Capitolo 3

Cenni di Programmazione Lineare

3.1 Interpretazione geometrica di un Problema di Programmazione Lineare

Esercizio 3.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi di Programmazione Lineare:

1. \[
\begin{align*}
\min & \quad x_1 + 9x_2 \\
\text{s.t.} & \quad 2x_1 + x_2 \leq 100 \\
& \quad x_1 + x_2 \leq 80 \\
& \quad x_1 \leq 40 \\
& \quad x_1 \geq 0, x_2 \geq 0.
\end{align*}
\]

2. \[
\begin{align*}
\min & \quad -5x_1 - 7x_2 \\
\text{s.t.} & \quad -3x_1 + 2x_2 \leq 30 \\
& \quad -2x_1 + x_2 \leq 12 \\
& \quad x_1 \geq 0, x_2 \geq 0.
\end{align*}
\]

3. \[
\begin{align*}
\min & \quad 3x_1 + x_2 \\
\text{s.t.} & \quad x_1 - x_2 \leq 1 \\
& \quad 3x_1 + 2x_2 \leq 12 \\
& \quad 2x_1 + 3x_2 \leq 3 \\
& \quad -2x_1 + 3x_2 \geq 9 \\
& \quad x_1 \geq 0, x_2 \geq 0.
\end{align*}
\]

4. \[
\begin{align*}
\min & \quad x_1 - 2x_2 \\
\text{s.t.} & \quad x_1 - 2x_2 \geq 4 \\
& \quad x_1 + x_2 \leq 8 \\
& \quad x_1 \geq 0, x_2 \geq 0.
\end{align*}
\]
1. Il problema ammette soluzione ottima nell’origine degli assi.

2. Il problema è illimitato.

3. Dalla rappresentazione dell’insieme ammissibile si deduce immediatamente che il problema è inammissibile.

4. Il problema ammette infinite soluzioni ottime.
3.2 Teoria della Programmazione Lineare

Esercizio 3.2.1 Dato il poliedro descritto dal seguente sistema

\[
\begin{align*}
3x_1 - 3x_2 + 5x_3 & \leq 1 \\
-2x_1 + 3x_2 + x_3 & \geq 1 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

verificare se il punto \((1,1,0)^T\) è un vertice del poliedro.

Riscriviamo innanzitutto il poliedro nella forma

\[
\begin{align*}
-3x_1 + 3x_2 - 5x_3 & \geq -1 \\
-2x_1 + 3x_2 + x_3 & \geq 1 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

una semplice verifica evidenzia il fatto che il punto appartiene al poliedro e che solamente il secondo e il quinto vincolo sono attivi nel punto \((1,1,0)^T\) che quindi non può essere un vertice. \(\square\)

Esercizio 3.2.2 Dato il poliedro descritto dal seguente sistema

\[
\begin{align*}
3x_1 - 2x_2 + 5x_3 & \leq 1 \\
-2x_1 + 3x_2 + x_3 & \geq 1 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

verificare se il punto \((1,1,0)^T\) è un vertice del poliedro.

Riscriviamo innanzitutto il poliedro nella forma

\[
\begin{align*}
-3x_1 + 2x_2 - 5x_3 & \geq -1 \\
-2x_1 + 3x_2 + x_3 & \geq 1 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

Nel punto \((1,1,0)^T\), che appartiene al poliedro, sono attivi il primo, il secondo e il quinto vincolo. Inoltre i vettori \((-3,2,-5)^T\), \((-2,3,1)^T\) e \((0,0,1)^T\) corrispondenti a questi tre vincoli sono linearmente indipendenti e quindi il punto \((1,1,0)^T\) è un vertice del poliedro. \(\square\)
Esercizio 3.2.3 Dato il poliedro decritto dal seguente sistema

\[
\begin{align*}
3x_1 + 2x_2 - x_3 & \leq 3 \\
-3x_1 + x_2 - x_3 & \geq -2 \\
2x_1 + x_2 + x_3 & \leq 3 \\
4x_1 + x_2 + 2x_3 & \leq 4
\end{align*}
\]

verificare se il punto \((1,1,0)^T\) è un vertice del poliedro.

Il punto \((1,1,0)^T\) non appartiene al poliedro in quanto il quarto vincolo è violato.

Esercizio 3.2.4 Dato il poliedro decritto dal seguente sistema

\[
\begin{align*}
\tau x_1 + x_2 - x_3 & \leq 1 \\
-4x_1 + x_2 + 2x_3 & \geq -2 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

determinare per quali valori di \(\tau\) sono vertici del poliedro i punti

a) \(P(1/2,0,0)^T\)

b) \(Q(1,0,1)^T\).

Riscriviamo innanzitutto il sistema nella forma

\[
\begin{align*}
-\tau x_1 - x_2 + x_3 & \geq -1 \\
-4x_1 + x_2 + 2x_3 & \geq -2 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

a) Sostituendo il punto \(P\) nel primo vincolo, si verifica che per \(\tau \leq 2\) il punto soddisfa il primo vincolo; inoltre il punto soddisfa anche gli altri vincoli e quindi per \(\tau \leq 2\) il punto \(P\) appartiene al poliedro. Inoltre il secondo il quarto e il quinto vincolo sono attivi nel punto \(P\) e i vettori \((-4, 1, 2)^T \), \((0, 1, 0)^T \) e \((0, 0, 1)^T \) corrispondenti a questi tre vincoli sono linearmente indipendenti e quindi il punto \(P\) per \(\tau \leq 2\) è un vertice del poliedro.

b) Sostituendo le coordinate di \(Q\) nel sistema si ottiene che per \(\tau \leq 2\) il punto appartiene al poliedro. Inoltre nel punto \(Q\) sono attivi il secondo e il quarto vincolo, mentre non sono attivi il terzo e il quinto vincolo. Pertanto affinché si abbiano tre vincoli attivi nel punto \(Q\) si dovrà scegliere \(\tau\) in modo che risulti attivo in \(Q\) il primo vincolo e cioè \(\tau = 2\). Con questa scelta di \(\tau\) si hanno tre vincoli attivi, ma i vettori corrispondenti \((-2, -1, 1)^T \), \((-4, 1, 2)^T \) e \((0, 1, 0)^T \) non sono linearmente indipendenti e quindi il punto \(Q\) non può essere un vertice del poliedro.