Lab for the course on Process and
Service Modeling and Analysis

LAB-07
Declarative
Process Modeling
and Mining

Lecturer: Andrea MARRELLA

Courtesy of Fabrizio Maria Maggi and Claudio Di Ciccio

Outline

= Imperative vs Declarative process modelling
= Declarative process modeling with DECLARE

= Instantiation of declarative constraints through
DECLARE templates

= Declarative Process Mining in ProM
s Classroom Exercises

Imperative Process Models

= An Iimperative process model represents the whole
process behaviour at once.

= The most used notation iIs based on a subclass of Petri Nets
(namely, the Workflow Nets). Other extension exist (e.g., BPMN).

@a[}»@».»@».»@»[]ao
® - }o

Imperative process models explicitly specify
all possible behaviors ().

Imperative Process Models In
Stable Environments

\

~

Imperative process models represent
well the behaviour of processes in stable
business-oriented environments.
This kind of structured work includes mainly
production and administrative processes.

Imperative Process Models In
Turbulent Environments

Rather than using an imperative
language for expressing the allowed
sequence of activities, declarative
process models are based on the
description of business processes
through the usage of constraints.

Such contraints implicitly specify the
allowed behaviour of the process.

The idea is that every task can be
performed, except the ones which
do not respect such constraints.

Declarative models are appropriate to
describe dynamic environments,
where processes are highly flexible
and subject to changes.

Declarative Process Models

If Ais performed,

B must be perfomed,
no matter
before or afterwards
(responded existence)

U
o

Whenever B is performed,
C must be performed
afterwards
and B can not be repeated
until C is done
(alternate response)

Imperative vs Declarative Models

Imperative process models
explicitly specify all possible
sequences of activities
In a process.

forbidden
behavior

IMPERATIVE

S

deviations from
the prescribed
model

more flexibility: everything that

Declarative process models offer
Is not specified is allowed.

Imperative vs Declarative Models

B
-]
|

Declarative

, Declarative models work
better in presence of a
partial specification of

the process scheme.

Imperative

8

The DECLARE Process
Modeling Language

= DECLARE IS a declarative process modeling language
originally introduced in:

-W|I MP van Der Aalst, Maja Pesic, Helen Schonenberg
i Declarative workflows: Balancing between flexibility and support
. Computer Science-Research and Development vol.23, n.2 (2009)

= Technically a DECLARE model D = (A,7p) consists of a set of
possible activities A involved in a process and a collection
of temporal constraints sodefined over such activities.

= DECLARE constraints are instantiation of templates, I.e.,
patterns that define parameterized classes of properties.

= Templates have a graphical representation and enjoy a
precise semantics in LTL over finite traces.

Recap: LTL Operator Semantics

operator | semantics

O © has to hold in the next position of a path.

Ll © has to hold always in the subsequent positions of a path.

Op © has to hold eventually (somewhere) in the subsequent positions of a path.
o Ui © has to hold in a path at least until > holds. «> must hold in the current or
L in a future position.

S | P has to hold in the subsequent positions of the log at least until 1> holds.
T 7 | If 1 never holds, o must hold everywhere.
a arbitrary arbitrary arbitrary arbitrary
atomic prop. a O———0O————O———O———O
arbitrary a arbitrary arbitrary arbitrary
nextstep Oa O O O O O
aAN-b aAN—-b aAN-b b arbitrary
untla U O——O——O——O——O
—Qa —a -a a arbitrary
)) O R
eventually Ga (O)—))))
a a a a a
M e ~ e
always Da (- a S, U)

10

DECLARE constraint templates

Existence templates

Existence(A)

1.* L
LTL Formalization: OA
I A I Activity A occurs at least 1 time in the process instance.
BCAAC / BCAAAC v BCC X
- Absence(A)
LTL Formalization: —OA
I A I Activity A does not occur in the process instance.
BCC v BCAC X
— Init(A)
i LTL Formalization: A

Activity A is the first to occur in each process instance.

d

BCAAC X ACAAAC vV BCC X
Last(A)
last LTL Formalization: O(A A 0—T)

Activity A is the last to occur in each process instance.
BCAAC X ACAAAC X BCA v/

d

DECLARE constraint templates

Choice templates

Choice(A,B)

LTL Formalization: OA V OB
A <O Activity A or B eventually occur in the process instance.
BCAAC v CDC x BCC v

Exclusive Choice(A,B)
LTL Formalization: (CA V OB) A —(CA A OB)

I A I <& { B I Activity A or B eventually occur in the process instance,
but not together.

BCAAC X CDC X BCC v

12

DECLARE constraint templates

Relation templates

RespondedExistence(A, B)
LTL Formalization: CA—OB
If A occurs in the process instance, then B occurs as

well.
CAC X CAACB v BCAC v BCC v

Co-Existence

LTL Formalization: (CA — OB) A (OB — OA)
Activity A or B eventually occur in the process instance.
BCAAC v CDC x BCC X

13

DECLARE constraint templates

Relation templates

a

Response(A, B)

LTL Formalization: 0 (A—9¢B)
n If A occurs in the process instance, then B occurs after A.

BCAAC X CAACB v CAC x BCC v

AlternateResponse(A, B)

Each time A occurs in the process instance, then B occurs
afterwards, before A recurs. BCAAC X CAACB X
CACB v CABCA X BCC v CACBBAB v

ChainResponse(A, B)

n LTL Formalization: [(A— O(—™ A U B))

LTL Formalization: O (A — OB)
n Each time A occurs in the process instance, then B

occurs immediately afterwards.
BCAAC X BCAABC x BCABABC v

14

DECLARE constraint templates

Relation templates

[+

s
e

:

Precedence(A,B)
LTL Formalization: /B W A

B occurs in the process instance only if preceded by A
BCAAC X CAACB v CAC v

AlternatePrecedence(A,B)

LTL Formalization: (B WA)AO (B — (—B WA))

Each time B occurs in the process instance, it is preceded
by A and no other B can recur in between. BCC X
BCAAC X CAACB v CACB v CABCA v CACBAB v

ChainPrecedence(A,B)

LTL Formalization: 00 (OB — A)

Each time B occurs in the process instance, then A
occurs immediately beforehand

BCAAC X BCAABC X CABABCA v

15

DECLARE constraint templates

Relation templates

Succession(A, B)
LTL Formalization: 00 (A—0B) A (—B WA)

n A (B) occurs if and only if it is followed (preceded) by B
(A) in the process instance
BCAAC X CAACB v CAC X BCC x CDC v

AlternateSuccession(A,B)

LTL Formalization: [1 (A—O(—A UB))A (B WA) A
— 8 | a6 ceway

A and B occur in the process instance if and only if the
latter follows the former, and they alternate each other in
the trace. @~ BCAAC X CAACB X CACB v CABCA X
BCC x CACBAB v

ChainSuccession(A,B)

LTL Formalization: [J(A—OB) A LI(OA—B)

= n A and B occur in the process instance if and only if the
latter immediately follows the former
BCAAC X BCAABC X CABABC / 16

DECLARE constraint templates

Relation templates

NotCoExistence(A,B)

LTL Formalization: (CA——0B) A (OB——10A)
A and B never occur together in the process instance
CAC v CAACB X BCAC x BCC v CDC v

NotSuccession(A,B)

LTL Formalization: 0 (A——9B)
A can never occur before B in the process instance
BCAAC v CAACB X CAC v BCC v

NotChainSuccession(A,B)

LTL Formalization: [1 (A——0B)
A and B occur in the process instance if and only if the
latter does not immediately follows the former

BCAAC v BCAABC X CBACBA v/

17

The DECLARE System

= The DECLARE System consists of the Designer, the
Framework, and the Worklist.

= The DECLARE Designer consists of a graphical editor
component for creating and verifying DECLARE models.

= The DECLARE Framework works as the backend server
for executing DECLARE processes.

= The DECLARE Worklist is the user client connecting to
the Framework.

= The DECLARE System can be downloaded from:
http.//www.win.tue.nl/declare/download/

18

http://www.win.tue.nl/declare/download/

An Example of DECLARE Model

Transurethral Resection-complete

regjponse

pregedence Nursing Period-complete

cedence

response

Histological Examination-complete
altern response
Preoperative Screening-complete

ed existence

First Outpatient Visit-complete

not cojexistence

co-existenge)
Cysto-urethroscopy-complete .—5 Potassium-complete

An Example of DECLARE Model

Transurethral Resection-complete

regjponse

(—IB UH) vV D(—IB)

pregedence Nursing Period-complete

|I pcedence

response

Histological Examination-complete
altern response
Preoperative Screening-complete

ed existence

First Outpatient Visit-complete

not cojexistence

co-existenge)
Cysto-urethroscopy-complete .—5 Potassium-complete

An Example of DECLARE Model

Transurethral Resection-complete

regjponse

O0A & OB

pregedence Nursing Period-complete

cedence

response

Histological Examination-complete
altern response
Preoperative Screening-complete

ed existence

First Outpatient Visit-complete

not cojexistence

co-existenge)
Cysto-urethroscopy-complete .—5 Potassium-complete

An Example of DECLARE Model

Transurethral Resection-complete

regjponse

-(QA AN OB)

pregedence Nursing Period-complete

cedence

response

Histological Examination-complete
altern response
Preoperative Screening-complete

ed existence

First Outpatient Visit-complete

not cojexistence

co-existenge)
Cysto-urethroscopy-complete .—5 Potassium-complete

Declarative Process Mining in ProM

= Declare Maps Miner
= Declare Analyzer
= Declare Replayer

= Declare Diagnhoser
= and many others....for a complete list, check:

| Fabr|2|o Maria Maggi

| Declarative Process Mining with the Declare Component of ProM
| 12th International Conference on Business Process Management,

: | BPM 2014

23

Declare Maps Miner /1

= The Declare Maps Miner allows to generate from
scratch a set of DECLARE constraints representing
the actual behavior of a process as recorded in an
event log.

= The user selects from a list of DECLARE templates
the ones to be used for the discovery task.

= The mined model will contain only constraints that are
Instantiations of the selected templates.

24

Declare Maps Miner /2

Search

Template chain succession

responded existence
existence

chain precedence
precedence

not coexistence
exactly2

not chain succession
exactly1

alternate precedence Select Al

Deselect All

Add

Remowve

chain succession

A and B can happen only next to each other.

(A" =X('B")))

x Cancel

Declare Maps Miner /3

The user can ignore constraints between event types
of the same activity (i.e., involving different parts of the

Declare Maps Miner Plugin activities’ lifecycle such as start and complete).
Apriori and Activation/Satisfacti- guration
@ All Activities (considering Event Types)
Q All Activities (ignoring Event Types)
D Diversity (lgnore associations hetween event types of same activity
|m) Concept Based associations \
Concept Based ftem Set Configuration The user can clusterize different activities in different
Load Concept Ontology : groups and specify if only intra-group or inter-group
g::“'2'“““E“““E;‘:“““_':_'““S constraints should be considered. For example, in a hospital
er LGroup Lonce| Ssoclatlons . . .
Configure sunporalpha log, an analyst would be interested in constraints between
Choose support 100 if your 1og contains no noise activities involved in surgery and therapy. Y

Min. Support * Bd

Choose alpha as 0 if you want to discover only those contraints that are always activated in the log (non-trivially true)

=D (2D

26

Declare Maps Miner /4

The user can also specify thresholds for
parameters minimum support and alpha.

Declare Maps Miner Plugin

Apriori and Activation/Satisfaction Configuration

'i All Actnaties (considering Event Types)

O All Activities (ignoring Event Types) Minimum support allows to select the percentage of
J Diversity (lgnore associations between evenit ypes of same actiaty | tragces in which a constraint must be satisfied to be
@ Concept Based associations discovered (and to filter out noisy traces).

Concept Based Iltem Set Configuration

Load Concept Ontology -EE!!F"! -

D Intra-Group Concept Associations
D Inter Group Concept Associations
Configure support/alpha

Choose support 100 if your log contains no noise

Min. Support * 64

Choose alpha as 0 if you want to discover only those contraints that are always activated in the log (non-trivially true)

Alpha =——

Alpha can be used to ignore constraints that are
trivially true in the discovery task.
For example, constraint response(A,B) is trivially true
In process instances in which A does not occur at all.

Mined Model

The discovery results are presented to the user as
interactive maps. Activities are colored based on
their frequency (from indicating low frequency
to yellow indicating high frequency).

¢ & » W i
4
_dvise claimant on reiml » Filtering
Support
templates events eve
0.51025057
“ ponse v| response
- R BleE ¥| existence
determine likelinood of claim T
¥| absence
n.a.
Interest Factor
n.a.
Sorting
@ Support
J CPR
A Fnedidnenn
- | Support: _ 50
initiate payment
Confidence: _ 51
]
B register claim CPIR: _ 4
IF: — 98
Regenerate Model

C

Humber of activities in thizs map: 11

Humber of constraints in this map: 20

The user can prune out, in the discovered maps, the
constraints that are less interesting, redundant or
deriving from noise in the log.

Declare Analyzer

= Through the Declare
Analyzer the user can
pinpoint where the process
execution deviates from the
reference DECLARE model.

= The degree of conformance
of the process behavior can
be guantified through several
metrics, e.g., fulllment ratio
and violation ratio.

29

Declare Replayer

= The Declare Replayer generates a set of alignments
between the log and the reference DECLARE model, I.e.,
Information about what must be changed in the log traces to
make them perfectly compliant with the model.

Visualization data

O & > W

Lo
|

og-Model Alignments. Average Fitne

Details of the Alignment for Trace 3

1: A-complete

to Solve 0 i of Ct

— 30

Declare Diagnoser

Diagnosis Results

The Declare Diagnoser
projects the results obtained
through the Declare
Replayer onto the reference
model.

This projection produces a
map in which the critical
activities/constraints of the
reference model are
highlighted.

Activities are colored from red to green according to the number of
moves they are involved in, i.e., according to how many times they were
In the wrong place in the log or missing when required.

Constraints are colored from red to green based on the number of
moves that are needed to make the log compliant to them.

Moves in Model
C-complete: 0
B-complete: 0
A-complete: 0

31

