The Routh-Hurwitz Stability Criterion,

In the mid-nineteenth century James C.
Maxwell, and others, became interested in
the stability of motion of dynamic systems.
Maxwell’s interest in stability stemmed in
part from his work with an automatic control
system — a speed governor he and his
colleagues were using in laboratory measure-
ments to establish the definition of the ohm.
Maxwell was the first to publish a dynamic
analysis of this feedback system using
differential equations [1],[2]. In this analysis
he defined the types of responses one could
expect from the solutions of linearized
equations of motion having constant coeffi-
cients. He identified the conditions which
must prevail on the roots of the characteristic
polynomial corresponding to the linear
differential equation in order that the solution
of the homogeneous equation be stable.
(They must lie inside the left-half plane.) In
this paper he also urged mathematicians to
address the question of how the coefficients

" of the polynomial are related to its roots
which, for polynomials of degree higher than
three or four, was a difficult question in
those days, but a vital one in the study of
stability, as it is today.

In the mid-1870s Maxwell was on the
judging committee for the Adams Prize, a
biennial competition for the best essay on a
scientific subject selected by the committee.
The topic for the 1877 Adams prize was The
Stability of Motion E.J. Routh won the
competition that year for his essay which
showed how the number of roots of the
characteristic polynomial lying in the right
half plane could be determined from the
coefficients of the polynomial [3]. Some
twenty years following Routh, the Swiss
mathematician A. Hurwitz, unaware of
Routh’s work, but also inspired by a stability
problem in a control system advanced by his
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engineer colleague Dr. A. Stodola (the speed
regulation of a high pressure water turbine),
presented the conditions on the coefficients
of the polynomial which must prevail in
order that its roots all have negative real
parts [4]. Hurwitz’s conditions are identical
to those given by Routh for no right half
plane roots, and are known today as the
Routh-Hurwitz Stability Criterion.

Both Routh and Hurwitz recognized that
their test functions would not account for
roots on the jo axis if the test functions were
simply computed from the formulae of the
test functions. If the jo axis roots are simple
the corresponding differential equation
solution is neither stable nor unstable, it is
usually called marginally stable, since it has
an undamped sinusoidal mode. But if the jw
axis roots are repeated the solution will be
unstable, with a mode of the form: #[sin(w¢
+ 0)], if the roots are double. The Routh-
Hurwitz criteria, applied only by formula,
will not reveal this form of instability. An

example of such a case is the unit impulse
response of a system having a transfer
function W(s):

W(s) = 16/(s* + s* + 85> + 8s% + 165 + 16).

This impulse response, w(?), is plotted in Fig.
1. It clearly shows an unstable response due
to the secular term with the sinusoidal factor.
The roots of the characteristic polynomial for
this system are: -1, j2, j2, -j2, and -j2.
Routh’s Array for this case, after invoking
the auxiliary polynomial procedure on rows
s* and s', and dividing all the derived rows
by a positive constant, is shown in Table L.
There are no sign changes in the first column
of the array, indicating that there are no roots
of the characteristic polynomial in the right
half s-plane. The jw axis roots appear as
factors of the auxiliary polynomial, of course,
but these could be overlooked by one who
simply follows the procedures given in most
text books. A recently published text,
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Fig. 1. Unit impulse response for the
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Table 1
Routh’s Array for the Example
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however, provides an appropriate emphasis
on this point [S].

It is interesting to note that Routh himself
was initially concerned about repeated roots,
even those lying on the real axis in the left
half plane relatively near the origin. He

thought the modes of the time response
corresponding to such roots, even though
they would eventually die out, might cause
the linear solution to be large enough, over
a long enough period, to exceed the "linear
range” of a basically nonlinear process.
Later, Routh seemed to become less con-
cerned about this possibility.

Systems whose characteristic polynomials
have jo axis roots, even repeated roots, are
of considerable practical importance in the
control of mechanical devices employing
flexible appendages. Therefore the point of
this paper can be pertinent to the analysis of
practical systems. This is true even with
present day computer analysis programs
which can factor high order polynomials and
display the roots in a fraction of a second,
provided the numerical algorithm used does
not fail in the case at hand. The Routh-

Hurwitz criterion can provide an analytical
check in such situations.
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Comments on "Automated Calibration
of a Fuzzy Logic Controller Using a Cell
State Space Algorithm"

A recent paper by Smith and Comer [1]
presents a method for "optimizing" the
nonlinear input/output map generated by a set
of fuzzy control rules. The procedure in [1]
is quite involved and is not per se the subject
of this comment. Rather, this comment
concentrates on the specific result obtained
when applied to a particular plant, a DC
motor with angular position feedback.

The plant has analog transfer function
(armature voltage input to rotation angle
output), with parameters k = 0.90566 and 1
=0.283:
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For a sampling period 7 = 0.01 s with
piecewise-constant input, the discrete-time
state-variable representation is [1, eq. (28)],
with constants as calculated from [I, eq.
27N)]: a,, = 0.009825, a,, = 0.9653, b, =
0.0001746, b, = 0.03472:
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The measured output, motor shaft angle 6,
is thus related to armature voltage V in the z
domain by:

(z=1)(z-a,,)8 = bk (zH(a,,b,~b,a»)b) V.

Thus, the transfer function 6/V, has poles
at z =1, 0.9653 and a zero at z = —0.9885.
The end results of the optimization
procedure in [1] are [I, tables I and II}
(evidently interchanged in labeling) for "five-
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rule” and ‘“nine-rule” controllers with
associated membership functions shown in
[1, fig. 2]. Clearly, this provides a determin-
istic input/output map through interpolation
between linear "rules"; these maps are shown
in [1, figs. 3 and 4]. The response of each
rule set to a 2-rad initial error is shown in [1,
fig. 7]. For comparison, the response of the
system incorporating a (proportional/deriva-
tive) "PD controller ... tuned to minimize rise
time with less than 5% overshoot" is also
shown, and as expected is measurably
inferior.

Unfortunately, the authors of [1] do not
show explicitly how they "tuned" the
conventional PD controller, nor its parame-
ters so obtained. The author of this comment,
by using well-known design methods with no
attempt at optimization, has selected PD
parameters which not only outperform the
authors’” "tuned" reference system but their
"optimized" fuzzy controllers as well; and
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