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Data Mining
_—

e born before the Data Warehouse

e collection of techniques from: Artificial Intelligence,
Pattern Recognition, Statistics (e.g., genetic
algorithms, fuzzy logic, expert systems, neural
networks, etc.)

e targets:

— descriptive goals: identify patterns of behavior, cause-
effect relationships, classifying individuals, etc.

— predictive goals: predict trends, to classify individuals
according to risk, etc.
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Some applications for Data Mining
_—

e Data Analysis and Decision Support Systems

e Market Analysis and Marketing

— Target Marketing, Customer Relationship Management
(CRM), Market Basket Analysis (MBA), market
segmentation

* Analysis and risk management

— reliability forecasts, user loyalty, quality control, ...
— detection of frauds and unusual patterns (outliers)

e Text Mining
e Web Mining, ClickStream Analysis
* Genetic engineering, DNA interpretation, ...
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Data Mining: associative rules
_—

IF X (“the customer purchases beer”)
THEN Y (“the customer purchases diaper”)
X=2>Y
Support (what fraction of individual follows the rule):
s = [XnY]

s(X = Y) = F(XOV)

[all[

Confidence (what fraction of individual to whom the rule
applies, follows the rule):

c=[XnY| c(X=Y)=F(Y | X)

[X]

Range: economics (e.g.: market basket analysis),
telecommunication, health care, ...
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Data Mining: clustering

e

e identify similarities, spot heterogeneity in the distribution in
order to define homogeneous groups (unsupervised learning)

e search clusters based on
— distribution of population
— a notion of “distance”

Example: DFI — Disease-Free Interval (5 years)
(collaboration with Ist. Regina Elena, Roma)
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Data Mining: decision tree

Determine the causes of an interesting phenomenon
(with a set of output values), sorted by relevance

— internal node: attribute value to be appraised

— branching: value (or value interval) for an attribute

— leave: one of the possible output values

Example:
. age’
will the customer buy a computer ? ‘/ j \
student? yes credit?

L

yes yes
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Data Mining: time sequences
_—

e spot recurrent / unusual patterns in time
seguences

e feature prediction

Example (Least Cost Routing): routing a telephone call over
the cheapest available connection

(coooperation with Between — consulting firm)

KEY QUESTION: \
given an outbound call from an internal line X4

o
toward an external numberY, how long the ©
call?

Rates:
connection fee ——

flat rate

» duration
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Neural Networks
_—

Problem:

can you write a program which recognizes
human writing of capital letters...

5
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Data Mining:

Simplicity - For example:

— length of rules (associative)

— size (decision tree)

interesting” results

confusion matrix

predicted value

effective value

Certainty - For example:
— confidence (Association Rules): c(X—>Y) = #(XandY) / #(X)

— reliability of classification

Usefulness - For example:
— support (Association Rules)  s(X=>Y) = #(Xand Y) / #(ALL)

Novelty - For example:

— not known previously

— surprising

— subsumption of other rules (included as special cases)

Umberto Nanni

Seminars of Software and Services for the Information Society

B right
B wrong




Confusion matrix
_—

actual value

p n total

True False

p.l - B PI
Positive Positive

prediction
outcome

False True

n _ _ N’
MNeqgative MNegative

total P N
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Confusion matrix & Terminology
_—

Positive (P), Negative (N)
True Positive (TP), True Negative (TN)

False Positive (FP), False Negative (FN)

True Positive Rate [sensitivity, recall] TPR=TP /P =TP / (TP+FN)
False Positive Rate FPR=FP/N=FP/(FP+TN)
ACCuracy ACC=(TP+TN) /(P + N)

SPeCificity (True Negative Rate)

SPC=TN/N=TN/(FP +TN)=1-FPR

Positive Predictive Value [precision] PPV =TP /(TP + FP)
Negative Predictive Value NPV =TN /(TN + FN)
False Discovery Rate FDR=FP/(FP + TP)
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ROC curve
_—

Receiver Operating Characteristic ROC Space
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ROC curve: examples
_—
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Mining Rules from Databases — Algorithm: APRIORI
_—

Rakesh Agrawal, Ramakrishnan Srikant. Fast algorithms for mining association rules in
large databases. 20th International Conference on Very Large Data Bases (VLDB),
pp.487-499, Santiago, Chile, September 1994.

APRIORI Algorithm:

1. L, ={large l-itemsets}

2. for(k=2;L ,#0;k++)dobegin

3. C, = apriori-generate (L, ;) // Candidates (extending prev. tuples) generation
4, forall transactions t[12 do begin

5. C, = subset(C, , t) // Candidates contained in t

6. forall candidates c LI C, do :

7. c.count++ pruning
8. end

9. L,={c0C, | c.count 2 minsupport }

10. end

11. ANSWER= U , L,
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