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Gradient RBF
✞

✝

☎

✆
Supervised selection of the centers

Step 1. (Minimization with respect to weights v)

Compute vk+1 solving LLSQ
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✆
Supervised selection of the centers

Step 1. (Minimization with respect to weights v)

Compute vk+1 solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

ĉk+1 =

{
ck if ‖∇cE (c

k
,vk+1)‖ ≤ ξ k

2

ξ k
2 decreasing tolerance ξ k+1

2 ≤ θξ k
2
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Gradient RBF
✞

✝
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✆
Supervised selection of the centers

Step 1. (Minimization with respect to weights v)

Compute vk+1 solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

ĉk+1 =

{
ck if ‖∇cE (c

k
,vk+1)‖ ≤ ξ k

2

ck −ηk∇cE (c
k
,vk+1) otherwise

with ηk by an Armijo lineseach

E (vk+1
,ck +ηkdk)≤ E (vk+1

,ck)− γηk‖∇cE (v
k+1

,ck)‖2
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Step 1. (Minimization with respect to weights v)

Compute vk+1 solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

ĉk+1 =

{
ck if ‖∇cE (c

k
,vk+1)‖ ≤ ξ k

2

ck −ηk∇cE (c
k
,vk+1) otherwise

with ηk by an Armijo lineseach Eref = E (vk+1
,ck +ηkdk)
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,ck +ηkdk)≤ E (vk+1

,ck)− γηk‖∇cE (v
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ck −ηk∇cE (c
k
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with ηk by an Armijo lineseach Eref = E (vk+1
,ck +ηkdk)

allow more freedom
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Gradient RBF
✞
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✆
Supervised selection of the centers

Step 1. (Minimization with respect to weights v)

Compute vk+1 solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

ĉk+1 =

{
ck if ‖∇cE (c

k
,vk+1)‖ ≤ ξ k

2

ck −ηk∇cE (c
k
,vk+1) otherwise

with ηk by an Armijo lineseach Eref = E (vk+1
,ck +ηkdk)

allow more freedom

Set ck+1: E (ck+1
,vk+1)≤ Eref
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Convergence of Two-block decompositions in RBF

Theorem (Buzzi, Grippo, Sciandrone 2000, [1])

Let {(vk ,ck)} be an infinite sequence generated the Two-blocks

Algorithm. Then:

i) {(vk ,ck)} has limit points;

ii) the sequence {E (vk ,ck)} converges to a limit;

iii) every limit point of {(vk ,ck)} is a stationary point of E .
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More than two-blocks decomposition in RBF
Even the approximate minimization with respect to the centers can
be very expensive when N is large.
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More than two-blocks decomposition in RBF
Even the approximate minimization with respect to the centers can
be very expensive when N is large. The variables (v ,c) are
partitioned into the N+1 blocks, corresponding to the weights v
and the N center positions c1,c2 . . . ,cN .

Step 2. (Minimization with respect to centers)

For j = 1, . . . ,N.

ck+1
j = ckj −ηk

j ∇cjE (v
k+1

,ck+1
1 , . . . ,ck+1

j−1 ,cj ,c
k
j+1, . . . ,c

k
N)

with ηk
j satisfying

E (vk+1
,ck+1)≤ E (vk+1

,ck)− γηk
j ‖∇cjE (v

k+1
,ck)‖2

Set ξ k+1
j ≤ θξ k

j
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Decomposition methods

PROs

Problem can be decomposed into much smaller subproblems

Gradient type iteration

Convergence holds w/out particular assumption on the
functions Ep
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Decomposition methods

PROs

Problem can be decomposed into much smaller subproblems

Gradient type iteration

Convergence holds w/out particular assumption on the
functions Ep
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✝

☎

✆
Computational price
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Decomposition methods

PROs

Problem can be decomposed into much smaller subproblems

Gradient type iteration

Convergence holds w/out particular assumption on the
functions Ep

✞

✝

☎

✆
Computational price

✞

✝

☎

✆Cost of line-search
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