) = Cn(Dy, W), where

DO:{(; a:f

5 eD,SV ﬂﬁ} .
2.3. Equivalent Semantics of Default Logic

Reiter [19] has shown that each normal default theory has at least one extension. However, there
exist semi-normal default theories with no extension. Furthermore, normal default logic has semi-
monotonicity property, that is, for any two normal default theori&s, W) and (D, W) such that
D" C D, every extensiorE’ of (D', W) can be extended to an extension(d@#, W). In addition,
we also need to recall the proof theory for normal default theories.

Let (D, W) be a normal default theory, a propositional formula. We say that a sequefice
(di,da, - - ,dy,) of defaults fromD is a default proof ofp if

1. d, is prerequisite-free o I p(dy).
2. Foreach,1 <i<m,WUc({d1, - ,di—1}) F p(d;)
3. W Uc(0) is consistent an®l” U ¢(d) F ¢

It has been proved that for normal default logic a formuldas a default proof if and only if it
appears in an extension. Usually only minimal default proofs are of interest, in other words, default
proofs from which we cannot delete any defaults without losing the properties of a default proof of the
required formula.

The following definitions will be used for characterizing the extensions of normal default theories.
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Definition 2.1. Let (D, W) be a normal default theory, a consistent set of formulas such th&tC S.
DefineS;, D; by induction as follows. First§, = S andDy = (). For any:i > 0:

Diy1 = {deD|S;+p(d),S t/—j(d)}
S;Uc(D;4q) ifitis consistent
Sit1 = ,
S otherwise

Intuitively, D; ., is the set of defaults that are applicableSp that is, the defaults whose precon-
ditions are implied byS;, and whose justifications are consistent with The setS;; is the result of
applying all of them, that is, adding all their consequenceS; tdNote thatD,,; can very well contain
conflicting defaults, which results in an inconsistency. In this cagg, is equal toS;. In words, the
sequence af;’s is obtained by applying all applicable defaults until some conflicting defaults are found.
This is important, as conflicting defaults may lead to multiple extensions. More precisely, they always
lead to multiple extensions if all defaults are normal.

Let us define\(.S) to be the deductive closure of the sequencs;pBndA(S) be the defaults that
are applied in the process of deriving it:

AS) = cn| s
i>0

A(S) = {de D |p(d) € A(S)andc(d) € A(S)}
Clearly, A(.S) is the deductive closure &f U ¢(A(5)).

2.4. Complexity Classes

Next we give a brief review of the relevant notions of complexity theory. Recall that the ctﬁ%’sésf’ ,
andI1 of the polynomial hierarchy [10] are defined as follows.

A=xF=uf=r

and fork > 0, . .
Ay = PYE S = NP5 T = co%y ).

In particular, NP = ©F, co-NP = 1Y, andA} = PN, ThusAl is the class of all problems that are
solvable in polynomial time on a deterministic Turing machine with polynomially many calls fé/an
oracle. DY is the class of problems which can be described as the intersection &fopeoblem and
onell? problem. In the literature)? is used instead ab?".

The notion of completeness we employ is based on many-one polynomial time transformations. The
problem of determining if a formula appears in at least one extension of a normal default thE§ry is
complete. A well knowri1}’-complete problem (see e.g. [12]) is deciding the validity of a quantified
Boolean formula of the fornvp; - - - Vp,3¢1 - - - 3¢ F, where E is a Boolean formula over variables
{p1, ** yPn,q1, -+ ,am}. This quantified formula is valid if and only if every truth assignmeid the
variablespy, - - - , p, can be extended to the variablgs- - - , ¢, SO thatF is true undemw.
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The following problem MSA-odd is complete fdx}” [13]: given a satisfiable propositional formula
F on variables, - - - , p,,, decide whether the lexicographically maximum truth assignment satisfying
Fis odd, that is, assigns the truth value Iptp The lexicographically maximum truth assignmeris
recursively defined as

(p1) 1, if F(1,pa,---,pp) s satisfiable
v e
n 0, otherwise

(pis1) 1, if F(v(p1), - ,v(pi), 1, pita, - ,ppn) IS satisfiable
v(p; = .
Pit 0, otherwise

The classPN*llogn] | consists of all problems solvable in polynomial time willlog ) queries to
an N P oracle [22]. It is known thaPNPlos”] coincides with the class of all problems solvable with
paralleln queries toN P oracles. The problem SA&J, is complete for this class, where SA]J is the
problem of determining whether the number of satisfiable formulas am@gF-formulas is odd.

The uniquely satisfiability problem (Unique-SAT, for short) is the problem of determining whether a
propositional formula has exactly one satisfying truth assignment. It has been proved that Unique-SAT
is in D¥ and caV P-hard. However, thé”-completeness of Unique-SAT is still open [12].

3. Complexity of UEE, General Case

3.1. Prerequisite-free Normal Default Theories

We begin the computational analysis of uniqueness of extensions with one of the simplest cases, that of
defaults that have no preconditions and are normal. When a default has no precondition, its applicability
only depends on the set of justifications. In turns, the justifications coincide with the consequences,
which makes defaults of this kind very intuitivég means thaf3 should be taken for true whenever
possible.

The set of formulad’ (W) has a special role, in this case. When no default has precondition,
applies all defaults that are individually applicable. In other words, for each default, its justifications are
checked for consistency wifly’. No default is however applied during this process. Instead, all defaults
that are not in contradiction witi” are applied only at the end.

The sefl’(1W) can therefore be inconsistent. Indeed, whenever the application of one default contra-
dicts the justification of another default and vice versa, applying both defaults at the same time makes
the result inconsistent. On the other hand, applying one default only leads to an extension. This case is
important for us, as it is the only case in which a prerequisite-free normal default theory can have more
than one extension.

Lemma 3.1. A normal default theory D, W) has a single extension,Iif(W) is consistent.

Proof:

Supposd (W) is consistent. Gottlob [8, Theorem 4.1] proved thatV) = I'2(W). Then['(W) is

an extension of D, W). On the other hand; (W) is the fixed point off?/(W). That is,['(W) is the
smallest stationary extension. Suppdsés an extension of D, W). E is also a stationary extension
(note that every extension is stationary). THU8}) C E. Since any two different extensions are non-
including, it follows thate! = I'(W). Consequently’ (1) is the unique extension ¢D, ). 0
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The converse only holds if all defaults are free of prerequisite.

Lemma 3.2. If a prerequisite-free normal default theof®, W) has a single extension th&i{V) is
consistent.

Proof:

Suppose thal' (W) is inconsistent. We shall prove that the default theory does not have a single ex-
tension. Notice that we have assumed tais consistent. Sinc€ (1) is defined to be the smallest
theory satisfying three conditions of the operdigiinconsistency means that no consistent theory sat-
isfies these three conditions at the same time. In particular, no consistent and deductively closed theory
W’ can implyW, and containd wheneveV is consistent with3. Let D’ be as follows:

D' = {d| W A j(d) is consisten}

This is the set of defaults that are applicabldlif) as they are exactly those defaults whose justi-
fications are consistent with’. By assumption, the set of all their consequences are inconsistent with
W. However, any single default in it can be applied without leading to inconsistency. This means that
the default theory has at least two extensions: take the first by applying one default at time from the first
one on; then, take the second by first applying one of the remaining default first. The second one cannot
include all defaults of the first one, as the first one is by assumption maximal. O

As a simple consequence, we have the following corollary.

Corollary 3.1. A prerequisite-free normal default theory has a single extension if and ohlyf) is
consistent. Moreovef; (V) is the unique extension ¢, ).

This corollary allows not only for determining whether a prerequisite-free normal default theory has a
single extension, but it also tells the extension itself: indeddJif ) is consistent, it is the only extension
of the theory. From a computational point of view, checking its consisteney'f8'°s-complete.

Theorem 3.1. The problem of determining whethEf{W) is an extension of a prerequisite-free normal
default theory(D, W) is PNPlleenl_complete.

Proof:

In order to check consistency 6{1W), we first check all justifications of defaults for consistency with

W; we then add td¥” all their consequences. This algorithm shows that the problem can be solved with
an NP-tree: in the leaves we ha\ig| independent consistency tests; in the root, we have a final check
that depends on the result of the previous tests. As Gottlob [9] have shown, this linear number of calls to
an NP-oracles can be replaced with a logarithmic number of them, thus showing that the problem is in
PNP[logn].

To prove the hardness we employ a method in [8]. We will present a polynomial time reduction from
SAT,,,, the problem of determining whether the number of satisfiable formulas amdmgnulas in
CNFis odd. LetFy, - - - |, F,, ben formulas in CNF. Without loss of generality we assume that formulas
Fy,--- | F, are mutually disjoint in their propositional variables. We also assume that at least one
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is satisfiable (otherwise, we consider formuias,, F1,--- , F,). Now we construct a default theory
(D, W) as follows. Letfy,-- -, f, be new variables not occurring in aiy. Define

D:{ifl_” s fn :fl@"‘@fn}
i’ T e @

and let

W:{fl_)Fla"'afn_)Fn}a

where® stands for exclusive or. Note that is in Dy if and only if £; is satisfiable and that iF;
is unsatisfiable thehl” - —f;. Therefore, for eaclf;, either f; € (W) or—f; € I'(W). In addition,
m € Dy sinceW U{f1 @ --- @ f,} is consistent by our assumption that somes satisfiable.
Now it is easy to see thatn(Dy, W) is consistent if and only if the number of satisfiable formulass
odd. O

Note that the above proof also provB$'”’ll°e”l_hardness in the case in which there are precondi-
tions. However, the uniqueness of extensions in this case does not necessarily imply the consistency of
I'(W). Indeed, the presence of preconditions may result in all defaults initially applicable consistent, but
inconsistency appears later. The following default theory shows this case:

La a:ca
{7 =)

SinceWV is consistent withi, we havex € T'(1W) by condition 3 of the definition of. This implies,
on the other hand, that the precondition of the second defaultliglir), while its justification is still
consistent withiW. This implies, still by condition 3, thata € I'(WW), thus proving thal’(1V) is
inconsistent.

On the other hand, this theory has only one extension, na@iely.). This being an extension is
obvious. It is easy to prove that the theory has no other extensfbisseasy to rule out ab(W) =
I'(0) and is larger thai®'n(a); the only other possibility i€'n(—a), which cannot be an extension as
I'(Cn(—a)) = 0: this holds a$) verifies the three conditions of being an extension.

This example shows why the consistency'¢f1") is not equivalent to the uniqueness of extensions.
I'(W) is the smallest set that contains all consequences of applicable defaults, but preconditions are
checked againdf(177), while justifications are checked agaift. This results ina being inI'(1W),
while —a is still consistent witH17, thus making the second default applicable, while it should be not as
a is (W) (intuitively, the second default should be irrelevant, as its precondition is inconsistent with its
justification.)

3.2. Normal Default Theories

In this section, we consider the problem of checking whether a default theory has a single extension,
when defaults are normal but have preconditions. As shown in the previous section, the consistency of
I'(W) is only a sufficient condition to ensure uniqueness of extensions, but is not necessary.

We show two conditions that implies the multiplicity of extensions. It will later be proved that they
are, together, necessary and sufficient. We first need an easy corollary of Lemma 3.1.
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Corollary 3.2. For any normal default theoryD, W), let Rp = {i’éj; ‘ de D}. If Cn(Rp, W) is
consistent theD, W) has a unique extension.

The first possible cause of multiple extensions can be explained as follows. Suppose that we start
from So = W and compute the sequence $fs, but end up with a theong; in which two or more
defaults are individually applicable (their justifications are individually consistent$yjtbut cannot be
applied together (the union of their justifications is not consistent §jith In this caseS;;; = S; =
A(W), and there are defaults b, ; that are applicable in (1) but are not applied (their consequences
are not inA(17).)

In this case, the sequensSg does not change from this point on. On the other hand, the process of
applying defaults can be continued by applying only a subset of the applicable defaults. When defaults
are normal, each choice will lead to an extension. We have therefore found a first condition that leads to
multiple extensions.

Lemma 3.3. Let (D, W) be a normal default theory. Suppose there is a defaaltD such thap(d) €
A(W) bute(d) ¢ A(W) and—c(d) ¢ A(W). Then(D, W) has at least two extensions.

Proof:
Define D* as follows.

D*={de D |p(d) € AW),c(d) ¢ A(W) and—c(d) & A(W)}.

By assumption,D* is non-empty. From the definition of(WW), we see that\(W) U ¢(D*) is
inconsistent. Now we pick two subsdly and D3 so thatA (1) U ¢(D7) U ¢(D3) is inconsistent while
bothA(W) U (D7) andA(W) U c(Dj3) are consistent. By Corollary 3.2\ (W) U D}, W) has exactly
one extension, the deductive closure\¢i’’) U c¢(D;}), i = 0, 1. By the semi-monotonicity,D, W) has
two extensiongy; and E, such thatA (W) U ¢(D;) C E;, ¢ = 1,2. SinceA(W) U ¢(D7) U ¢(D3) is
inconsistentt; and E, are different. O

The condition of the above lemma, however, does not cover all possible theories generating multiple
extensions. The problem is that, when we move fignto S;, 1, we are applying all defaults that are
applicable inS; at the same time. However, a defaditan be such thai(d) is made true while:(d)
is made false at the same time, but these are consequences of different defaults. For example, let us
consider(D, W), whereW = (), andD = {d;, ds, d3}, where:

ta b a:-b
dy = o dy = b d3 = "

Clearly, D, = {d;,d2}, andS; = Cn({a,b}). In other words, botl; andd, are applicable iV,
and do not generate inconsistency. This makesot applicable at all ir;. On the other hand, onekg
is appliedds can be applied as well, generating a different extenSlaf{a, —b}).

In general, the problem is that a defadlilinay be left out fromD; because its justification are false
when its preconditions are made true. In particular, if the defaults that make the justification false are
different from those making the preconditions true, tidetan be used to generate an extension. The
following lemma formalizes this condition.
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Lemma 3.4. Let (D, W) be a normal default theoryl,e D a default such that(W) F —¢(d). Suppose
there is a subsdd’ C A(W) such thap(d) belongs to an extension ¢D’, W) (see Corollary 3.2 and
Definition 2.1) while—c(d) does not. ThefD, W) has at least two extensions.

Proof:

It is easy to see that(d) belongs to one extension 6D’ U {d}, W). By semi-monotonicity, there is
an extensior’ of (D, W) such thaic(d) € E’. On the other hand, there is an extensioisuch that
A(W) C E. Since—c(d) € A(W), E andE’ are different. 0

The conditions of the two lemmas above can be proved to be the only two cases in which a de-
fault theory has more than one extension. The following lemma, indeed, proves that the uniqueness of
extension is equivalent to the falsity of one of the above conditions.

Lemma 3.5. Let (D, W) be a normal default theory. Th€i®, 1V) has only one extension if and only
if the following conditions hold.

1. Thereis nal € D such thap(d) € A(W) bute(d) € A(W) and—c(d) € A(W).

2. For every defauld € D such thatA(W) + —¢(d), there is naD’ C A(W) such thap(d) appears
in an extension of D', W) while —¢(d) is not.

Proof:

Theonly if part directly follows from Lemma 3.3-3.4. For tliepart we suppose conditions 1 and
2 hold. First we show that, for any default, if it appears in one default proof then it iS(Ii).
Suppose otherwise, then there is a default proof in which some default is Aqtiif). Pick such a
default proof(dy, - - - , d,,) with the minimum length. Thed; € A(W) for eachl < i < m. Then
p(dm) € A(W). By condition 1, we have«(d,,) € A(WW). However, by using condition 2, we have
W Uc({di, - ,dm-1}) F —c(dyn). Thatis,(dy,--- ,dy) is not a default proof, a contradiction. Con-
sequently, every extension is a subseAOFV). Since(D, W) has at least one extension, it follows that
A(W) is the unique extension @D, ). 0

Lemma 3.5 shows that the uniqueness check can be done by first comp{fingand then checking
whether conditions 1 and 2 in Lemma 3.5 hold(11") can be computed with a polynomial number of
gueries to ariV P oracle. Condition 1 can also be verified with a polynomial number of queries. However,
checking Condition 2 cannot be done in the same way, as it requires checking all dubset& (W),
and these are exponentially many. We can actually show that the problem cannot be simplified (unless
the polynomial hierarchy collapses): the unique extension existence prodiEfrdemplete, and cannot
therefore be solved with a polynomial number of queries tdvd@horacle.

We first introduce some auxiliary problems. The first one is related to the second condition of the
lemma above; it consists in checking whether a consistent subset of a monotonic rule system implies a
formula.

Problem P1

Instance:A monotonic rule systemik, W) such thatC'n(R, W) is inconsistent and a formula
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Query:Is thereR’ C R such thai{ R’, W) - ¢ andCn(R’, W) is consistent?
Lemma 3.6. Problem P1 i)’ -complete.

Proof:
The following procedure to solve P1 shows it is®§’. Guess a subsdét’ C R. Then check whether
(R',W) F ¢ andCn(R', W) is consistent. If this condition holds then return yes. It is easy to see that
this is a non-deterministic Turing machine with polynomially many calls to the oracle of consistency and
inference checking. Thus problem P1 isiif.

Hardness is proved by reduction from credulous default reasoning (determining if a formula occurs
in at least one extension). Given a normal default théd@ryiW') and a formulap, we consider a new

atomp, and defineR as follows.
ala:p w W
n={5] 5 erfu{T 5

The setR and the formulap are a valid instance of P1, &&(R, W) is inconsistent: this is due to
the last two rules, which enforce battand—p to be consequences. By putting only one of the two rules
in R" ¢ R we remove this source of inconsistency, Bimay still be inconsistent due to the other rules,
that corresponding to the defaults of the original theory.

We now prove that this is a reduction from credulous default reasoning te B&longs to at least
one extension of D, W) if and only if there exists?’ C R such that R', W) - ¢ andCn(R',W) is
consistent.

Let us first prove the direction from the left to the right. Supppssppears in one extension. Then
¢ has a default proof, say;, - - - ,d,). Let

Clearly,(R',W) F ¢ andCn(R’, W) is consistent.

To prove the converse, suppose therB'is- R such tha{ R, W) + ¢ andCn(R’', W) is consistent.
The last two rules inR are not helpful for the proof of; therefore, if either one is i, it can be
removed without making not implied. We therefore assume that none of them iB'inBy replacing
each rule inR’ with the original default, we obtain a default proofef Thus,e appears in at least one
extension of D, W). O

The second auxiliary problem we consider is also related to the second condition of uniqueness.
Indeed, P2 is based on the existence of a subset of rules that implies a formula but does not imply
another one.

Problem P2

Instance:A monotonic rule systemii, W) such thaCn (R, W) is consistent, two formulas, ) such
that(R, W) + 1.

Query: Does there exisR’ C R such thai{ R, W) - ¢ but (R', W) t/ ¢?
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This problem has the same complexity of the previous one, that isT isomplete. In particular,
hardness is proved by reduction from P1.

Lemma 3.7. Problem P2 i2¥’-complete.

Proof:

Membership is proved in the same way which has been done for P1 in Lemma 3.6. Hardness is proved
by reduction from P1. LetR, W) and a formulap be an instance of P1. We build an instance of P2 as
follows. Lett be a new variable. Defind’; and R; as follows.

W, = {F\/t|F€W}
aVt|la

R, = ——1|—=—€R;.

t {ﬁVtﬁE }

Cn(R;, W;) is consistent thanks to the varialsléhat is disjoined to all involved formulae. This is
why ¢ has been introduced, indeed. However, sifieg R, W) is inconsistent( R, W;) - t. The lemma
follows from the following statement.

There exist®?’ C R suchthal{R', W) - ¢ andCn(R’, W) is consistent if and only if there
is R” C R; suchtha{R", W) ¢ Vv tand(R", Wy) t/ t.

Informally, this statement is true as deleting rules fr&mo remove inconsistency corresponds to
deleting rules fromRk,; to maket not implied any more.

First we show the direction from the left to the right. Supp&s&_ R, (R', W) I ¢ andCn(R', W)
is consistent. It is easy to see thi&;, W;) - ¢ V ¢t and (R}, W;) I/ t. Conversely, supposk” C Ry,
(R', W) F oV tand(R", W) t/ t. Let R’ be obtained fromR” by droppingt. Since(R", W;) / t,
Cn(R",W; U {—t}) is consistent. This, together witlR”, W;) b ¢ V ¢, implies thatCn(R', W) is
consistent andR’, W) I . 0

Now we show that the unique extension existence problem for normal default thedtgsmmplete.
Hardness is shown by reduction from P2.

Theorem 3.2. The problem of determining whether a normal default theory has a unique extension is
1-complete.

Proof:
We show that the problem of determining if a normal default théddyiW') has at least two different
extensions is irt4’. We employ the following procedure to determinéi?, W) has at least two exten-
sions. First, guess two permutations of default®inFor each permutation compute the corresponding
extension [17]. If we get two different extensions then return yes. To compute an extension from a per-
mutation costs polynomially many calls to the oracle of consistency and inference checking. Thus, the
problem is inx%.

Hardness is proved by reduction from problem P2. Given a monotonic rule syBtdi) such that
Cn(R, W) is consistent, and given two formulas ) such that R, W) i~ ¢ . Define
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fasla g\ [0 g
D‘{ 5 5€R}U{w’ - }

We only need to prove the following statement.

There exists?’ C R such that R, W) - ¢ and(R', W) t/ + if and only if (D, W) has at
least two extensions.

The last two defaults, if they are at some point both applicable, generate two different extensions,
one implyingy and one implying—». Applicability of both of them is only possible if, applying the
other defaults, we can maketrue while is not implied (i.e.—% is consistent). This corresponds to
finding a subset of rules that impliesbut notz.

Let us formally prove the claim. We first show the direction from the left to the right. Suppose
R CR,(R,W)E pand(R,W) I/ . Let D’ be obtained fronR®’ by replacing each monotonic rule
3 With 0‘55. From the assumption, we know that) appears in an extension @b’ U {%}, W). By
the semi-monotonicity;) must occur in an extension 6D, W). It is easy to see appears in some
extension of D, W). Therefore(D, W) has at least two extensions.

Now we prove the other direction. Suppdde, V) has at least two extensions. Let

0|«
Dp=14 2 21¢% .
. {ﬂ BGR}

SinceCn(R, W) is consistent, then by Corollary 3.0, W) has only one extension which con-
tainsy becausé R, W) F . Therefore,(D, W) must have an extension such that € £ and—
is obtained by applying‘%. As a consequence, there is a default proof contaiﬁi@ﬁ. From such a
default proof we can easily obtain a sub&tC R such thai R', W) - ¢ but (R', W) t/ 1. 0

As we have seen in the previous sectibl’) has a special role, when there are no preconditions.
Indeed, it is an extension if and only if it is the unique extension of the theory. Preconditions, however,
make it a necessary condition only: Ii{17) is an extension, it is unique, but the converse does not
necessarily hold.

Another necessary condition for uniquenes#({$V) being an extension. We can prove that this
problem is actually easier than checking uniqueness. This is important, as we can solve this problem as
a preliminary step of checking uniquenessA({fit’) is not an extension, then we know that the default
theory does not have a single extension without solving#ard problem of checking uniqueness.

Theorem 3.3. For a normal default theoryD, W), the problem of determining whethér(1V) is an
extension isAZ’-complete.

Proof:

A finite base ofA (W) can be computed with polynomially many calls to/si*-oracle. It is not hard to
see that\ (W) is an extension if and only if condition 1 in Lemma 3.5 holds. To verif§(#1) satisfies
condition 1 also needs polynomially many calls to the oracle. Thus, the problem.in
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Hardness is proved by reduction from the problem MSA-odd: the definition of this problem is in
Section 2; it isAL’-hard [13]. Lety be an instance of this problem; lgt, . .. , p, be its variables. For
each variable; we introduce a new variabte. We also need an additional varialble LetW = {¢, ¢},
andD be the set of the following defaults.

D U tz‘—l3pi’ti—1/\pi3ti’ti—1/\_‘pi3ti U{ﬂpnia’ﬁpniﬂa}
, Pi t; t; a —q
1<i<n

The idea is as follows. When computing¥’), at the first step the only applicable defaults are those
corresponding té = 1. Indeedt is the only variabile; that is inT¥/. In particular, the first default is
only applicable ify is consistent withp;. This means that; is added to the set we are building if and
only if it is consistent withp. In the other casey = —p;. Either way, eithep; or —p; is now implied.
This result in making; be implied as well, which makes the defaults witk 2 applicable.

Therefore, defaults are applied in order: first the ones with1, then the ones with = 2, etc. At
each stepp; is added to the extension if and only it is consistent with it. Therefore, at the end of this
process we have the lexicographically maximal modep.offhe presence gf,, blocks the application
of the last two defaults and we end up witlil¥") being the only extension of the theory. On the other
hand, if the lexicographically maximal model contaifig,, both the last two defaults are individually
applicable, but cannot be applied together. Therefore, their conclusions areXidt'in while applying
either one generates an extension.

This informally shows thad (W) is an extension if and only i, is implied by the lexicographically
maximal model ofp. Formal proof is omitted as it is easy to derive.

g

3.3. Semi-Normal Default Theories

The problem of checking whether a default theory has a single extension can be expressed as checking
whether it has at least one extension, and it has no more than one of them. The condition (checking
existence of extensions) has already been studied: Gottlob [7] and Stillman [21] proved it B8elin

is easy to see that checking whether a default theory has more than one extensiofi &simell. Since

what we need is the converse of this problem, we conclude that UEE can be expressed as the intersection
of a problem inS4” with a problem inl1%’. This holds for all default theories.

Theorem 3.2 implies that UEE 134’-hard for normal default theories, and this result extends to the
general case. It therefore remains a little gap between the lower and the upper bound we have. However,
it is possible to prove that UEE is at least as hard as another uniqueness problem on QBFs.

We consider quantified Boolean formulas that are valid whenever there exists an unique truth as-
signment on a part of the variables that makes the resulting formula valid. Such formulas are written as
follows.

O =y - Ay, Ve, - - - Va,e.

This quantified Boolean formula is defined valid if there exists exactly one truth assignnent
the propositional variableg, - - - , v, such that, however is extended to the propositional variables
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x1, -, Ty, formulag is true. To check whetheb is true, we first check thaty; - - - Iy, Vo1 - - - Va0

is true. This is &% problem. Then we check that there is at most one truth assignnten, - - - , ¥,

such thatv makesy to be tautology. This is &5 problem. Therefore, the problem of deciding the
validity of a quantified Boolean formula with the above form can be described as the intersection of a
problem inx4 and one in1%’. The next lemma shows that iti, -hard.

Lemma 3.8. The problem of deciding the validity of a quantified Boolean formula with the félgm- - - 3!y, Vx; - -

is IT4-hard.

Proof:

This lemma directly follows from the fact thay, - - - Jy,,,Vz1 - - -V, pis false ifand only iflyg 3y - - - Ay, Vg - -

—20) V (Yo Ay1 A -+ Aym) IS true, wherey, is a new variable. O
We now prove that this problem can be reduced to UEE in polynomial time.

Theorem 3.4. The UEE problem for semi-normal default theories is at least as hard as the problem of
deciding the validity of a quantified formula of the foffty; - - - Iy, V1 - - - Vo, 0.

Proof:
Let & be the quantified Boolean formuldy; - - - Ay, Vz1 - - - Vx,, 0, and letty, - - - ,t,, andt be new
variables. DefindV = () and D to be the set consisting of the following defaults
(I) The defaults
ity A Aty At St A Aty At
t ’ -t ’
(I) Foreachi =1, - - - , m, the defaults
YiNp i N
vi Wi
() For eachi = 1, --- , m, the defaults
Yitti Wit
ti Tt

(IV) Finally, the default
A ARREAR %
P

The QBF formula must be valid if and only if the default theory has a single extension. Therefore,
whenever the QBF formula is not valid, the corresponding default theory is made having zero or more
than one extension. In particularfis contradictory, the defaults in group (I) generate two extensions.

The default in the group (1) are defined in such a way either one for €aah to be applied, ip is
not contraditory. Intuitively, each time we apply a default we make an arbitrary choice on sgtting
true or false. Whenever such an assignment is done, one of the default in group (lll) is applicable, which
results int; being set whenevey; is assigned a value.

Up to this point, the values af; are set arbitrarily, whilée; is set whenevey; is assigned a value.
What is still left is a way to guarantee that this is an extension if and onlyi#f valid in this partial

-V,

-Vz
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assignment, regardless of the value of the variab)iss This would imply that the QBF is valid if and
only if the default theory has exactly one extension. Default (IV) is defined to this purpasées vialid,
the last default is not applicable; no other default is applicable, and the theory we have built is already an
extension. Ify is instead not valid, theny is consistent, and the last default is applicable. This leads to
contradicting the justification of all defaults in group (ll). Therefore, this is not an extension.

Formally, we will prove the following statement.

® is valid if and only if (D, W) has exactly one extension.

Before proving the statement, we show a related claim.vl& a truth assignment to the proposi-
tional variablesyy, - - - , y.,, that satisfiego however it is extended to,, ... ,x,. Let L, be the set of
literals (variables and their negations) satisfied by

Ly = {U| L € {yi,~yi} for somei andu(l) = 1}.

Let B, = Cn(LyU{t1,... ,tn}). We prove that is an extension of D, V). First, by assumption
¢ is implied from L,,, hencep € E,. The defaults in group (I1) make each literalin to be inT'(E,).
Moreover, thanks to the defaults in group (Ill), edgfs also inl*(E,). ThusE, C I'(E,). By Gottlob’s
Lemma 2.2 in [8] it is easy to see thBtF,) C FE,. HenceE, = I'(E,). That is to sayF, is an
extension of D, W).

Supposér is an extension of D, W) such thatp € E. Itis easy to see that, for eack=1,--- ,m,
eithery; or —y; is in E, and that allt;, (i = 1,--- ,m) are in E. Define the truth assignmenj; to
Y1, - ,Ym as follows. Foreach=1,--- ,m,

( ) 1, fy,eFE
v ;) =
B\ 0, otherwise

Note thaty ¢ W and there is no default whose consequence i$hus, must be provable from
En{yi,~y1, ", Ym, Ym}- As aresult, howeverg is extended ta:q, - - - , z,, IS true undewg.

Now we come the proof of the statement.

(=). Supposeb is valid. Letv be the unique truth assignmentyg . .. , v, such that, in whatever
way v is extendedy is true undew. We already proved thdt, is an extension of D, ). Let E be an
arbitrary extension of D, W). We claim—¢ ¢ E. Suppose, by contraryyp € E. Then not; is in E.
This can be proved as follows. Suppa@ses in E; then, eitheny; or —y; isin E. Hence one of defaults in
group (1) is applicable. On the other handp blocks the use of defaults in group (I1), a contradiction.
Thus, the final default is not applicable and hengemust be a tautology. Howevey, is satisfiable by
assumption, a contradiction. Therefore; ¢ F. Then, for each, eithery; or —y; is in E, hence each
isin E. Then we get thap is in F (otherwise;~¢ € F by the last default). Consequently; is also a
truth assignment satisfying regardless the truth valuesef, i = 1, - - - , n. By the uniqueness af, we
getv = vg. ThenE, C E, and hence& = E,. That is to say(D, W) has exactly one extension.

(«<). Supposé D, W) has exactly one extension, say If ¢ € E, then—y would be a tautology
(see the above paragraph). Therefore, because of the defaults in grqép 1)) would have two
extensions, one containingnd the other containingt. Thus—yp is notin E. Then, for each, eithery;
or —y; isin E, hence each; is in E. Suppose ¢ E. Then by the final defauttyp € F, a contradiction.
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Thusy € E. Then,vg satisfiesp regardless the truth valuesef, i = 1,--- ,n. Suppose is another
truth assignment with the same propertyvas Then, E, is an extension of D, W) different from £,
contradicting the uniqueness bt Thus® is valid.

Therefore, we prove the theorem. O

4. Disjunction-Free Default Theories

A defaultd is disjunction-free if no formula in it contains the disjunction connectivéhat is, itis in the
form:

ar AN Nag by AN Abp Act A+ Nep
bi A+ Abp,

d=

)

wherea;, b;, ¢; are literals. In this case, we consid€rl), j(d), ¢(d) as sets of literals. Normality
and semi-normality are defined as before. A disjunction-free default theory is a default (AEd#y)
in which W is a set of literals and is a set of disjunction-free defaults. For a normal default theory
(D, W), we identify A(W) with the set of literals inA(17). It has been shown that disjunction-free
default reasoning is still intractable [11].

Suppos€ D, W) is a disjunction-free default theory. L&' be obtained fronD by deleting all the
defaults in which there is a literal such that-z € W. It is easy to see th&D, W) and(D’, W) have
the same extensions. We can therefore assume, without loss of generality, that the literals of the defaults
in D are all consistent withl’.

4.1. Normal Disjunction-Free Default Theories

We have shown, in a previous section, that the unique extension problem for normal default theories is
I1£’-complete. In this section we will show that the problem is polynomial for disjunction-free normal
default theories.

Before technically proving this claim, we give some intuitions about it. First of all, inference is
polynomial when all involved formulas are conjunctions of literals. This clearly makes checking appli-
cability of defaults polynomial. In the general case, Lemma 3.5 shows when a default theory has exactly
one extension: whefn (W) is an extension and no default is applicable after a subs&{@df) has been
applied, while it is not il (W).

The first condition is clearly polynomial: start with’, and then apply all defaults that are applicable
in it, until either contradiction arises or no other default is applicable. Since applicability is polynomial,
the whole process is polynomial.

One of the outcomes of the evaluation/ofiV) is the set of defaults that have been applied so far
A(W). This set is needed for checking the second condition of uniqueness. In particular, we have
to consider each possible subset of it, and check which defaults are applicable. In general, there are
exponentially many such subsets. In this case, however, we only need to consider a specific subset.

Definition 4.1. Let (D, W) be a normal disjunction-free default theory. ldet D be such thata €
A(W) for somea € ¢(d). Define:
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AW, d) = AW)\{d' € A(W) | there exists € ¢(d) such thatz € p(d) U c(d')} .

Thatis to say, for any defauft ¢ A(W), d* € A(W,d) if and only if every literal ind* is consistent
with ¢(d).

The point is that, while checking for subsets&f1V) that makesi applicable, we only have to
consider the defaults that do not involve (as a precondition or as a consequence) a literal whose opposite
is in d. We can therefore restrict our attemption to the default (i, d).

A further simplification of the problem is due to the fact that the default& {ii”) do not conflict
to each other, as this implies the same for the defaultA (i, d). Therefore, application of them
corresponds to generating the unique extensiai\§#V, d), W), in which only a part of the defaults in
A(W,d) can be applied. Moreover, by construction, the justificatiod f necessarily consistent with
the unique extension ¢\ (W, d), W).

Lemma4.1. Let (D, W) be a normal disjunction-free default theofy?, W) has only one extension if
and only if the following conditions hold.

1'. There is no default € D such thatp(d) C A(W) bute(d) € A(W) and—z ¢ A(W) for all
x € c(d).

2'. For any defaultl € D such that-z € A(W) for somez € ¢(d), p(d) is not included in the unique
extension of A(W, d), W).

Proof:

Condition 1 in Lemma 3.5 and condition 1’ are in fact the same. We only have to prove that 2 and 2’
are the same as well. We first prove thy if part. SupposéD, W) has exactly one extension. Then,

by Lemma 3.5, Condition 2 in Lemma 3.5 hold. By the constructioA 0V, d), the unique extension

of (A(W,d), W) is consistent witle(d). Thus, by Condition 2 we know tha{d) is not included in the
unigue extension.

To prove the converse, we assume that Condition 2’ holds, and prove that Condition 2 holds as well.
Suppose, by contrary, that there is a defdudt D such that-z € A(W) for somez € ¢(d) and there
existsD’ C A(W) such thap(d) is included in the unique extension(@, W), while ¢(d) is consistent
with the extension. Then)’ C A(W,d). Hencep(d) is included in the extension ¢iA (W, d), W),
contradicting the assumption that Condition 2’ holds. This completes the proof. O

For a disjuction-free normal default theorip, W), computingA (W) needs polynomial time since
consistency checking here becomes trivial. To inspect Condition 1" also needs only polynomial time
for the same reason. For any defadile D, (A(W,d), W) has exactly one extension, which can be
computed in polynomial time. It follows that condition 2’ can be checked in polynomial time.

Theorem 4.1. The UEE problem for normal disjunction-free default theories can be solved in polyno-
mial time.
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4.2. Semi-Normal Disjunction-Free Default Theories

Part of the problem of uniqueness is checking whether a default theory has at least one extension. This
problem is already known to b& P-complete [11, 21, 5]. The other part of the problem is that of
checking whether the default theory has two or more extensions or not. This probleRiligrd. Since

UEE can be solved by checking whether a default theory has at least one extensioiihaandot

two or more extensions, it can be expressed as the intersection of a problém and a problem in

coN P. Therefore, it is inD when no disjunction is allowed. Proving hardness is however difficult. We
show that the problem is at least as hard as the problem of checking whether a propositional formula has
exactly one extension.

Theorem 4.2. For disjunction-free semi-normal default theories, the UEE problem is at least as hard as
Unique-SAT.

Proof:
Letyp = a3 A -+ A auy, be a 3-CNF formula withy; = (a; V b; V ¢;). We introduce a new variable
and a new variablé; for each clausey;. Definel = () and D to be the set consisting of the following
groups of defaults.
(I) For each variable € var(y), the defaults
tpAt P At
p  p

(I) Foreachi = 1,2, --- ,m, the defaults

() For eachi = 1,2, --- , m, the defaults

—a; A\ —by A\ -ty

—t;

(IV) The default
tiNtog AN Nty 1 T

t

(V) Foreachi =1, --- ,m, defaults
—|ti 1t
-t
Informally, using defaults in (1), we can get a truth assignment. Since we want this theory to have a
single extension if and only ip has a single model, the other defaults must generate a single extension
for each model of the formula, and no extension if the truth assignment does not satisfies
Defaults in (II) and (IV) are defined in such a way that, if the truth assigment satisfidsen
t,t1,...,t, are derived. Defaults in (Ill) are instead aimed at making,dtlise if the truth assigment
falsifies . It is easy to see that exactly one extension is obtained in the first case (no other default
is applicable). In the second case, the last default is applicable, generatimgich contradicts the
justification of the defaults in group (l), and this is therefore not an extension.
Formally, we prove the theorem by showing that the following statement is true.
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¢ is in Unique-SAT if and only if D, () has exactly one extension
Before proving the statement we do some preparation.

1. Letv be a truth assignment such thdty) = 1. DefineE, = Cn(L, U {t1, -+ ,tm,t}): by
construction F, is an extension ofD, ).

2. Supposer is an extension of D, ()); we prove that-¢t ¢ E. Suppose otherwise; themt must
be obtained from one default in group (V), sé%zti Thus—t; is in E. SinceFE is an extension,
—t; must be obtained by applying the default in group (lll). Heneg, —b;, —¢; belong toF. To
obtain—a;, =b;, —7¢c; we have to apply some defaults in group (I). On the other hand, the fact that
—t € E would block the use of defaults in group (1), a contradiction. Thu& E.

3. We showt € E, if E is an extension ofD, ()). Supposée ¢ E. Since—t ¢ E we have that no
—t; belongs toF (otherwise from defaults in group (V) we would gef). Since neither nor —¢
is in E/, we get that at least ortgis not in £ (otherwise¢ would be inE by the default in group
(IV)). Now we know that there is somiesuch that neithet; nor —¢; is in E. From the defaults in
group (), we get{—a;, —b;, —¢;} € E. Without loosing any generality, we assume that ¢ E.
Then the default‘“—“ in group (1) is applicable. Hence, € E. Since—t; ¢ E the default‘“ :
is applicable, we have € E. However, we have previously proved thia¢Z E, a contradlctlon
Consequentlyt € E. Thent must be obtained by using the default in group (IV). Thus each
appears irE. Further,{a;, b;, c;} N E is non-empty. As a resuliz € E is satisfiable.

Let F be an extension ofD, W). We define the truth assignmery as follows. For each variable
p € var(y), vp(p) = 1if p € E, vg(p) = 0 otherwise. Clearlypr(¢) = 1. We now prove the
statement of the theorem.

(=). Suppose is the unique truth assignment satisfyipngBy the above argument, we knai, is
an extension of D, (). Supposé® is another extension ¢, (). By the above discussion we know that
{t1,-- ,tm,t} € E, N E. ThusE and E, must be different at some variakjes var(y). That means
v andvg will be different, contradicts the uniquenessofThus(D, () has exactly one extension.

(<). SupposeF is the unique extension dfD,()). Thenwg is a truth assignment satisfying
Supposev is another truth assignment ¢f ThenE, is an extension ofD, (). Sincevg andv are
different, £ and E,, are different by the definition afy and E,. This contradicts the uniquenessBf
Consequentlyy is uniquely satisfiable.

Hence, We prove the theorem. O

4.3. Unary defaults and Ordered Theories

In this section, we analyze the problem of uniqueness of extensions for the case of unary defaults and
ordered theories. We show that UEE problem for unary default theories is at least as hard as Unique-SAT.
A defaultd is termed unary if it is of the form

: Tg N\ e
d:p q’orp q ,Orp C]7

q q q

wherep, ¢, r are propositional variables.
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Theorem 4.3. The problem of determining whether a unary default theory has exact one extension is at
least as hard as Unique-SAT.

Proof:
We will employ the reduction defined in Definition 5.3 of [11] to prove the hardness (but we use different
notations). Letp = ay A --- A o, be a 3CNF formula withy; = (a; V b; V ¢;). Letw be the function
that maps each positive literal to itself, and maps each negative literal to a new variable. For each clause
a; we introduce two new propositional variablgsg;. Let f andz be two other new variables. Lé&?
be made up of defaults in the following groups.

(A) For each variable, the defaults: i

9 9

p P
(B) For each variable, the defaults:

p:—-m(=p) :7(=p)A-p
-n(=p) = w(=p)

(C) For each clause;, the defaults:

m(—ai) g ANom(bi) gi: fiNom(e) fii f Az
i ’ i ’ f ’

(D) The single default:
f:z
o
Kautz and Selman [11] pointed out thats satisfiable if and only if D, ()) has an extension. In fact,
from different satisfying truth assignmentsyfve can construct different extensions(df, ()) and vice
versa. Thusyp is uniquely satisfiable if and only {fD, #) has exact one extension. O

Let us now consider ordered disjunction-free default theories. Since they always have extensions
[11, 6], the UEE problem reduces to checking whether they do not have two or more extensions. As a
result, the problem is in @9 P. However, the problem remains intractable even for ordered unary default
theories.

Definition 4.2. ([6, 11]) Suppos€ D, W) is a disjunction-free theory, ldtit be the set of all literals
occurring in the theory. Definel and< to be the smallest relation ovéiit x Lit such that

1. < is reflexive,
2. < is a superset ok,
3. € and<« are transitive,

4. < is transitive throughkg; that is, for literalse, y, z € Lit:

(r <<y hyKz) V (z<y ANy € 2)] — = < z,
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5. for everyd € D, and every: € p(d),b € ¢(d), andc € j(d) — ¢(d):

akb, —c << b.

Then(D, W) is said to be ordered if and only if there is no litetaé Lit such thatt < x

Theorem 4.4. The problem of determining whether an ordered unary default theories has exactly one
extension is c&/ P-complete.

Proof:
We define a reduction from a 3CNF formulacontaining a negative clause (i.e., every literal in the
clause is negative) to an ordered unary theory. Pick an additional new varidlde D be made up of
defaults in groups (B), (C) of Theorem 4.3 and defaults in the following groups (A), (E)
(A) For each variable, the rules:
t:-p
-p

)

2P
p Y

(E) The single rule:
ctAf
o
We first check thatD, 0)) is ordered. Forp, because-p does not occur in the prerequisite of any
defaults and becaugedoes not occur in the justification of any default exceptfomwe know that there
is no other literall, such that-p < L or -p< L. Hence it is impossible thatp < —p. For -7 (—p),
it does not occur as prerequisite in any default afép) does not occur as justification in any default.
Therefore,~7(—p) &« —m(—p). For any other literalL, from the default in (A),(B), (C),(E), we can
see that in each maximal path (with respeckt@nd <) from L, any two literals are different. Hence,
L « L. Consequently,D, () is ordered.
Supposer unsatisfiable. Clearly,

{p, -7 (—p) | poceurs inp} U {fi, gi | a; is a negative clauspu { f}

is an extension. Suppo$®, ()) has another extensidn. If t € E, thenf ¢ E. ThenE could determine
a satisfying truth assignment contradicting the unsatisfiability. Thus,¢ E. It follows thatf € E
(otherwiset could be obtained by applying the default in (E)). Then, there must be a vapiabteh that
pgE. If-p¢F then% would be applicable. Thusp € E. Then—p must be obtained by applying

t%pp. Hencet € E. That meang ¢ E. This would imply the satisfiability op. Therefore(D, ) has
exactly one extension.
Supposé€ D, () has exactly one extension. Singeontains a negative clause, it follows that

{p, -7 (—p) | pocecurs inp} U {fi, gi | a; is a negative clauspu { f}

is an extension ofD, ()) (from the defaults constructed from a negative clause we¢ gibus the default
in (E) is not applicable). Supposeis satisfiable. Let be a satisfying truth assignmentof Fromwv
we can construct an extension which containBhen(D, (}) has at least two extensions, a contradiction.
Thusy is unsatisfiable.
0
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5. Conclusions

In this paper we mainly analyzed the complexity of the unique extension existence problem. As explained
in the Introduction, the problem of checking whether a default theory has a small number of extensions
is also of interest. For example, for some fixed natural number 1, one may ask whether a default
theory has at most extensions. We denote this problem by EE@&nd discuss its complexity.

For normal default theories, membershifl{ is easy to prove: the opposite problem of determining
whether a normal default theory has more tiaextensions is irty: guessk + 1 permutations of
defaults, for each permutation construct an extension; if weé:getl different extensions then return
yes. Thus, EE) is in IIZ” for normal default theories.

For semi-normal default theories, the problem might get harder, since we also have to check the exis-
tence of extensions. For normal disjunction-free default theories;)E&Q still be solved in polynomial
time. The proof is similar to that in section 4.1; being long but tedious, it is omitted. For semi-normal
disjunction-free default theories, EB(s still in D* for any fixedk.

Summarizing, EE) for any fixedk > 1 does not get harder than UEE with respect to polynomial
transformations. On the other hand, EFfor fixed £ > 1 can not get easier than UEE. This can be seen
as follows (for simplicity, we také = 3 as example). For any default thed®, W), pick new variables
p, q. Define

D/:DU{:p’ Y p:ﬁq}‘
p p q g

It is easy to see thatD, W) has exactly one extension if and only(iD’, W) has exactly three
extensions. The case 6f= 3 easily generalizes to any fixéd> 1: all the hardness results for UEE
hold for EE{) as well.

Let us now discuss the significance of the results. One might think of a default theory with a small
number of extensions as a rational system. Our results show that the problem of deciding whether
a default theory is rational is also very hard. While it is clear that it cannot be any easier than default
resoning, an additional source of complexity is that of checking conflict accessibility. As we have seenin
the previous section, multiple extensions are due to the presence of defaults that can be applied alone, but
not together (conflicting defaults.) Nevertheless, such conflicts may not be accessible, in the sense that
the conditions to apply such defaults are never met while actually computing extensions. In particular,

a default theory may contain many conflicts, but most of them are never encountered when computing
extensions. Im this case, the default theory has only a small number of extensions. Let us consider the

following example.
p-{iz vir riw),
p r -p

The default theory( D, () contains a conflict between the first and the third default® pés their
consequences contradict each other. However, the last default is never applicable, hence the default
theory has only one extension. Let us consider another example.

D - tp opiroriop it o tir
p7 r? _‘p ) t? r *
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The default theory D', ) also contains a conflict. Since both the two conflicting defaitand
% are accessiblg,D’, )) has two extensions. Testing whether a conflict is accessible is what makes
the UEE problem hard. The restricted cases in which the test of accessibility of conflicts is easy, the
complexity of the UEE problem decreases. For example, the problem of determining whéitigr
is an extension of a normal default thed®y, W) is PNPllognl_complete, since conflict accessibility is
easy in this case. In the normal disjuction-free case, the test of accessibility can be done efficiently, hence
the UEE problem is solvable in polynomial time.

Some problems that have been left open by this work. The UEE problem for semi-normal default
theories is inD?, but it is open whether it i®*-complete or not. We have shown that the problem is at
least as hard as the unique satisfiability problem which, i8/inand has been shown to be/é#®-hard.

Even for very simple (e.g., unary) theories, the problem is still at least as hard as Unique-SAT.

The problem simplifies when the default theory is very simple: for ordered theories, since the exis-
tence of extensions is guaranteed, the UEE problema&re@omplete. For ordered unary theories the
problem is still cav P-complete.
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