
Situation Calculus for Controller Synthesis in Manufacturing Systems with
First-Order State Representation (Extended Abstract)∗

Giuseppe De Giacomo1 , Paolo Felli2 , Brian Logan3 , Fabio Patrizi1 and Sebastian Sardiña4

1Sapienza University of Rome, Italy
2Free University of Bozen-Bolzano, Italy

3Utrecht University, Netherlands, University of Aberdeen, UK
4RMIT University, Australia

degiacomo@diag.uniroma1.it, pfelli@unibz.it, b.s.logan@uu.nl, patrizi@diag.uniroma1.it,
sebastian.sardina@rmit.edu.au

Abstract
Manufacturing is transitioning from a mass produc-
tion model to a service model in which facilities
‘bid’ for products. To decide whether to bid for a
previously unseen product, a facility must be able
to synthesize, on the fly, a process plan controller
that delegates abstract manufacturing tasks in the
process recipe for the product to the available man-
ufacturing resources. First-order state representa-
tions are commonly used in reasoning about action
in AI. Here we show that we can leverage the ex-
tensive literature on the Situation Calculus to au-
tomatically synthesize such controllers. We iden-
tify two important decidable cases—finite domains
and bounded action theories—for which we pro-
vide practical synthesis techniques.

1 Introduction
In the manufacturing as a service (MaaS) paradigm, manu-
facturing infrastructure is shared on-demand by a potentially
large number of different manufacturing processes. The cost
of managing and maintaining the manufacturing infrastruc-
ture is thus distributed across all customers, enhancing re-
source utilization and reducing unit production costs. Differ-
ent manufacturing models have been proposed in the litera-
ture to achieve the MaaS vision, with an emphasis on flexi-
bility, scalability, adaptability and customization, and the in-
creased use of automation and data and knowledge sharing
through the supply chain. In this paper, we focus on Cloud
Manufacturing [Xu, 2012; Lu et al., 2014]. Enabled by an re-
cent developments in information technology, IoT, embedded
systems and cloud computing technologies, Cloud Manufac-
turing is an advanced MaaS paradigm and business model in
which manufacturing resources, such as Computer Numeri-
cal Control (CNC) machines and robots, are packaged as ab-
stract descriptions of manufacturing capabilities, then adver-
tised and made available to customers through a cloud plat-
form. Similarly, the abstract manufacturing tasks required
to manufacture a product are specified as abstract, system-
independent processes that need to be matched against the

∗This paper is an abridged version of [De Giacomo et al., 2022].

abstract capability descriptions offered by manufacturing fa-
cilities in the cloud. This allows the creation of dynamic pro-
duction lines on-demand, in a pay-as-you-go business model.

In mass production, the process planning phase, which
transforms a process specification into a process plan spec-
ifying concrete production schedules for the resources on the
shop floor, is carried out by manufacturing engineers, and
is largely a manual activity. This is not feasible in MaaS,
where manufacturing facilities must be able to automati-
cally synthesize process plans for novel products ‘on the fly’.
This requires matching the abstract manufacturing tasks in
the process recipe—the specification of how the product is
to be manufactured—against the available manufacturing re-
sources in the facility. The resulting process plan details the
low-level tasks to be executed and their order, the resources
to be used and how materials and parts move between them
[Groover, 2007]. The process plan controller, i.e., the con-
trol software that delegates each operation in the plan to the
appropriate manufacturing resources, is then synthesized.

Research in AI and Computer Science can be exploited
to provide a mathematical foundation for these domain con-
cepts, and to solve the core challenges implicit in the MaaS
vision. Recent work on MaaS based on fundamental ideas
from the literature on service composition in CS and be-
havior composition in AI [De Giacomo et al., 2013], has
shown how the requirements and techniques for the auto-
mated synthesis of process plan controllers can be formal-
ized [de Silva et al., 2016; Felli et al., 2016; Felli et al., 2017;
De Giacomo et al., 2018; De Giacomo et al., 2019]. While
these approaches have proven fruitful for developing ‘proof-
of-concept’ MaaS implementations, they are based on a
propositional description of states, which is often too ideal-
ized. In many cases, manufacturing processes depend on the
objects and data they produce and consume, and in general
an unbounded number of product items or basic parts may be
produced. This requires a rich, relational description of states,
an information model, and computational techniques able to
manipulate such representations. Although some work exists
that provides a basis for an unambiguous description of the
manufacturing concepts [Grüninger and Menzel, 2003], the
scientific literature has been lacking.

We propose a relational representation of states by draw-
ing on research on reasoning about actions in AI. Opera-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5722

tions in manufacturing processes are described by an action
theory in logic, and manufacturing processes are formalized
as high-level programs over such action theories. In this
way, we leverage the first-order state representations of ac-
tion formalisms and the second-order/fixpoint characteriza-
tion of state-change as provided by programs. Critically, we
do not rely on ad-hoc representations; instead we encode in-
formation models and how they change as the result of actions
in the Situation Calculus. Process recipes and manufactur-
ing resources, in turn, are modeled as high-level ConGolog
programs [Levesque et al., 1997] (over the action theories).
Moreover, we deal with multiple Situation Calculus theories
simultaneously, so as to model process recipes working over
both an abstract information model and a concrete, facility-
level information model. This yields a principled, formal and
declarative representation of the MaaS setting.

By exploiting this rich representation, we formally define
what it means to realize a process recipe in a manufacturing
facility, and present techniques to automatically synthesize
controllers that implement those realizations. We show that
these techniques correspond to algorithms for extracting the
actual controllers when the resulting Situation Calculus ac-
tion theories are state-bounded [De Giacomo et al., 2016a].
In our context, state-boundedness means that, while the fa-
cility may process an infinite number of objects overall, an
unbounded number of objects is never “accumulated”, i.e., in
any given state the number of objects being processed does
not exceed a given bound. This is the typical case in practice:
the number of objects handled at a given time by a facility is
naturally bounded by the size and structure of the shop-floor.

We stress that, independently of the application domain we
consider, we provide here the first decidability result for con-
troller synthesis in a setting with a relational/first-order state
representation. While our approach is based on the Situation
Calculus, our results and constructions can also be applied in
other frameworks for reasoning about actions in AI as well as
data-aware/artifact-centric frameworks in databases [Hariri et
al., 2013; Deutsch et al., 2018].

While this paper illustrates the main elements of our frame-
work and the main results, the complete details can be found
in the full paper [De Giacomo et al., 2022].

2 Manufacturing as a Service in SitCalc
A basic action theory (BAT) [Reiter, 2001] is a collection of
axioms D describing the initial situation, preconditions and
effects (and non-effects) of actions on fluents, as well as ax-
ioms for unique name assumptions and domain closure for the
countably infinite object sort ∆, for which we assume unique
names and domain closure [Levesque and Lakemeyer, 2001;
Sardina et al., 2004]. Employing standard names for objects,
we fix a single interpretation domain for models of situa-
tion calculus formulas and blur the distinction between such
names and domain objects.

Manufacturing activities are modeled as action types,
each taking a tuple of objects as arguments. For ex-
ample, DRILL(part, dmtr, speed, x, y, z) represents the ac-
tion of drilling a hole of a certain diameter, with a cer-
tain spindle speed, in a specific position of a given part.

Since we are concerned with operations that may occur
simultaneously [Reiter, 2001; Bornscheuer and Thielscher,
1996; Baral and Gelfond, 1993], we adopt the concur-
rent, non-temporal variant of the Situation Calculus, where
a compound action a is a set of simple actions that ex-
ecute simultaneously [Reiter, 2001, Chapter 7]. E.g.,
{ROTATE(part, speed), PAINT(part, color)} represents the
joint execution of rotating a part while spraying paint on it.

Axioms are used to specify preconditions and effects of
sets of actions, thus offering complete control in modeling
manufacturing facilities and allowing the expression of arbi-
trary constraints on the available resources. For example, two
robots may be allowed to lift a heavy object only at the same
time, while they might be prevented (by their respective the-
ories) from doing so individually.

A(x) denotes the compound action type A with parame-
ters x. Action instance a has precondition axioms and suc-
cessor state axioms of the form Poss(a, s) ≡ φ(a, s) and
f(x, do(a, s)) ≡ φ(x,a, s), with φ(a, s) and φ(x,a, s) uni-
form in the current situation s. We assume complete infor-
mation on the initial situation S0, which makes our BATs
categorical, i.e., admitting a single model [Reiter, 2001;
Sardina et al., 2004]. Observe that, although unique, the BAT
model has an infinite object domain, as well as infinite situ-
ations, which makes it nontrivial to deal with, and requires
a substantially different approach to that adopted in model
checking [Clarke et al., 1999; De Giacomo et al., 2016a;
Calvanese et al., 2018].

2.1 ConGolog High-level Programs
Several high-level programming languages have been pro-
posed based on the Situation Calculus, including Golog
[Levesque et al., 1997], which supports both standard pro-
gramming and nondeterministic-choice constructs, ConGolog
[De Giacomo et al., 2000], which extends Golog with concur-
rency, and IndiGolog [Sardina et al., 2004], which supports
interleaved planning and execution. We specify manufactur-
ing processes as programs in a variant of ConGolog without
recursive procedures [De Giacomo et al., 2000] and where
the test construct yields no transition and is final when satis-
fied [Claßen and Lakemeyer, 2008; De Giacomo et al., 2010].
This results in a synchronous test construct in which inter-
leaving is disallowed (every transition involves the execution
of one action).

All standard ConGolog constructs are allowed: sim-
ple/compound actions a, test ϕ?, sequence δ1; δ2, nondeter-
ministic branching δ1 | δ2, nondeterministic argument choice
πx.δ, nondeterministic iteration δ∗, conditional constructs,
while loops, and interleaved concurrency δ1∥δ2. A program δ
is executed over a BAT D, which must include the fluents and
the constants mentioned in δ, with the latter coming from the
set ACD of D’s active object constants. A configuration is a
pair ⟨δ, s⟩ with δ a program and s a situation. ConGolog’s se-
mantics is specified in terms of single-steps, using predicates
Final(δ, s), which specifies when a configuration ⟨δ, s⟩ is fi-
nal (i.e., δ may terminate in s), and Trans(δ, s, δ′, s′), which
specifies the one-step transition from ⟨δ, s⟩ to ⟨δ′, s′⟩, where
δ′ remains to be executed [De Giacomo et al., 2000].

The definitions of Trans and Final for the ConGolog con-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5723

DR
cloud level

facility level

DF

Dn. . .D1

δ0R

δ0F := δ1||| · · · |||δn

δ1, . . . , δn

recipe

resource processes

facility process

processes:information models:

mappings controller

Figure 1: Framework for MaaS, divided into a cloud level and a
facility level (only one facility is shown).

structs above are standard, but, as discussed earlier, cannot
express simultaneous execution of compound actions. To ad-
dress this, we extend ConGolog with the synchronized con-
currency operator δ1|||δ2, which states that programs δ1 and
δ2 execute concurrently and synchronously, i.e., their next ac-
tions take place in the same transition step. The semantics
is as follows: Final(δ1|||δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)
and Trans(δ1|||δ2, s, δ′, s′) ≡ Trans′(δ1, s, δ′1, s

′
1) ∧ s′1 =

(a1, s) ∧ Trans′(δ2, s, δ′2, s
′
2) ∧ s′2 = (a2, s) ∧ Poss(a1 ∪

a2, s) ∧ δ′ = (δ′1|||δ′2) ∧ s′ = (a1 ∪ a2, s). Informally,
Trans′ is the same axiom as Trans, but it only requires the
executability of compound actions, without requiring the ex-
ecutability of (subsets of) their component simple actions.
Indeed, we state Poss(a1 ∪ a2, s) but not Poss(a1, s) or
Poss(a2, s). As a result, a number of sub-systems (manu-
facturing resources) can legally perform a joint step only if
this is explicitly stated to be possible by a “global” BAT for
compound actions (the BAT for the entire facility, see the next
section). This gives great flexibility when modeling manufac-
turing facilities. Note that synchronized concurrency is not
reducible to interleaved concurrency: δ1∥δ2 allows either δ1
or δ2 to be executed completely before starting the other, and
for them to be executed alternately.

2.2 Manufacturing as a Service
A product can be manufactured if an implementation of all
the possible sequences of resource-independent operations
prescribed by the recipe, together with any additional low-
level operations (not included in the recipe) required by
the implementation, can be delegated step-by-step to the fa-
cility resources. Recall that process recipes are resource-
independent, i.e., specified without knowing the actual man-
ufacturing system that will be used for their realization, but
assuming only an information model common throughout the
cloud. When a product is manufacturable in a facility, a con-
troller responsible for delegating recipe actions to facility re-
sources can be synthesized.

The resulting MaaS framework, shown in Figure 1, in-
cludes two sorts: (i) Information models, i.e., BATs D de-
scribing the data and physical objects processes manipulate
and the operations to manipulate them; and (ii) Processes,
i.e., programs δ0R describing the specific capabilities and dy-
namics of components.

The framework comprises the following components (for
simplicity, we restrict to the case of one facility in the cloud).
(i) Resources: the facility manufacturing resources. Each

resource is a pair ⟨Di, δi⟩, with information model Di and
resource process δi. (ii) Facility information model: the
information model DF obtained by combining the BATs Di

of each resource on the shop floor, see the paper for details.
This includes specifying the executability of compound ac-
tions (see Sec. 2.1). (iii) Facility process: the process δ0F :=
δ1||| · · · |||δn, specifying the synchronous execution of the re-
source processes (synchronous concurrency allows different
resources to execute actions at the same time). (iv) Cloud
information model: the common resource-independent in-
formation model DR assumed by all recipes, representing the
data and objects recipes manipulate. (v) Mappings: a set
of mappings, Maps , relating the resource-independent cloud
information model DR to the resource-dependent facility in-
formation model DF. Maps relates the abstract executions
described by the process recipe δ0R (see below) to the con-
crete executions of the facility process δ0F. Adopting ideas
from [Banihashemi et al., 2017], two forms of mappings are
used. (1) For each fluent f in DR with parameters x, the
atomic formula f (x, sR) is mapped to a (uniform) formula
φf (x, sF) over the fluents in DR. This formula is domain-
independent: its evaluation depends only on the objects oc-
curring in the extension of DF’s fluents in the current situ-
ation. Moreover, a subset Obs of DR’s recipe fluents act as
observations: they have no successor-state axiom and their
extension is provided by Maps . For fluents not in Obs, Maps
imposes a consistency requirement between the two theories.
(2) For each action type A ∈ AR with parameters x, we map
A(x) to a (arbitrarily complex) program δA(x) for DF which
makes use of (compound) actions of the available resources.
The combination of Maps with DR and DF produces a new
theory DMaps

R , which is not a traditional Situation Calculus
theory, as it includes two completely independent situation
sorts (instead of one): SF for the facility information model
DF, with initial situation S0

F ∈ SF, and SR for the cloud infor-
mation system DR, with initial situation S0

R ∈ SR. For how to
obtain DMaps

R , see the paper. (vi) Facility: a manufacturing
facility is a tuple Fac = ⟨DR,DF, δ

0
F,Maps⟩, with cloud in-

formation model DR, facility information model DF, facility
program δ0F, and mappings Maps . (vii) Recipe: a resource-
independent process δ0R over the cloud information model DR,
describing the process to execute to manufacture a product.
(viii) Controller: when the product is manufacturable, the
controller is responsible for orchestrating the resources. In-
formally, it is a function relating each execution of the recipe
δ0R to an execution of the facility process δ0F.

Given a facility Fac and a recipe δ0R, the manufacturabil-
ity problem amounts to establishing whether there exists a
controller to orchestrate the resources in the Fac to realize
δ0R. The controller synthesis task is to automatically build the
controller responsible for implementing the orchestration.

3 Controller Synthesis
In order to formalize when a recipe can be realized by a facil-
ity, we introduce three properties relating recipe and facility
configurations ⟨δR, sR⟩ and ⟨δF, sF⟩. (i) Mappings’ preser-
vation: the value of every non-observation fluent f ̸∈ Obs of
DR in ⟨δR, sR⟩ is compatible, through the mapping f (x) ↔

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5724

φf (x) in Maps , with the value of φf (x) in ⟨δF, sF⟩. For ev-
ery f ∈ Obs, the mapping is respected. (ii) Legal termi-
nation: Final(δR, sR) implies Final(δF, sF), i.e., if the recipe
can legally terminate, so can the resources. (iii) Recipe ac-
tions realizability: for every abstract action A(x) in the
recipe executable in ⟨δR, sR⟩, there exists a program δA(x),
determined through the mapping A(x) ↔ δA(x), that is ex-
ecutable in its entirety from ⟨δF, sF⟩ to some ⟨δ′F, s′F⟩, rep-
resenting the complete implementation of A(x) in the facil-
ity. This captures the synchronization of the recipe and facil-
ity situations: the recipe situation do(A(x, s′F), sR) resulting
from the execution of A(x) in sR depends on the new situa-
tion s′F reached by the facility after the execution of δA(x).

Realizability of a recipe by a given facility can be formal-
ized by co-induction, by defining the largest realizability re-
lation ⪯ between facility and recipe configurations that sat-
isfies the three requirements above, and such that whenever
the recipe executes an action and the facility executes a cor-
responding program through the mappings (see third point),
the new situations are still in ⪯. Details are in the paper.
Definition 1 (Realizability). A recipe δ0R is realizable by a
facility Fac = ⟨DR,DF, δ

0
F,Maps⟩ iff ⟨δ0R, S0

R⟩ ⪯ ⟨δ0F, S0
F⟩.■

Definition 2 (Controller). Given a facility Fac =
⟨DR,DF, δ

0
F,Maps⟩ and a recipe δ0R realizable by Fac,

a controller for δ0F that realizes δ0R is a function ρ that,
given two configurations ⟨δR, sR⟩ and ⟨δF, sF⟩ such that
⟨δR, sR⟩ ⪯ ⟨δF, sF⟩, an action A(x), and a program δ′R such
that Trans(δR, sR, δ

′
R, (A(x, S0

F), sR)) (here S0
F is used as a

placeholder, and does not affect δ′R), returns a sequence of
facility configurations ⟨δ0F, s0F⟩ . . . ⟨δmF , smF ⟩, such that:

• Trans(δiF, s
i
F, δ

i+1
F , si+1

F) for i ∈ [0,m−1], and δ0F = δF
and s0F = sF, i.e., the sequence is executable in Fac;

• Do(δA(x), sF, s
m
F): the situation smF is the result of exe-

cuting the program δA(x) corresponding to A(x) in sF;
• ⟨δ′R, (A(x, smF), sR)⟩ ⪯ ⟨δmF , smF ⟩, that is, realizability

between the resulting programs is preserved. ■

Do(δ, s, s′) abbreviates ∃δ′. Trans∗(δ, s, δ′, s′)∧Final(δ′, s′),
which states that the complete execution of δ from s results in
s′ [Levesque et al., 1997; De Giacomo et al., 2000].

To check realizability, we define a two-player game be-
tween ENVIRONMENT (the antagonist) and CONTROLLER (the
controller), which is played over a game arena (GA) T , i.e., a
labelled transition system over the vocabulary of fluents and
constants from the active domain. The states of the arena are
partitioned (using two propositions turnEnv and turnCtrl)
so that in each state only one player can move. The state la-
beling of the GA holds all the information about the (current)
configurations of the recipe and facility. Technically, this re-
quires decoupling the “data” from the control-flow, i.e., the
program counter [De Giacomo et al., 2016b]. Having adopted
standard names, program counters and actions can then be
treated as active constants and objects.

Intuitively, the game proceeds as follows: ENVIRONMENT

selects an action A(x), together with the corresponding pro-
gram δA(x), from those made available by the recipe δR (ini-
tially δ0R) in the current configuration; ENVIRONMENT then
advances the recipe configuration and the cloud situation sR

of DMaps
R and finally passes the turn to CONTROLLER, which

chooses one among the actions that are currently legal for
both δF (initially δ0F) and δA(x) in their current configuration.
A step in δA(x) is thus executed, and CONTROLLER aligns the
current cloud situation sR with the resulting factory situation
s′F (since the interpretation of DR’s non-observation fluents
is not affected by the DF’s situation argument in A). Then,
CONTROLLER can (but does not have to) pass the turn to EN-
VIRONMENT only when δ has reached a final configuration.

The paper shows that a realizability relation between δ0R
and δ0F exists iff T satisfies the µ-calc (in fact, µLc) formula:

ΦReal = νX.µY.((ϕOK ∧ [−]X) ∨ (turnCtrl ∧ ⟨−⟩Y)),
where, informally, ϕOK holds in those states q of T where: (i)
the interpretation of every fluent f ∈ FR \ Obs in the labeling
of q matches the interpretation of the corresponding formula
φf over the same labeling; (ii) it is ENVIRONMENT’s turn; and
(iii) if the recipe may terminate, so can the facility. ΦReal

is true in all those states from which CONTROLLER can force
the game to visit infinitely often a state where ϕOK holds, no
matter how ENVIRONMENT plays. ΦReal also requires that
CONTROLLER does not pass the turn until ϕOK holds.

The set Win(ΦReal) of winning states is the set of states
where ΦReal holds, so the objective of CONTROLLER is to
maintain the game within such a winning region. When CON-
TROLLER has a (memoryless) winning strategy, i.e., a function
mapping each T state into a new state (i.e., a game move, cor-
responding to a facility action execution) from the winning
region, a controller can be computed.
Theorem 1. Given a facility Fac = ⟨DR,DF, δ

0
F,Maps⟩, a

recipe δ0R over DR is realizable by δ0F iff q0 ∈ Win(ΦReal).
The paper shows how to extract a controller from the set
Win(ΦReal) of winning states.

4 Bounded Case: Decidable Synthesis
The paper analyzes the case of practical interest where the fa-
cility and the recipe induce a GA T that is both state-bounded
and generic. As explained in Section 1, the former property
requires state-boundedness of both DR and DF, as well as of
all DR’s observation fluents. The latter, which is implied by
the use of BATs, requires that, whenever two states are iso-
morphic, they yield the same transitions modulo the same ob-
ject renaming induced by the isomorphism.
Theorem 2. Given a facility Fac = ⟨DR,DF, δ

0
F,Maps⟩

such that DR and DF are bounded, and a recipe δ0R that is
realizable by Fac, there exists a controller for δ0F that realizes
δ0R and is effectively computable.

We prove that, given a generic, state-bounded GA T , there
exists a finite-state GA T̄ (used as faithful abstraction) such
that, for every µLc formula Φ, T |= Φ iff T̄ |= Φ. Hence
we can model-check ΦReal on T̄ rather than on T . Finally,
we show a constructive way of transforming a memoryless
strategy as above into a controller for δ0R that realizes δ0F.

5 Conclusions
In this paper we illustrated all the main ideas and results of
our approach for the synthesis of controllers for manufactur-
ing systems in the Situation Calculus. Details can be found
in [De Giacomo et al., 2022].

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5725

References
[Banihashemi et al., 2017] Bita Banihashemi, Giuseppe De

Giacomo, and Yves Lespérance. Abstraction in situation
calculus action theories. In Proc. of the Thirty-First AAAI
Conference on Artif. Intelligence, pages 1048–1055, 2017.

[Baral and Gelfond, 1993] Chitta Baral and Michael Gel-
fond. Representing concurrent actions in extended logic
programming. In Proc. of the 13th Int. Joint Conference
on Artifical Intelligence, pages 866–871, 1993.

[Bornscheuer and Thielscher, 1996] Sven-Erik Bornscheuer
and Michael Thielscher. Representing concurrent action
and solving conflicts. J. of the IGPL, 3(4):355–368, 1996.

[Calvanese et al., 2018] Diego Calvanese, Giuseppe De Gi-
acomo, Marco Montali, and Fabio Patrizi. First-order µ-
calculus over generic transition systems and applications
to the situation calculus. Inf. Comput., 259(3):328–347,
2018.

[Clarke et al., 1999] Edmund M. Clarke, Orna Grumberg,
and Doron A. Peled. Model checking. The MIT Press,
Cambridge, MA, USA, 1999.

[Claßen and Lakemeyer, 2008] Jens Claßen and Gerhard
Lakemeyer. A logic for non-terminating Golog programs.
In Proc. of KR of the Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR), pages 589–599,
2008.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence, 121(1–2):109–169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In Proc. of KR of the Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR), 2010.

[De Giacomo et al., 2013] Giuseppe De Giacomo, Fabio Pa-
trizi, and Sebastian Sardiña. Automatic behavior composi-
tion synthesis. Artificial Intelligence, 196:106–142, 2013.

[De Giacomo et al., 2016a] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories. Artif. Intell., 237:172–203, 2016.

[De Giacomo et al., 2016b] Giuseppe De Giacomo, Yves
Lespérance, Fabio Patrizi, and Sebastian Sardiña. Veri-
fying ConGolog programs on bounded situation calculus
theories. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, pages 950–956, 2016.

[De Giacomo et al., 2018] Giuseppe De Giacomo, Moshe
Vardi, Paolo Felli, Natasha Alechina, and Brian Logan.
Synthesis of orchestrations of transducers for manufactur-
ing. In Proc. of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, pages 6161–6168. AAAI Press, 2018.

[De Giacomo et al., 2019] Giuseppe De Giacomo, Natasha
Alechina, Tomas Brazdil, Paolo Felli, Brian Logan, and
Moshe Vardi. Unbounded orchestrations of transducers
for manufacturing. In Proc. of the Thirty-Third AAAI Con-
ference on Artificial Intelligence. AAAI Press, 2019.

[De Giacomo et al., 2022] Giuseppe De Giacomo, Paolo
Felli, Brian Logan, Fabio Patrizi, and Sebastian Sardiña.
Situation calculus for controller synthesis in manufactur-
ing systems with first-order state representation. Artificial
Intelligence, 302:103598, 2022.

[de Silva et al., 2016] Lavindra de Silva, Paolo Felli, Jack C.
Chaplin, Brian Logan, David Sanderson, and Svetan
Ratchev. Realisability of production recipes. In Proc. of
ECAI, pages 1449–1457. IOS Press, 2016.

[Deutsch et al., 2018] Alin Deutsch, Richard Hull, Yuliang
Li, and Victor Vianu. Automatic verification of database-
centric systems. SIGLOG News, 5(2):37–56, 2018.

[Felli et al., 2016] Paolo Felli, Brian Logan, and Sebastian
Sardina. Parallel behavior composition for manufactur-
ing. In Subbarao Kambhampati, editor, Proceedings of the
25th International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 271–278, 2016.

[Felli et al., 2017] Paolo Felli, Lavindra de Silva, Brian Lo-
gan, and Svetan M. Ratchev. Process plan controllers for
non-deterministic manufacturing systems. In Proc. of the
Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI), pages 1023–1030, 2017.

[Groover, 2007] Mikell P Groover. Automation, production
systems, and computer-integrated manufacturing. Prentice
Hall Press, 2007.

[Grüninger and Menzel, 2003] Michael Grüninger and
Christopher Menzel. The process specification language
(PSL) theory and applications. AI Magazine, 24:63–74,
2003.

[Hariri et al., 2013] Babak Bagheri Hariri, Diego Calvanese,
Giuseppe De Giacomo, Alin Deutsch, and Marco Mon-
tali. Verification of relational data-centric dynamic sys-
tems with external services. In Proc. of PODS, pages 163–
174, 2013.

[Levesque and Lakemeyer, 2001] Hector J. Levesque and
Gerhard Lakemeyer. The Logic of Knowledge Bases. The
MIT Press, 2001.

[Levesque et al., 1997] Hector J. Levesque, Ray Reiter, Yves
Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31:59–84, 1997.

[Lu et al., 2014] Yuqian Lu, Xun Xu, and Jenny Xu. De-
velopment of a hybrid manufacturing cloud. Journal of
Manufacturing Systems, 33(4):551–566, 2014.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical
Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[Sardina et al., 2004] Sebastian Sardina, Giuseppe De Gia-
como, Yves Lespérance, and Hector J. Levesque. On the
semantics of deliberation in IndiGolog – From theory to
implementation. Annals of Mathematics and Artificial In-
telligence, 41(2–4):259–299, August 2004.

[Xu, 2012] Xun Xu. From cloud computing to cloud man-
ufacturing. Robotics and Computer-Integrated Manufac-
turing, 28(1):75 – 86, 2012.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5726

	Introduction
	Manufacturing as a Service in SitCalc
	ConGolog High-level Programs
	Manufacturing as a Service

	Controller Synthesis
	Bounded Case: Decidable Synthesis
	Conclusions

