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Step 1. (Minimization with respect to weights v)

Compute vkt solving LLSQ
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Step 1. (Minimization with respect to weights v)

Compute vkt solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

a1 _ {ck f 10 E(ck, vk < g

k decreasing tolerance &5 < Q&K
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Step 1. (Minimization with respect to weights v)

Compute vkt solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

/C\k—i—l — Ck if ||DCE(Ckv Vk+l)|| < E2k
ck—nkO.E(ck,vkt1)  otherwise

with n% by an Armijo lineseach
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Gradient RBF

(Supervised selection of the centers]

Step 1. (Minimization with respect to weights v)

Compute vkt solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

/C\k—i—l — Ck if ||DCE(Ckv Vk+l)|| < E2k
ck—nkO.E(ck,vkt1)  otherwise

with n* by an Armijo lineseach E,of = E(vktY ck + nkdk)
PIENZ

E(vH, k4 n*d¥) < E(V*H, ck) — ynH 0 E(v, ) 2
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(Supervised selection of the centers]

Step 1. (Minimization with respect to weights v)

Compute vkt solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

Sk _ {Ck if |0 E(ck, ve )| < &

ck —nkO.E(ck,vk*1)  otherwise

with n% by an Armijo lineseach E,of = E(vFTY, ck +nkd*)
allow more freedom




 RBF training Decomposition Methods  References
Gradient RBF

(Supervised selection of the centers]

Step 1. (Minimization with respect to weights v)

Compute vkt solving LLSQ

Step 2. (Minimization with respect to centers c)

Set

Sk _ {Ck if |0 E(ck, ve )| < &

ck —nkO.E(ck,vk*1)  otherwise

with n% by an Armijo lineseach E,of = E(vFTY, ck +nkd*)
allow more freedom
Set ck+1: E(ckH1 vkHl) < E
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Convergence of Two-block decompositions in RBF

Theorem (Buzzi, Grippo, Sciandrone 2000, [1])

Let {(v¥,ck)} be an infinite sequence generated the Two-blocks
Algorithm. Then:

i) {(vk,ck)} has limit points;

ii) the sequence {E(v¥,c¥)} converges to a limit;

iii) every limit point of {(v¥,ck)} is a stationary point of E.
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More than two-blocks decomposition in RBF

Even the approximate minimization with respect to the centers can
be very expensive when N is large.
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More than two-blocks decomposition in RBF
Even the approximate minimization with respect to the centers can
be very expensive when N is large. The variables (v,c) are
partitioned into the N+ 1 blocks, corresponding to the weights v
and the N center positions ¢1,¢...,Cy.

Step 2. (Minimization with respect to centers)

For j=1,...,N.
k+1 _ _k k k+1 _k+1 k+1 k k
¢ =¢ —Nf0gE(V" ¢ ,...,cj_l,cj,cjﬂ,...,c,v)

with r]}‘ satisfying

E(vF, ) < E(VFE, ) —ynf |0 E(vH, )12

Set £k < gk
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Decomposition methods

PROs
@ Problem can be decomposed into much smaller subproblems
@ Gradient type iteration

@ Convergence holds w/out particular assumption on the
functions E,
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@ Gradient type iteration
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Decomposition methods

PROs
@ Problem can be decomposed into much smaller subproblems
@ Gradient type iteration

@ Convergence holds w/out particular assumption on the
functions E,

(Computational price]

(Cost of Iine—search)
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