
LAB-07
Declarative

Process Modeling

and Mining

Lecturer: Andrea MARRELLA
Courtesy of Fabrizio Maria Maggi and Claudio Di Ciccio

Lab for the course on Process and

Service Modeling and Analysis

Outline

 Imperative vs Declarative process modelling

 Declarative process modeling with DECLARE

 Instantiation of declarative constraints through

DECLARE templates

 Declarative Process Mining in ProM

 Classroom Exercises

2

Imperative Process Models

 An imperative process model represents the whole

process behaviour at once.

 The most used notation is based on a subclass of Petri Nets

(namely, the Workflow Nets). Other extension exist (e.g., BPMN).

Imperative process models explicitly specify
all possible behaviors (closed models).

Imperative Process Models in

Stable Environments

4

Imperative process models represent

well the behaviour of processes in stable

business-oriented environments.

This kind of structured work includes mainly

production and administrative processes.

Imperative Process Models in

Turbulent Environments

5

Imperative process models prescribe

the execution flow in its entireness.

In less conventional business domains

(e.g., healthcare), this can results in the

definition of spaghetti processes.

Declarative Process Models

 Rather than using an imperative

language for expressing the allowed

sequence of activities, declarative

process models are based on the

description of business processes

through the usage of constraints.

 Such contraints implicitly specify the

allowed behaviour of the process.

 The idea is that every task can be

performed, except the ones which

do not respect such constraints.

 Declarative models are appropriate to

describe dynamic environments,

where processes are highly flexible

and subject to changes.

6

If A is performed,

B must be perfomed,

no matter

before or afterwards

(responded existence)

Whenever B is performed,

C must be performed

afterwards

and B can not be repeated

until C is done

(alternate response)

Imperative vs Declarative Models

7

Imperative process models

explicitly specify all possible

sequences of activities

in a process.

Declarative process models offer

more flexibility: everything that

is not specified is allowed.

Imperative vs Declarative Models

8

Imperative

Declarative

Declarative models work

better in presence of a

partial specification of

the process scheme.

The DECLARE Process

Modeling Language

 DECLARE is a declarative process modeling language

originally introduced in:

 Technically a DECLARE model D = (A,πD) consists of a set of

possible activities A involved in a process and a collection

of temporal constraints πDdefined over such activities.

 DECLARE constraints are instantiation of templates, i.e.,

patterns that define parameterized classes of properties.

 Templates have a graphical representation and enjoy a

precise semantics in LTL over finite traces.

9

Wil MP van Der Aalst, Maja Pesic, Helen Schonenberg

Declarative workflows: Balancing between flexibility and support

Computer Science-Research and Development vol.23, n.2 (2009)

Recap: LTL Operator Semantics

10

DECLARE constraint templates

11

Existence templates

Existence(A)

LTL Formalization: ◊A

Activity A occurs at least 1 time in the process instance.

BCAAC ✓ BCAAAC ✓ BCC ✗

Absence(A)

LTL Formalization: ￢◊A

Activity A does not occur in the process instance.

BCC ✓ BCAC ✗

Init(A)

LTL Formalization: A

Activity A is the first to occur in each process instance.

BCAAC ✗ ACAAAC ✓ BCC ✗

A

1..*

A

0

A

init

A

last

Last(A)

LTL Formalization: ◊(A ∧ O￢T)

Activity A is the last to occur in each process instance.

BCAAC ✗ ACAAAC ✗ BCA ✓

12

A B

A B

Choice(A,B)

LTL Formalization: ◊A ∨ ◊B

Activity A or B eventually occur in the process instance.

BCAAC ✓ CDC ✗ BCC ✓

Exclusive Choice(A,B)

LTL Formalization: (◊A ∨ ◊B) ∧￢(◊A ∧ ◊B)

Activity A or B eventually occur in the process instance,

but not together.

BCAAC ✗ CDC ✗ BCC ✓

Choice templates

DECLARE constraint templates

13

Co-Existence

LTL Formalization: (◊A → ◊B) ∧ (◊B → ◊A)

Activity A or B eventually occur in the process instance.

BCAAC ✓ CDC ✗ BCC ✗

RespondedExistence(A, B)

LTL Formalization: ◊A→◊B

If A occurs in the process instance, then B occurs as

well.

CAC ✗ CAACB ✓ BCAC ✓ BCC ✓

Relation templates

A B

A B

DECLARE constraint templates

14

Relation templates

Response(A, B)

LTL Formalization: (A→◊B)

If A occurs in the process instance, then B occurs after A.

BCAAC ✗ CAACB ✓ CAC ✗ BCC ✓

AlternateResponse(A, B)

LTL Formalization: (A→ O(￢ A U B))

Each time A occurs in the process instance, then B occurs

afterwards, before A recurs. BCAAC ✗ CAACB ✗
CACB ✓ CABCA ✗ BCC ✓CACBBAB ✓

ChainResponse(A, B)

LTL Formalization: (A → OB)

Each time A occurs in the process instance, then B

occurs immediately afterwards.

BCAAC ✗ BCAABC ✗ BCABABC ✓

DECLARE constraint templates

15

Relation templates

Precedence(A,B)

LTL Formalization: ￢B W A

B occurs in the process instance only if preceded by A

BCAAC ✗ CAACB ✓ CAC ✓

AlternatePrecedence(A,B)

LTL Formalization: (￢B W A) ∧ (B → (￢B W A))

Each time B occurs in the process instance, it is preceded

by A and no other B can recur in between. BCC ✗
BCAAC ✗ CAACB ✓ CACB ✓ CABCA ✓ CACBAB ✓

ChainPrecedence(A,B)

LTL Formalization: (OB → A)

Each time B occurs in the process instance, then A

occurs immediately beforehand

BCAAC ✗ BCAABC ✗ CABABCA ✓

DECLARE constraint templates

DECLARE constraint templates

16

Relation templates

Succession(A, B)

LTL Formalization: (A→◊B) ∧ (￢B W A)

A (B) occurs if and only if it is followed (preceded) by B

(A) in the process instance

BCAAC ✗ CAACB ✓ CAC ✗ BCC ✗ CDC ✓

AlternateSuccession(A,B)

LTL Formalization: (A→O(￢A U B)) ∧ (￢B W A) ∧

 (B→ (￢B W A)))

A and B occur in the process instance if and only if the

latter follows the former, and they alternate each other in

the trace. BCAAC ✗ CAACB ✗ CACB ✓ CABCA ✗
BCC ✗ CACBAB ✓

ChainSuccession(A,B)

LTL Formalization: (A→OB) ∧ (OA→B)

A and B occur in the process instance if and only if the

latter immediately follows the former

BCAAC ✗ BCAABC ✗ CABABC ✓

DECLARE constraint templates

17

Relation templates

NotCoExistence(A,B)

LTL Formalization: (◊A→￢◊B) ∧ (◊B→￢◊A)

A and B never occur together in the process instance

CAC ✓ CAACB ✗ BCAC ✗ BCC ✓ CDC ✓

NotSuccession(A,B)

LTL Formalization: (A→￢◊B)

A can never occur before B in the process instance

BCAAC ✓ CAACB ✗ CAC ✓ BCC ✓

NotChainSuccession(A,B)

LTL Formalization: (A→￢OB)

A and B occur in the process instance if and only if the

latter does not immediately follows the former

BCAAC ✓ BCAABC ✗ CBACBA ✓

The DECLARE System

 The DECLARE System consists of the Designer, the

Framework, and the Worklist.

 The DECLARE Designer consists of a graphical editor

component for creating and verifying DECLARE models.

 The DECLARE Framework works as the backend server

for executing DECLARE processes.

 The DECLARE Worklist is the user client connecting to

the Framework.

 The DECLARE System can be downloaded from:

http://www.win.tue.nl/declare/download/

18

http://www.win.tue.nl/declare/download/

An Example of DECLARE Model

An Example of DECLARE Model

An Example of DECLARE Model

An Example of DECLARE Model

Declarative Process Mining in ProM

 Declare Maps Miner

 Declare Analyzer

 Declare Replayer

 Declare Diagnoser

 and many others….for a complete list, check:

23

Fabrizio Maria Maggi

Declarative Process Mining with the Declare Component of ProM

12th International Conference on Business Process Management,

BPM 2014

Declare Maps Miner /1

 The Declare Maps Miner allows to generate from

scratch a set of DECLARE constraints representing

the actual behavior of a process as recorded in an

event log.

 The user selects from a list of DECLARE templates

the ones to be used for the discovery task.

 The mined model will contain only constraints that are

instantiations of the selected templates.

24

Declare Maps Miner /2

25

Declare Maps Miner /3

26

The user can ignore constraints between event types
of the same activity (i.e., involving different parts of the

activities’ lifecycle such as start and complete).

The user can clusterize different activities in different
groups and specify if only intra-group or inter-group

constraints should be considered. For example, in a hospital
log, an analyst would be interested in constraints between

activities involved in surgery and therapy.

Declare Maps Miner /4

27

The user can also specify thresholds for
parameters minimum support and alpha.

Alpha can be used to ignore constraints that are
trivially true in the discovery task.

For example, constraint response(A,B) is trivially true
in process instances in which A does not occur at all.

Minimum support allows to select the percentage of
traces in which a constraint must be satisfied to be

discovered (and to filter out noisy traces).

Declare Maps Miner /5

28

The discovery results are presented to the user as
interactive maps. Activities are colored based on

their frequency (from white indicating low frequency
to yellow indicating high frequency).

The user can prune out, in the discovered maps, the

constraints that are less interesting, redundant or

deriving from noise in the log.

Declare Analyzer

29

 Through the Declare

Analyzer the user can

pinpoint where the process

execution deviates from the

reference DECLARE model.

 The degree of conformance

of the process behavior can

be quantified through several

metrics, e.g., fulllment ratio

and violation ratio.

Declare Replayer

30

 The Declare Replayer generates a set of alignments

between the log and the reference DECLARE model, i.e.,

information about what must be changed in the log traces to

make them perfectly compliant with the model.

Declare Diagnoser

 The Declare Diagnoser

projects the results obtained

through the Declare

Replayer onto the reference

model.

 This projection produces a

map in which the critical

activities/constraints of the

reference model are

highlighted.

31

 Activities are colored from red to green according to the number of

moves they are involved in, i.e., according to how many times they were

in the wrong place in the log or missing when required.

 Constraints are colored from red to green based on the number of

moves that are needed to make the log compliant to them.

