Università di Roma Tre

Controlli Automatici II

Controllo dei robot manipolatori

Prof. Giuseppe Oriolo DIS, Università di Roma "La Sapienza"

Introduzione

robot manipolatore: un sistema elettromeccanico complesso e versatile, dotato di una struttura meccanica mobile (eventualmente riconfigurabile), di attuatori e di organi di senso, controllata da un'unità di governo autonoma e programmabile

da un punto di vista meccanico, un robot manipolatore è una catena cinematica di corpi rigidi detti bracci o links connessi tra di loro tramite articolazioni dette giunti: rotazionali, prismatici,...

- i **giunti** sono N: ognuno fornisce un grado di libertà (di moto) al braccio seguente rispetto a quello precedente; le **variabili di giunto** q_i , con i = 1, 2, ..., N, sono angoli (se giunto *i* rotatorio) o lunghezze (se giunto *i* lineare o prismatico)
- i bracci sono N + 1: il primo è fisso (di base) ed i successivi N sono in movimento; all'ultimo braccio è solidale l'organo terminale (end-effector) che porta in genere un utensile (tool) per svolgere un compito
- *N* attuatori (in genere, motori elettrici) forniscono coppie/forze necessarie al movimento dei bracci; sono posti sui singoli giunti o, più spesso, rilocati in prossimità della base e collegati ai giunti remoti mediante organi di trasmissione
- un robot dispone di (almeno) N sensori (tipicamente, encoder ottici) per la misura diretta della configurazione (relativa) dei bracci
- G. Oriolo Controlli Automatici II (Università di Roma Tre) Controllo dei robot manipolatori

Modellistica dinamica

- la cinematica del robot descrive la geometria ed il movimento del manipolatore (a prescindere dalle cause che lo generano)
 - diretta: descrive la posizione e l'orientamento dell'organo terminale come funzione (nonlineare) delle variabili di giunto $q = (q_1, q_2, \dots, q_N)$
 - differenziale: descrive la velocità lineare ed angolare dell'organo terminale come funzione (nonlineare in q) delle velocità di giunto \dot{q}
- la dinamica del robot descrive le relazioni tra le cause (coppie/forze u(t)) ed il loro effetto sul movimento q(t) del manipolatore
 - diretta: date le coppie/forze u(t), $t \in [0,T]$, determina il movimento q(t)
 - inversa: dato il movimento del manipolatore q(t), $t \in [0,T]$, calcola le forze/coppie u(t) necessarie ad eseguirlo

per ricavare il modello dinamico di **sistemi meccanici** articolati a più gradi di libertà esistono diversi approcci; i più importanti sono:

• metodo di Eulero-Lagrange

- formulazione energetica
- modello dinamico in forma chiusa (simbolica)
- utile nell'analisi e progetto di sistemi di controllo
- permette una facile aggiunta di contributi (ad es., la dinamica degli attuatori)

• metodo di Newton-Eulero

- bilanciamenti di forze e coppie sui singoli corpi
- modello dinamico in forma ricorsiva (numerica)
- utile per un calcolo efficiente della dinamica inversa

nel seguito, si daranno alcuni cenni dell'applicazione del primo approccio al calcolo del modello dinamico dei robot manipolatori

Metodo di Eulero-Lagrange

- **1.** si fissa un **sistema di riferimento** SR_0 assoluto (nel caso di un robot manipolatore, è fissato alla base, con l'asse z lungo l'asse di rotazione o traslazione del primo giunto)
- 2. si sceglie di un insieme di coordinate generalizzate $q = (q_1, q_2, ..., q_N)$ che descrivano in modo univoco e minimale la configurazione cinematica del sistema (nel caso di un robot manipolatore, sono le N coordinate di giunto)
- **3.** si calcola l'energia cinetica $T = T(q, \dot{q})$ e l'energia potenziale U = U(q) dei corpi rigidi (i bracci del robot, comprese eventuali parti mobili i rotori dei motori)

(continua passo 3) per una catena cinematica aperta di N bracci:

$$- T = \sum_{i=1}^{N} T_i(q_1, \dots, q_i, \dot{q}_1, \dots, \dot{q}_i), \text{ con } T_i \text{ energia cinetica del braccio } i\text{-esimo data da}$$
$$T_i = \frac{1}{2} m_i v_{c_i}^T v_{c_i} + \frac{1}{2} \omega_i^T I_i \omega_i \qquad \text{(teorema di König)}$$

dove m_i è la massa, I_i è la matrice 3×3 simmetrica di inerzia (baricentrale), v_{c_i} è il vettore di velocità lineare assoluta del baricentro, ω_i è il vettore di velocità angolare assoluta del braccio

 $- U = \sum_{i=1}^{N} U_i(q_1, \dots, q_i)$, con U_i energia potenziale del braccio *i*-esimo data, nel caso di un campo solo gravitazionale, da

$$U_i = -m_i g_0^T p_{c_i}$$

dove g_0 è il vettore costante di accelerazione di gravità (espresso in SR_0) e p_{c_i} è il vettore di posizione assoluta del baricentro

le grandezze

$$p_{c_i} = p_{c_i}(q_1, \dots, q_i)$$
 $v_{c_i}\left(=rac{dp_{c_i}}{dt}
ight) = v_{c_i}(q_1, \dots, q_i, \dot{q}_1, \dots, \dot{q}_i)$
 $\omega_i = \omega_i(q_1, \dots, q_i, \dot{q}_1, \dots, \dot{q}_i)$

si calcolano dai passi 'intermedi' di derivazione della cinematica diretta (geometria) e della cinematica differenziale del robot manipolatore

- **4.** si costruisce il Lagrangiano $L(q, \dot{q}) = T(q, \dot{q}) U(q)$ (una funzione scalare)
- 5. si impone la seguente equazione di Eulero-Lagrange

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right)^T - \left(\frac{\partial L}{\partial q} \right)^T = \tau$$

dove $\tau = (\tau_1, \ldots, \tau_N)$ contiene i contributi delle coppie/forze non conservative che producono lavoro sulle coordinate q, ossia

- coppie/forze esterne $u = (u_1, \ldots, u_N)$ fornite dai motori
- coppie/forze dissipative u_F (ad es., di attrito viscoso ai giunti $u_{Fi} = -F_{vi}\dot{q}_i$)

in forma scalare, l'equazione di Eulero Lagrange diventa

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = \tau_i, \qquad i = 1, \dots, N$$

il risultato del calcolo è un sistema di n equazioni differenziali del secondo ordine in q:

- in esse appaiono dunque, oltre alle coordinate generalizzate q, le velocità generalizzate \dot{q} e le accelerazioni generalizzate \ddot{q}
- i coefficienti delle equazioni dipendono dai parametri meccanici
- G. Oriolo Controlli Automatici II (Università di Roma Tre) Controllo dei robot manipolatori

nel caso di un manipolatore robotico, sviluppando le derivazioni, è possibile mostrare che il **modello dinamico** risultante assume la seguente forma (N equazioni differenziali nonlineari del secondo ordine)

$$M(q)\ddot{q} + c(q,\dot{q}) + e(q) = \tau$$

dove

- M(q) : matrice $N \times N$ di inerzia generalizzata
- $c(q, \dot{q})$: vettore di forze/coppie centrifughe e di Coriolis
- e(q) : vettore di forze/coppie dovute all'energia potenziale (in genere, solo di tipo **gravitazionale**; nelle strutture flessibili, anche **elastica**)
- per un robot completamente attuato e con attrito viscoso a tutti i giunti

 $\tau = u - F_v \dot{q}$

in cui F_v è una matrice diagonale e definita positiva

il modello può essere messo in forma di **spazio di stato**, con $x = (x_1, x_2) = (q, \dot{q})$:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = M^{-1}(x_1)[\tau - c(x_1, x_2) - e(x_1)]$

Modello dinamico dei robot: proprietà notevoli

• l'energia cinetica totale T si può scrivere come una forma quadratica in \dot{q}

$$T = \frac{1}{2} \dot{q}^T M(q) \dot{q} \ge 0 \qquad (= 0 \iff \dot{q} = 0)$$

e quindi la matrice di inerzia generalizzata è simmetrica e definita positiva ($\forall q$)

• ciascuna componente c_i (i = 1, ..., N) del vettore di forze/coppie centrifughe e di Coriolis è una forma quadratica nelle velocità \dot{q}

$$c_i(q,\dot{q}) = \dot{q}^T C_i(q) \dot{q}$$

con la matrice (simmetrica) $C_i(q)$ ottenuta per derivazione di elementi della M(q)

$$C_i = \frac{1}{2} \left[\left(\frac{\partial M_i}{\partial q} \right) + \left(\frac{\partial M_i}{\partial q} \right)^T - \frac{\partial M}{\partial q_i} \right] \qquad M_i = i \text{-esima colonna di } M(q)$$

• il vettore di forze/coppie centrifughe e di Coriolis si può anche fattorizzare come $c(q, \dot{q}) = S(q, \dot{q})\dot{q}$

con le righe della matrice
$$S(q, \dot{q})$$
 definite da $S_i = \dot{q}^T C_i(q)$ $(i = 1, ..., N)$

• la matrice $\dot{M} - 2S$ è antisimmetrica $(\forall q, \dot{q}) \Rightarrow |x^T(\dot{M} - 2S)x = 0, \forall x|$

• il vettore di forze/coppie **potenziali** si calcola come $e(q) = \left(\frac{\partial U}{\partial q}\right)^T$

- N = 2 giunti rotanti
 - q_1 : posizione angolare del primo braccio rispetto alla verticale
 - q_2 : posizione angolare relativa del secondo braccio rispetto al primo
- sistema di riferimento assoluto con (x, y) nel piano del moto, origine centrata alla base ed asse x lungo la verticale discendente

• grandezze cinematiche (con ℓ_1 = lunghezza del braccio 1, d_i = distanza del baricentro del braccio *i* dal proprio asse di rotazione)

$$p_{c_{1}} = \begin{pmatrix} d_{1} \cos q_{1} \\ d_{1} \sin q_{1} \\ 0 \end{pmatrix} \Rightarrow v_{c_{1}} = \begin{pmatrix} -d_{1} \sin q_{1} \dot{q}_{1} \\ d_{1} \cos q_{1} \dot{q}_{1} \\ 0 \end{pmatrix}$$

$$p_{c_{2}} = \begin{pmatrix} \ell_{1} \cos q_{1} + d_{2} \cos(q_{1} + q_{2}) \\ \ell_{1} \sin q_{1} + d_{2} \sin(q_{1} + q_{2}) \\ 0 \end{pmatrix} \Rightarrow v_{c_{2}} = \begin{pmatrix} -(\ell_{1} \sin q_{1} \dot{q}_{1} + d_{2} \sin(q_{1} + q_{2}) (\dot{q}_{1} + \dot{q}_{2})) \\ \ell_{1} \cos q_{1} \dot{q}_{1} + d_{2} \cos(q_{1} + q_{2}) (\dot{q}_{1} + \dot{q}_{2}) \\ 0 \end{pmatrix}$$

$$\omega_{1} = \begin{pmatrix} 0 & 0 & \dot{q}_{1} \end{pmatrix}^{T} \qquad \omega_{2} = \begin{pmatrix} 0 & 0 & \dot{q}_{1} + \dot{q}_{2} \end{pmatrix}^{T}$$

• energia cinetica $(T_i = \frac{1}{2} m_i v_{c_i}^T v_{c_i} + \frac{1}{2} \omega_i^T I_i \omega_i)$ dei due bracci $(T = T_1 + T_2)$

$$T_{1} = \frac{1}{2} m_{1} d_{1} \dot{q}_{1}^{2} + \frac{1}{2} I_{1zz} \dot{q}_{1}^{2}$$

$$T_{2} = \frac{1}{2} m_{2} \left[\ell_{1}^{2} \dot{q}_{1}^{2} + d_{2}^{2} (\dot{q}_{1} + \dot{q}_{2})^{2} + 2\ell_{1} d_{2} \cos q_{2} \dot{q}_{1} (\dot{q}_{1} + \dot{q}_{2}) \right] + \frac{1}{2} I_{2zz} (\dot{q}_{1} + \dot{q}_{2})^{2}$$

con m_i = massa del braccio *i*, I_{izz} = momento di inerzia del braccio *i* intorno all'asse *z* passante per il suo baricentro (elemento (3,3) della matrice I_i)

• energia potenziale dei due bracci ($U = U_1 + U_2$, a meno di una costante)

$$U_1 = -m_1 g d_1 \cos q_1$$

$$U_2 = -m_2 g (\ell_1 \cos q_1 + d_2 \cos(q_1 + q_2))$$

nota: U_i è legata alla 'quota' del baricentro del braccio i

• le coppie non conservative (a destra nelle equazioni di Eulero-Lagrange) sono

$$\tau = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} - \begin{pmatrix} F_{v1}\dot{q}_1 \\ F_{v2}\dot{q}_2 \end{pmatrix}$$

dove

 $u_i = \text{coppia fornita dall'}i\text{-esimo motore}$

 F_{vi} = coefficiente di attrito viscoso al giunto *i* (che trascureremo d'ora in poi)

a questo punto, costruendo il Lagrangiano L = T - U ed eseguendo le derivazioni indicate nelle equazioni di Eulero-Lagrange, si ottengono 2 equazioni differenziali nonlineari del 2° ordine, che descrivono il modello dinamico del robot considerato

non occorre però effettuare ogni volta le derivazioni di L indicate!

conviene sfruttare le proprietà generali del modello e ricavare, in modo equivalente ma più rapido, gli elementi M(q), $c(q, \dot{q})$ e e(q) separatamente

• dalla $T = T_1 + T_2 = \frac{1}{2}\dot{q}^T M(q)\dot{q}$, individuando le funzioni di q che pesano i prodotti $\dot{q}_i \dot{q}_j$ per $i, j \in \{1, 2\}$, si ricavano gli elementi della matrice di inerzia

$$M(q) = \begin{pmatrix} a_1 + 2a_2c_2 & a_3 + a_2c_2 \\ a_3 + a_2c_2 & a_3 \end{pmatrix}$$

dove si è posto per compattezza $c_2 = \cos q_2$ e $a_1 = I_{1zz} + m_1 d_1^2 + I_{2zz} + m_2(\ell_1^2 + d_2^2) > 0$, $a_2 = m_2 \ell_1 d_2 > 0$, $a_3 = I_{2zz} + m_2 d_2^2 > 0$

• dalle
$$C_i = \frac{1}{2} \left[\left(\frac{\partial M_i}{\partial q} \right) + \left(\frac{\partial M_i}{\partial q} \right)^T - \frac{\partial M}{\partial q_i} \right]$$
 si ottiene (con $s_2 = \sin q_2$)
 $C_1(q) = \begin{pmatrix} 0 & -a_2s_2 \\ -a_2s_2 & -a_2s_2 \end{pmatrix} \qquad C_2(q) = \begin{pmatrix} a_2s_2 & 0 \\ 0 & 0 \end{pmatrix}$

da cui, essendo $c_i = \dot{q}^T C_i \dot{q}$ (i = 1, 2), si ottiene (con $s_{12} = sin(q_1 + q_2))$

$$c(q,\dot{q}) = \begin{pmatrix} a_2 s_2 \dot{q}_2(\dot{q}_2 + 2\dot{q}_1) \\ a_2 s_2 \dot{q}_1^2 \end{pmatrix} = \begin{pmatrix} -a_2 s_2 \dot{q}_2 & -a_2 s_2(\dot{q}_1 + \dot{q}_2) \\ a_2 s_2 \dot{q}_1 & 0 \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \end{pmatrix} = S(q,\dot{q})\dot{q}$$

• dalla
$$e(q) = \left(\frac{\partial U}{\partial q}\right)^T$$
, essendo $U = U_1 + U_2$, si ha
$$e(q) = \left(\begin{array}{c}a_4s_1 + a_5s_{12}\\a_5s_{12}\end{array}\right)$$

dove si è posto $a_4 = g_0 (m_1 d_1 + m_2 \ell_1), a_5 = g_0 m_2 d_2$

riassumendo, in forma compatta (matriciale) il modello dinamico del robot 2R è

$$\begin{pmatrix} a_1 + 2a_2c_2 & a_3 + a_2c_2 \\ a_3 + a_2c_2 & a_3 \end{pmatrix} \begin{pmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{pmatrix} + \begin{pmatrix} a_2s_2 \dot{q}_2(\dot{q}_2 + 2\dot{q}_1) \\ a_2s_2 \dot{q}_1^2 \end{pmatrix} + \begin{pmatrix} a_4s_1 + a_5s_{12} \\ a_5s_{12} \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$M(q) > 0 \qquad \qquad c(q, \dot{q}) \qquad e(q)$$

è immediato verificare la prevista antisimmetria di $\dot{M} - 2S$:

$$\dot{M} - 2S = \begin{pmatrix} -2a_{2}s_{2}\dot{q}_{2} & -a_{2}s_{2}\dot{q}_{2} \\ -a_{2}s_{2}\dot{q}_{2} & 0 \end{pmatrix} - 2\begin{pmatrix} -a_{2}s_{2}\dot{q}_{2} & -a_{2}s_{2}(\dot{q}_{1} + \dot{q}_{2}) \\ a_{2}s_{2}\dot{q}_{1} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & a_{2}s_{2}(2\dot{q}_{1} + \dot{q}_{2}) \\ -a_{2}s_{2}(2\dot{q}_{1} + \dot{q}_{2}) & 0 \end{pmatrix}$$

Stabilizzazione di posizione nei robot manipolatori

obiettivo

progettare una legge di controllo in retroazione $u = k(q, \dot{q})$ che renda lo stato assegnato $(q_d, 0)$ un punto di equilibrio **globalmente asintoticamente stabile** per un generico robot manipolatore avente modello dinamico

$$M(q)\ddot{q} + c(q,\dot{q}) + e(q) = \tau = u - F_v \dot{q}$$

- la stabilità asintotica globale di $(q_d, 0)$ implica che il robot viene trasferito da qualsiasi stato iniziale allo stato desiderato, dove giunge con velocità nulla
- q_d può essere la posizione dei giunti che realizza una postura (posizione+orientamento) desiderata r_d dell'organo terminale; essa viene calcolata come $q_d = k^{-1}(r_d)$, dove $k^{-1}(\cdot)$ è la **funzione cinematica inversa**

nella pratica ingegneristica, i giunti sono normalmente equipaggiati con controllori PD

 $u = K_p(q_d - q) - K_d \dot{q}$ con K_p, K_d definite positive

esiste una **giustificazione teorica** per l'uso di questa legge di controllo, che dal punto di vista fisico simula un dispositivo molla+smorzatore *n*-dimensionale, tendente a ricondurre il robot nella posizione q_d ?

Teorema

in assenza di gravità $(e(q) \equiv 0)$, il controllore PD ai giunti $u = K_p(q_d - q) - K_d \dot{q}$, con K_p, K_d simmetriche e definite positive, rende $x_d = (q_d, 0)$ globalmente asintoticamente stabile

dim definiamo il vettore di errore in posizione

$$\epsilon = q_d - q$$
 $\dot{\epsilon} = -\dot{q}$

e la candidata di Lyapunov

$$V(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q} + \frac{1}{2} \epsilon^T K_p \epsilon$$

che è definita positiva in qualsiasi intorno di $x_d = (q_d, 0)$, e radialmente illimitata

nota: $V(q, \dot{q})$ ha la consueta forma $\frac{1}{2}(x - x_e)^T Q(x - x_e)$, cioè una 'energia' di errore

si ha

$$\dot{V}(q,\dot{q}) = \dot{q}^T M(q) \ddot{q} + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} + \epsilon^T K_p \dot{\epsilon} = \dot{q}^T (u - F_v \dot{q} - c(q,\dot{q})) + \frac{1}{2} \dot{q}^T \dot{M}(q) \dot{q} - \epsilon^T K_p \dot{q}$$

dove è stata usata l'espressione di $M(q)\ddot{q}$ fornita dal modello dinamico del robot

esprimendo il vettore di coppie centrifughe e di Coriolis come $c(q, \dot{q}) = S(q, \dot{q})\dot{q}$, si ottiene

$$\dot{V}(q,\dot{q}) = \dot{q}^T \left(u - F_v \dot{q} - S(q,\dot{q})\dot{q} + \frac{1}{2}\dot{M}(q)\dot{q} \right) - \epsilon^T K_p \dot{q}$$

poiché la matrice $\dot{M}(q) - 2S(q, \dot{q})$ è **antisimmetrica** si ha $\dot{q}^T \left(\frac{1}{2}\dot{M}(q) - S(q, \dot{q})\right)\dot{q} \equiv 0$; quindi $\dot{V}(q, \dot{q}) = \dot{q}^T u - \dot{q}^T F_v \dot{q} - \epsilon^T K_p \dot{q}$

possiamo ora sostituire a u l'espressione del controllore PD

$$\dot{V}(q,\dot{q}) = \dot{q}^T K_p \epsilon - \dot{q}^T K_d \, \dot{q} - \dot{q}^T F_v \, \dot{q} - \epsilon^T K_p \dot{q} = -\dot{q}^T (K_d + F_v) \, \dot{q}$$

la $\dot{V}(q,\dot{q})$ è dunque SDN in qualsiasi intorno di $x_d = (q_d, 0)$; questo ci consentirebbe di concludere solo la stabilità semplice di x_d

possiamo però applicare il teorema dell'insieme invariante (in particolare, il suo corollario) nella forma globale!

intanto osserviamo che l'insieme P dei punti in cui si annulla $\dot{V}(q, \dot{q})$ è dato da $\{(q, \dot{q}) : \dot{q} = 0\}$; la dinamica del sistema ad anello chiuso in P è

$$M(q)\ddot{q} = K_p\epsilon \qquad \Rightarrow \ddot{q} = M^{-1}(q)K_p\epsilon$$

essendo la matrice $M^{-1}(q)K_p$ non singolare (prodotto di matrici non singolari), si ha $\ddot{q} = 0$ (e cioè l'invarianza) se e solo se $\epsilon = 0$, cioè $q = q_d$

dunque, il massimo insieme invariante M contenuto in P è $(q_d, 0)$, e ne segue la tesi

- molto spesso si ha $K_p = \text{diag}\{k_{pi}\}, K_d = \text{diag}\{k_{di}\}$; il controllo, pur essendo stato progettato in modo centralizzato, è di fatto **decentralizzato**, nel senso che la coppia u_i dipende solo da $q_i \in \dot{q}_i$
- si noti che, nell'ipotesi che F_v sia definita positiva (e cioè che in ogni giunto sia presente un attrito viscoso non nullo determinato da un coefficiente $F_{vi} > 0$), è possibile **in linea di principio** porre $K_d = 0$ nel controllore, che diventerebbe puramente proporzionale; in tal caso, lo smorzamento che garantisce la stabilità asintotica di $(x_d, 0)$ viene fornito unicamente dall'attrito strutturale

tuttavia, per migliorare la qualità del transitorio (e in particolare il tempo di risposta), è consigliabile **includere** il termine derivativo nel controllo, in particolare quando l'attrito strutturale è basso (come accade, ad esempio, quando si usano motori elettrici ad accoppiamento diretto controllati in corrente)

• in presenza di gravità $(e(q) \neq 0)$, il controllore PD può essere modificato come segue

$$u = K_p(q_d - q) - K_d \dot{q} + e(q)$$

PD + compensazione della gravità

cioè con l'aggiunta del termine e(q), il cui compito è quello di cancellare esattamente i termini gravitazionali nel modello

- la dimostrazione precedente vale ancora \Rightarrow il controllore PD con compensazione della gravità rende $x_d = (q_d, 0)$ globalmente asintoticamente stabile
- il controllore è il risultato di una tecnica mista, che consiste in una linearizzazione parziale del modello seguita dalla stabilizzazione globale della dinamica risultante

se la compensazione della gravità non è esatta, cioè

$$u = K_p(q_d - q) - K_d \dot{q} + \hat{e}(q) = u_{\mathsf{PD}}(q, \dot{q}) + \hat{e}(q)$$

con $\hat{e}(q) \neq e(q)$ (al limite, $\hat{e}(q) \equiv 0$), il sistema ad anello chiuso diviene (attrito incluso in c)

$$M(q)\ddot{q} + c(q,\dot{q}) = u_{\mathsf{PD}}(q,\dot{q}) + d_e$$

dove $d_e = \hat{e}(q) - e(q)$ può essere interpretato come un **disturbo limitato** che agisce sul sistema (benché in effetti esso dipenda dallo stato); si ha dunque il seguente schema

 $(q_d, 0)$ è GAS per il sistema privo di disturbo \Rightarrow si può dimostrare che d_e causa a regime un errore di posizionamento costante, tanto minore quanto maggiore è la norma di K_p

un caso particolare di compensazione inesatta della gravità è il seguente

$$u = K_p(q_d - q) - K_d \dot{q} + e(q_d)$$
 PD + compensatione costante della gravità

nota: è facile verificare che l'approccio basato sulla **stabilizzazione dell'approssimazione lineare** del robot intorno a $(q_d, 0)$ fornisce proprio questa legge di controllo (cfr. pendolo, slide 9 di 'Stabilizzazione via retroazione dallo stato')

Teorema

il suddetto controllore PD + compensazione costante della gravità rende $x_d = (q_d, 0)$ globalmente asintoticamente stabile purché

$$|K_p|_m > \max_q \left| \frac{de(q)}{dq} \right|_M \qquad \text{con } |A|_m = \left(\lambda_{\min}(A^T A) \right)^{1/2} \ \text{e} \ |A|_M = \left(\lambda_{\max}(A^T A) \right)^{1/2}$$

dim si basa sul fatto che $\left|\frac{de(q)}{dq}\right|_M$ è una quantità **limitata** (infatti e(q) è composto da termini trigonometrici e/o lineari in q), e sull'uso della seguente candidata di Lyapunov

$$V(q,\dot{q}) = \frac{1}{2}\dot{q}^T M(q)\dot{q} + \frac{1}{2}\epsilon^T K_p\epsilon + U(q) - U(q_d) + \epsilon^T e(q_d)$$

dove U è l'energia potenziale dovuta al campo gravitazionale

il fatto che il controllore PD + compensazione costante della gravità (al valore di regime) funzioni, almeno per guadagni proporzionali sufficientemente elevati, suggerisce che dovrebbe essere efficace anche il classico controllore PID

$$u = K_p(q_d - q) + K_i \int_0^t (q_d - q) d\tau - K_d \dot{q}$$

in cui il compito di compensare a regime la gravità è affidato all'integratore; infatti, se si raggiunge lo stato desiderato $(q_d, 0)$ si ha

$$e(q_d) = K_i \int_0^\infty (q_d - q) d\tau$$

purtroppo, per il controllore PID suddetto si riesce a dimostrare solo la stabilità asintotica **locale** di $(q_d, 0)$, sotto condizioni che legano tra di loro K_p , K_i , K_d e $\epsilon(0)$

è possibile però ottenere la stabilità asintotica **globale** di $(q_d, 0)$, sotto opportune condizioni sui guadagni, per il seguente **controllore PID saturato** (non lineare)

$$u = K_p(q_d - q) + K_i \int_0^t \phi(q_d - q) d\tau - K_d \dot{q}$$

dove $\phi(q_d - q)$ è una funzione **saturation-like**, come ad esempio

$$\phi(y) = \begin{cases} \sin x & |x| < \pi/2 \\ 1 & x > \pi/2 \\ -1 & x < \pi/2 \end{cases} \quad \text{oppure} \quad \phi(y) = \tanh(y) = \frac{e^y - e^{-y}}{e^y + e^{-y}}$$

un altro approccio possibile si basa sulla linearizzazione esatta del modello dinamico del robot; essendo (attrito incluso in c)

$$M(q)\ddot{q} + c(q,\dot{q}) + e(q) = u$$

basta porre (senza alcuna trasformazione di coordinate!)

$$u = M(q)v + c(q, \dot{q}) + e(q)$$

(controllo linearizzante)

per ottenere il seguente sistema lineare e disaccoppiato ad anello chiuso

 $\ddot{q} = v$

(N doppi integratori in parallelo)

G. Oriolo Controlli Automatici II (Università di Roma Tre) – Controllo dei robot manipolatori

a questo punto, ponendo

$$v = K_p(q_d - q) - K_d \dot{q}$$
 K_p, K_d definite positive

il sistema ad anello chiuso diventa

$$\ddot{q} = K_p(q_d - q) - K_d \dot{q}$$

che ha in $(q_d, 0)$ un pde globalmente asintoticamente stabile

il controllore complessivo è non lineare

$$u = M(q)[K_p(q_d - q) - K_d \dot{q}] + c(q, \dot{q}) + e(q)$$

rispetto al controllore PD+compensazione della gravità, il controllore per linearizzazione esatta ha le seguenti caratteristiche:

- comporta un maggior carico computazionale (calcolo M(q) e $c(q, \dot{q})$)
- richiede la conoscenza esatta del modello del robot
- garantisce la **convergenza esponenziale** delle traiettorie allo stato desiderato ma soprattutto...
- | è efficace anche nell'inseguimento di traiettorie! | (tracking vs. set-point)
- G. Oriolo Controlli Automatici II (Università di Roma Tre) Controllo dei robot manipolatori

infatti, si assuma di voler **inseguire una traiettoria** $q_d(t)$ a livello dei giunti, con $q_d(t) \in C^2$ a valle del controllo linearizzante $u = M(q)v + c(q, \dot{q}) + e(q)$, il sistema ad anello chiuso è

$$\ddot{q} = v$$

cioè N catene di doppi integratori; quindi il problema viene risolto facilmente ponendo

$$v = \ddot{q}_d + K_d(\dot{q}_d - \dot{q}) + K_p(q_d - q)$$
 K_p, K_d definite positive

(cfr. doppio integratore, slides 21-22 di 'Regolazione asintotica dell'uscita')

complessivamente, il controllore risulta contenere termini di feedforward e feedback

$$u = M(q) [\ddot{q}_d + K_d(\dot{q}_d - \dot{q}) + K_p(q_d - q)] + c(q, \dot{q}) + e(q)$$

e l'errore di inseguimento $q(t) - q_d(t)$ converge a zero globalmente ed esponenzialmente!

nota: per ridurre il carico computazionale, spesso la legge suddetta viene sostituita dalla

$$u = M(q_d) \left[\ddot{q}_d + K_d(\dot{q}_d - \dot{q}) + K_p(q_d - q) \right] + c(q_d, \dot{q}_d) + e(q_d) = u_d + M(q_d) \left[K_d(\dot{q}_d - \dot{q}) + K_p(q_d - q) \right]$$

dove $u_d = M(q_d)\ddot{q}_d + c(q_d, \dot{q}_d) + e(q_d)$, detta **computed torque** (cioè la forza generalizzata necessaria a percorrere $q_d(t)$ secondo la dinamica inversa), può essere calcolata **fuori linea**