Master in Artificial Intelligence and Robotics (AIRO) Electives in Al Reasoning Agents

Fabio Patrizi

Sapienza University of Rome, Italy patrizi@diag.uniroma1.it
A.Y. 2021-2022

Transition Systems

Transition Systems

Transition System

- Mathematical structure similar to graph
- Models states of the world and transitions among them
- Commonly used to reason about actions and world dynamics
- Typically, underlying model of some (compact) formalism
- Many variants

Transition Systems

Example: Vending Machine 1

Transition Systems

Example: Vending Machine 2

Transition Systems

Example: Vending Machine 3

Transition Systems

Example: Non-terminating Process

Transition Systems

Example: Nondeterministic Domain

Transition Systems

Example: Vending Machine 1 (variant α)

Transition Systems

Example: Vending Machine 1 (variant β)

Transition Systems

Definition (Transition System)

$\mathcal{T}=\left(A, S, s_{0}, \rightarrow, F\right)$, where:

- A: set of actions
- S : set of states
- $s_{0} \in S$: initial state
- $\rightarrow: S \times A \times S$: transition relation $\left(\left(s, a, s^{\prime}\right) \in \rightarrow\right.$ denoted as $\left.s \xrightarrow{a} s^{\prime}\right)$
- $F \subseteq S$: set of final states

Variants (all include states and transitions):

- Finite/infinite actions/states
- No/single/many initial states
- Deterministic/nondeterministic actions/transitions
- No final states, labelled states (common in this course)

Labelled Transition Systems

Definition (Transition System)

$\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$, where:

- P : finite set of propositions
- A: set of actions
- S: set of states
- $s_{0} \in S$: initial state
- $\rightarrow: S \times A \times S$: transition relation
- $\lambda: S \rightarrow 2^{P}$: labeling function

Observe:

- TSs with final states are a special case of labelled TSs:
- $P=\{$ final $\}$
- s final iff $\lambda(s)=\{$ final $\}$

Representation of TSs

Typically represented compactly

(define (domain blocksworld)
(:requirements :strips :typing) (:types block)
(:predicates (on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)
)
(:action pick-up
parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect

(and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x)))
(:action put-down
:parameters (?x - block)
:precondition (holding ?x)
: effect
(and (not (holding ?x))
(clear ?x)
(handempty)
(ontable ?x)))
(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
: effect
(and (not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)))
(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
: effect
(and (holding ?x)
(clear ?y)
(not (clear ?x))
(not (handempty))
(not (on ?x ?y))))

ontable(A), on (B, A), clear (B), ontable(C),
clear (C), handempty

The Reachability Relation

- Many reasoning tasks are related to Reachability, e.g.:
- check whether a goal state s (i.e., with desired label) is reachable from initial state s_{0}, i.e., there exists a path from s_{0} to s
- classical planning: find path from initial state s_{0} to some goal state
- nondeterministic planning: check whether set of reachable states from s_{0} includes goal states only
- Fundamental Problem:
- For every state $s \in S$, compute set of states reachable from s
- Formalized as computation of Reachability Relation

Reachability-like

Definition (Reachability-like Relation)

- Let TS $\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$
- $R \subseteq S \times S$ is a reachability-like relation (over \mathcal{T}) if:
- $(s, s) \in R$, for all $s \in S$
- if (for some $s \in S$ and $a \in A) s \xrightarrow{a} s^{\prime}$ and $\left(s^{\prime}, s^{\prime \prime}\right) \in R$ then $\left(s, s^{\prime \prime}\right) \in R$

Observe:
(1) for all s^{\prime} reachable from s, it is the case that $\left(s, s^{\prime}\right) \in R$
(2) however, for some s, R may contain $\left(s, s^{\prime}\right)$ with s^{\prime} unreachable from s
(3) how to exclude such unreachable states?

Reachability

Definition (Reachability relation)

- $R \subseteq S \times S$ is a reachability relation (over \mathcal{T}) if:
- $\left(s, s^{\prime}\right) \in R$ iff $\left(s, s^{\prime}\right) \in R^{\prime}$ for all reachability-like relations R^{\prime}

Observe:
(1) A reachability relation R is also a reachability-like relation
(2) A reachability relation R is the smallest reachability-like relation

Reachability

Equivalent inductive definition

Definition (Reachability relation)

- Let $\operatorname{TS} \mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$
- The reachability relation of a TS \mathcal{T} is the smallest relation $R \subseteq S \times S$ s.t.:
- $(s, s) \in R$, for all $s \in S$
- if $s \xrightarrow{\text { a }} s^{\prime}$ and $\left(s^{\prime}, s^{\prime \prime}\right) \in R$ then $\left(s, s^{\prime \prime}\right) \in R$

Computing Reachability

- On finite TSs, reachability relation easily computable

Algorithm ComputeReachability

Input: Transition system $\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$
Output: Reachability relation of \mathcal{T}

```
\(R:=\emptyset\)
    \(R^{\prime}:=\{(s, s) \mid s \in S\}\)
    while \(\left(R \neq R^{\prime}\right)\{\)
        \(R:=R^{\prime}\)
        \(R^{\prime}:=R^{\prime} \cup\left\{\left(s, s^{\prime \prime}\right) \mid s \xrightarrow{a} s^{\prime}\right.\) and \(\left.\left(s^{\prime}, s^{\prime \prime}\right) \in R^{\prime}\right\}\)
    \}
    return \(R\)
```

- Least fixpoint computation by approximates, starting from empty set

Computing Reachability

$$
\begin{aligned}
& R^{0}=\emptyset \\
& R^{1}=\left\{\left(s_{0}, s_{0}\right),\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
& R^{2}=R^{1} \cup\left\{\left(s_{0}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
& R^{3}=R^{2} \cup\left\{\left(s_{0}, s_{2}\right),\left(s_{0}, s_{3}\right)\right\} \\
& R^{4}=R^{3}
\end{aligned}
$$

$$
\begin{aligned}
R=\{ & \left(s_{0}, s_{0}\right),\left(s_{0}, s_{1}\right),\left(s_{0}, s_{2}\right),\left(s_{0}, s_{3}\right) \\
& \left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{1}, s_{3}\right) \\
& \left.\left(s_{2}, s_{2}\right),\left(s_{3}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\}
\end{aligned}
$$

Transition Systems vs. Automata

- Automata: define language, i.e., set of (finite) strings
- Transition Systems: define behaviors, i.e., strings but also choices

- Same language: $a b c^{*}+a d e^{*}$
- Different choices:
- \mathcal{T} : two choices after a
- \mathcal{T}^{\prime} : no choice after a
- Thus, different behaviors

Equivalent Transition Systems

- Intuition: two TSs are equivalent, or bisimilar if from their initial states exactly the same behaviors start
- same strings (considering labelings, if present)
- same choices
- Formalized through notions of
- Bisimulation
- Bisimilarity

Bisimulation

Definition (Bisimulation relation)

- Let $\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$ and $\mathcal{T}^{\prime}=\left(P, A, T, t_{0}, \rightarrow^{\prime}, \lambda^{\prime}\right)$ be two (possibly the same) TSs
- $B \subseteq S \times T$ is a bisimulation relation (over \mathcal{T}) if $(s, t) \in B$ implies:
- $\lambda(s)=\lambda^{\prime}(t)$
- for all actions $a \in A$:
- if $s \xrightarrow{a} s^{\prime}$ then, for some $t^{\prime}, t \xrightarrow{a} t^{\prime}$ and $\left(s^{\prime}, t^{\prime}\right) \in B$
- if $t \xrightarrow{a} t^{\prime}$ then, for some $s^{\prime}, s \xrightarrow{a} s^{\prime}$ and $\left(s^{\prime}, t^{\prime}\right) \in B$

Observe:
(1) if two states (s, t) are in a bisimulation relation B they give raise to same behaviors
(2) however, there may exist pairs not in B generating same behaviors
(3) how to include such pairs?

Bisimilarity relation

Definition (Bisimilarity relation)

- Let $\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$ and $\mathcal{T}^{\prime}=\left(P, A, T, t_{0}, \rightarrow^{\prime}, \lambda^{\prime}\right)$ be two (possibly the same) TSs
- $B \subseteq S \times T$ is a bisimilarity relation between \mathcal{T} and \mathcal{T}^{\prime}, if:
- $(s, t) \in B$ iff $(s, t) \in B^{\prime}$ for some bisimulation relation B^{\prime}

Observe:
(1) A bisimilarity relation B is also a bisimulation relation
(2) A bisimilarity relation B is the largest bisimulation relation between (the states of) \mathcal{T} and \mathcal{T}^{\prime}

Bisimilarity relation

Equivalent co-inductive definition

Definition (Bisimilarity relation)

- Let $\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right)$ and $\mathcal{T}^{\prime}=\left(P, A, T, t_{0}, \rightarrow^{\prime}, \lambda^{\prime}\right)$ be two (possibly the same) TSs
- The bisimilarity relation between \mathcal{T} and \mathcal{T}^{\prime} is the largest relation $B \subseteq S \times T$ s.t. $(s, t) \in B$ implies:
- $\lambda(s)=\lambda^{\prime}(t)$
- for all actions $a \in A$:
- if $s \xrightarrow{a} s^{\prime}$ then, for some $t^{\prime}, t \xrightarrow{a} t^{\prime}$ and $\left(s^{\prime}, t^{\prime}\right) \in B$
- if $t \xrightarrow{a} t^{\prime}$ then, for some $s^{\prime}, s \xrightarrow{a} s^{\prime}$ and $\left(s^{\prime}, t^{\prime}\right) \in B$

Bisimilarity relation

Definition (Bisimilar states)

Two states s, t of two transition systems \mathcal{T} and \mathcal{T}^{\prime} are said to be bisimilar, or equivalent, if $(s, t) \in B$, for B the bisimilarity relation between \mathcal{T} and \mathcal{T}^{\prime}.

Definition (Bisimilar transition systems)

Two transition systems \mathcal{T} and \mathcal{T}^{\prime} are said to be bisimilar, or equivalent, if their respective initial states s_{0} and t_{0} are s.t. $\left(s_{0}, t_{0}\right) \in B$, for B the bisimilarity relation between \mathcal{T} and \mathcal{T}^{\prime}.

Computing Bisimilarity

- On finite TSs, bisimilarity relation easily computable

Algorithm ComputeBisimilarity

Input: TSs $\mathcal{T}=\left(P, A, S, s_{0}, \rightarrow, \lambda\right), \mathcal{T}^{\prime}=\left(P, A, T, t_{0}, \rightarrow^{\prime}, \lambda^{\prime}\right)$
Output: Bisimilarity relation between \mathcal{T} and \mathcal{T}^{\prime}

$$
\begin{aligned}
& B:=S \times T \\
& B^{\prime}:=B \backslash\left\{(s, t) \mid \lambda(s) \neq \lambda^{\prime}(t)\right\}
\end{aligned}
$$

$$
\text { while }\left(B \neq B^{\prime}\right)\{
$$

$$
B:=B^{\prime}
$$

$$
B^{\prime}:=B^{\prime} \backslash
$$

$$
\left(\left\{(s, t) \mid \exists a, s^{\prime} . s \xrightarrow{a} s^{\prime} \text { and } \nexists t^{\prime} . t^{\prime} \xrightarrow{a^{\prime}} t \text { and }\left(s^{\prime}, t^{\prime}\right) \in B^{\prime}\right\} \cup\right.
$$

$$
\left.\left\{(s, t) \mid \exists a, t^{\prime} . t \xrightarrow{a^{\prime}} t^{\prime} \text { and } \nexists s^{\prime} . s^{\prime} \xrightarrow{a} s^{\prime} \text { and }\left(s^{\prime}, t^{\prime}\right) \in B^{\prime}\right\}\right)
$$

\}
return B

- Greatest fixpoint computation by approximates, starting from total relation $S \times T$

Computing Bisimilarity

(1) $B^{0}=\left\{\left(s_{0}, t_{0}\right), \ldots,\left(s_{0}, t_{5}\right),\left(s_{1}, t_{0}\right), \ldots,\left(s_{1}, t_{5}\right),\left(s_{2}, t_{0}\right), \ldots,\left(s_{2}, t_{5}\right)\right.$, $\left.\left(s_{3}, t_{0}\right), \ldots,\left(s_{3}, t_{5}\right),\left(s_{4}, t_{0}\right), \ldots,\left(s_{4}, t_{5}\right)\right\}$
(2) $B^{1}=\left\{\left(s_{0}, t_{0}\right),\left(s_{0}, t_{5}\right),\left(s_{1}, t_{1}\right), \ldots,\left(s_{1}, t_{4}\right),\left(s_{2}, t_{1}\right), \ldots,\left(s_{2}, t_{4}\right)\right.$, $\left.\left(s_{3}, t_{1}\right), \ldots,\left(s_{3}, t_{4}\right),\left(s_{4}, t_{1}\right), \ldots,\left(s_{4}, t_{4}\right)\right\}$
(3) $B^{2}=\left\{\left(s_{0}, t_{0}\right),\left(s_{0}, t_{5}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right),\left(s_{4}, t_{4}\right)\right\}$
(4) $B^{3}=B^{2}$, then $B=B^{3}$

- Are \mathcal{T} and \mathcal{T}^{\prime} bisimilar? Yes: $\left(s_{0}, t_{0}\right) \in B$

Computing Bisimilarity

(1) $B^{0}=\left\{\left(s_{0}, t_{0}\right), \ldots,\left(s_{0}, t_{5}\right),\left(s_{1}, t_{0}\right), \ldots,\left(s_{1}, t_{5}\right),\left(s_{2}, t_{0}\right), \ldots,\left(s_{2}, t_{5}\right)\right.$, $\left.\left(s_{3}, t_{0}\right), \ldots,\left(s_{3}, t_{5}\right),\left(s_{4}, t_{0}\right), \ldots,\left(s_{4}, t_{5}\right)\right\}$
(2) $B^{1}=\left\{\left(s_{0}, t_{0}\right),\left(s_{0}, t_{5}\right),\left(s_{1}, t_{1}\right), \ldots,\left(s_{1}, t_{4}\right),\left(s_{2}, t_{1}\right), \ldots,\left(s_{2}, t_{4}\right),\left(s_{3}, t_{1}\right), \ldots,\left(s_{3}, t_{4}\right),\left(s_{4}, t_{1}\right), \ldots,\left(s_{4}, t_{4}\right)\right\}$
(3) $B^{2}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right),\left(s_{4}, t_{4}\right)\right\}$
(4) $B^{3}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{4}, t_{4}\right)\right\}$
(5) $B^{4}=\left\{\left(s_{0}, t_{0}\right),\left(s_{2}, t_{2}\right),\left(s_{4}, t_{4}\right)\right\}$
(6) $B^{5}=\left\{\left(s_{2}, t_{2}\right),\left(s_{4}, t_{4}\right)\right\}$
(7) $B^{6}=\left\{\left(s_{4}, t_{4}\right)\right\}$
(8) $B^{7}=\{ \}$

- Are \mathcal{T} and \mathcal{T}^{\prime} bisimilar? No: $\left(s_{0}, t_{0}\right) \notin B$

Computing Bisimilarity

- Are \mathcal{T} and \mathcal{T}^{\prime} bisimilar?
- What are the bisimilar states within same TS?

Summary

- Transition Systems are behavioral models of systems
- Fundamental reasoning problems include computing reachability and bisimilarity
- Fixpoint computations required

References I

