
Autonomous and Mobile Robotics
Solution of Midterm Class Test, 2019/2020

Solution of Problem 1

1. The two input vector fields are g1 = (− cos γ
sin γ
ρ

sin γ
ρ )T and g2 = (0 − 1 0)T .

Their Lie Bracket is easily computed as

g3 = [g1, g2] = −


∗ sin γ ∗
∗ cos γ

ρ ∗

∗ cos γ
ρ ∗


 0

−1
0

 =


sin γ
cos γ
ρ

cos γ
ρ


Since det(g1 g2 g3) = 1/ρ, the accessibility rank condition is satisfied and the system
is controllable.

2. Since v = v̄, the second equation becomes

γ̇ =
sin γ

ρ
v̄ − ω

where the first term now represents a drift and ω is the only control input. This
equation can be easily linearized letting

ω =
sin γ

ρ
v̄ − u

In fact, we obtain

γ̇ =
sin γ

ρ
v̄ − sin γ

ρ
v̄ + u = u

i.e., a simple integrator dynamics from the new input u to γ. The desired set-point
γ = π/2 can be made globally exponentially stable by a proportional feedback:

u = k(π/2 − γ) k > 0

The original velocity input is computed as

ω =
sin γ

ρ
v̄ − k(π/2 − γ)

At steady state, it will be γ = π/2 so that ρ̇ = 0 (from the first unicycle equation),
i.e., ρ = const. This obviously indicates that the unicycle is a moving along a circle
centered at the origin.

1



Solution of Problem 2

Consider the kinematic model of the front-wheel-drive bicycle:

ẋR = vF cos θ cosφ

ẏR = vF sin θ cosφ

θ̇ = vF
sinφ

`

φ̇ = ω

where xR, yR are the coordinates of the rear wheel and vF denotes the velocity of the front
wheel. For the velocity vR of the rear wheel, we can write

v2R = ẋ2R + ẏ2R = v2F (cos2 θ cos2 φ+ sin2 θ cos2 φ) = v2F cos2 φ

which confirms that the velocity of the rear wheel is never larger than the velocity of the
front wheel. Clearly, vR = vF when φ = 0 (the robot is moving on a straight line).

The same exact result is obtained starting from the kinematic model of the rear-wheel-
drive bicycle, where vR appears as a velocity input, and computing the velocity vF of the
front wheel.

The geometric interpretation of this result is straightforward. As shown in the figure
below, both the front wheel and the rear wheel move instantaneously along an arc of circle,
but the radius of the rear wheel circle is smaller than the radius is of the front wheel circle;
the velocity of the rear wheel must therefore be smaller or at most equal (when φ = 0) to
that of the front wheel.
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Solution of Problem 3

1. The kinematic model of the robot is readily obtained as a simple dynamic extension
of the classical model with velocity inputs:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

v̇ = av

ω̇ = aω

Note that the driving and steering velocities v and ω are state variables in this model,
whereas the control inputs are the accelerations av, aω.

2. Using Euler integration, a discrete-time motion model is written as

xk+1 = xk + Ts vk cos θk

yk+1 = yk + Ts vk sin θk

θk+1 = θk + Ts ωk

vk+1 = vk + Ts av,k

ωk+1 = ωk + Ts aω,k

where Ts is the sampling interval.

3. For the measurement model, we have a total of three readings coming from the sensors
at each sampling instant, i.e., the distance d to the upper wall and the robot orientation
and its velocity along the x axis. These quantities are expressed as a function of the
system states as follows:

hk =

 a− yk
θk

vk cos θk


The rest of the solution is straightforward: linearize the motion and measurement
models and then write the EKF equations. Note that in this case all measurements
will be used for the correction stage of the filter, whereas the prediction stage assumes
that the control inputs av,k and aω,k are known (in any case, it would not be possible
to reconstruct them from the available measurements).
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