Master in Artificial Intelligence and Robotics (AIRO)

Electives in Al
Reasoning Agents

Fabio Patrizi

Sapienza University of Rome, ltaly
patrizi@diag.uniromal.it

AY. 2021-2022

patrizi@diag.uniroma1.it

Computation Tree Logic (CTL)

2021-2022 2/34

References:

@ A fully detailed presentation of the topics discussed in these slides can
be found in [CGP99]

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 3/34

Computation Tree Logic

CTL [CE81, CGP99]: logic expressing properties about TSs seen as
computation trees

Computation tree: “unfolding” of TS
o formally, tree containing all infinite paths of TS

Branching-time, as opposed to linear-time, semantics

CTL can express:

e existence of a path satisfying certain properties
e properties that mix wuniversal and existential quantification over paths

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 4/34

Computation Trees

Computation Tree

Transition System

Observe:
e Computation trees are infinite (but have regular structure)
e Transition labels are irrelevant (and will be dropped)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 5/34

0
(D]
(D)
—
_I
=
.0
)
Q]
=
>
o
S
(@)
O

O—
O—
O—
O—

(DG
&
N

)
[N e large Uo__mnf

34

6/

2021-2022

Reasoning Agents

@
]
k]
Q
@
‘a
N
=}
13
a
w

CTL Examples

With propositions P = {p,q,r,...}:
© There exists a path containing a state where p holds
© There exists no path containing a state where g holds
© Every path contains always contains either p or g

@ There exists a path such that all the past departing from its states
contain a state where g holds

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 7/34

CTL Syntax

Definition (CTL: Syntax)

Let P be a countable set of atomic propositions

CTL formulas have the following syntax, with p € P

o=p|@|eNp|EXp|EGp|pEUp

Intuitions:
@ ¢: formula ¢ holds in current state
o EX p: there exists a path s.t. in the next state ¢ holds
@ EG y: there exists a path s.t. ¢ always holds

@ @ EU: there exists a path s.t. ¥ holds sometime in the future and
until then ¢ always holds

Observe that both ¢ and % are CTL formulas themselves

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 8/34

CTL Semantics

@ CTL semantics is provided over the computation tree of a TS T

e Defined in terms of satisfaction relation |=

e For:

o TST =(P,A,S,s0,—,)
o statese S
e a CTL formula ¢ over P

we write 7, s |= ¢ if the computation tree of T rooted in state s
satisfies p, as inductively defined next

F. Patrizi (Sapienza)

Reasoning Agents

2021-2022 9/34

CTL Semantics

Definition (CTL: Semantics)

Let 7 = (P,A,S,sp,—,A) be a labelled transitions system, ¢ a CTL
formula over P, and s; a state of the computation tree of 7.

We inductively define 7, s; = ¢ as follows:
o T,si = piff pe A(si)
e T,s; E —yiff it is not the case that T,s; = ¢
o T,siEpAyYiff T,siE@and T,s; =
o T,si EEXpiff Imr =s;s5i11-+ sit. T,siv1 E @
o 7T,si FEGyiff Imr =sjsii1--- s.t. T,sj =, forall j > i

o 7,si EpEUY iff
dr = sisit1--- st. T, sk = 4, for some k > i and T, s; |= ¢ for all
=i k-1
Where m = s;sj1 - - - is an infinite path of T starting from s;

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 10 /34

CTL Semantics

Definition (CTL: Semantics)

Let 7 =(P,A,S,s0,—,A) be a LTS and ¢ a CTL formula over P.

We say that T satisfies o, written T = @, if T, 59 = .

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 11/34

CTL Semantics

EX p E pEUgq

S A A

2021-2022 12 /34

CTL Syntax: Abbreviations

Abbreviations:
° pVih=(-pA-y)
=P =V
EF o = T EU ¢ (there exists a path s.t. ¢ eventually holds)
AX ¢ = =~ EX =g (for all paths, ¢ holds next)
AG p = = EF —¢ (for all paths, ¢ always holds)
AF ¢ = = EG —y (for all paths, ¢ eventually holds)
@ AU ¢ = AF ¢ A =(—1p EU(—¢p A —p)) (for all paths, ¢ holds until 1)

F. Patrizi (Sapienza Reasoning Agents 2021-2022 13 /34
pi

CTL Semantics

PONP NN

pAU g

PONFON

2021-2022 14 /34

CTL: Examples

Safety properties (nothing bad will happen):

o AG —(green; A greeny)
(traffic lights 1 and 2 are never green at the same time)

o AG —(altitude < 0)
(plane altitude is never negative)

Liveness properties (something good will happen):
e AF(/and A stop)
(airplane will eventually land and stop)
o AG(work — AF get_salary)
(it is always the case that if one works, (s)he is eventually paid)

o AG(play — EX win)
(it is always the case that if one plays, (s)he can win)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

CTL: Examples

G(work — AF get _salary) G(play — EX win)
AG(play — EF win)
Il A

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 16 /34

The CTL Model Checking Problem

CTL Model Checking

Given:
e ALTS T =(P,A,S,s0,—,)
e A CTL formula ¢

Check whether T = ¢

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 17 /34

CTL Model Checking

Example

pick(A)

stack(A,C)

ont(A),c1(A),ont(B),
on(C,B),c1(C),he

on(C,B),c1(C)

hLA),ont(8), ‘

c1(A),on(A,0),
ont(B),on(C,B),he

putd(A)

stack(C,A)

stack(C,B)

4°0) 25w

>

pick(B)

T

unstk(A,C)

stack(B,C)

T

ont(A),c1(A) H

ont (B),c1(B),h1(C)

ont(A),on(C,A),ont (B),
€1(B),c1(C) he

ont(A),on(C,A), ont(A),on(C,A),
h1(B),c1(C) c1(B),on(B,C) ,he

unstk(C,A) putd(B) unstk(B,C)
pick(a) stack(A,B)
~ g /\
° g ont(A),c1(A),on(B,C), h1(A),on(B,C), c1(A),on(A,B),
8 3 c1(B),ont (C) ,he c1(B),ont(C) on(B,C),0nt(C), he
2 e
5/ B ~—_ —
o 5 putd(A) unstk(B,A)
pick(® T ® stack(B,A) pick(C) stack(C,B)
b

ont(B),c1(B),ont(C)

ont(4),c1(A),c1(C) he ont(A),cl(A),h1(B),
1 ont (€, c1(C)

ont(4),on(B,A),cl(B),

ont(A),on(B,A), ont(A),on(B,A),
ont (C),c1(C) ,he

IE=alE

€1(B),h1(C) on(C,B),c1(C) ,he

el B putd(B) unstk(8,4) putd(C) unstk(C,B)
3 %
‘i 2 stack(A,C) pick(B) stack(B,A)
h1(A),ont(B),cl(B), c1(A), on(A,C),cl(B), cl(A), on(a,C), on(A,C),on(B,A)
ont(€),¢1(C) ont (B),ont (C), he h1(B),0nt (C) ont(C),c1(B) he
@ o
< 5 unstk(A,C) putd(B) unstk(B,A)
A pick(C) stack(C,A)
El Y _— .
<L(A),on(A,B) ,ont (B), €L(A),on(A,B), on(A,B),ont(B),
ont(C),cl(C),he ont (B) ,h1(C) on(C,A),c1(C) ,he
putd(C) unstk(C,A)
enza) easoning

2021-2022

18

CTL Model Checking

Example

@ 7 = EF(on(B, A) A on(C, B) A ont(A))?
@ 7 = EF(holding A EX —he)?
© 7 = AG(holding — AX he)?
@ 7 = AGAF(on(B, A))?
e T = AG(clear(c) — EF —clear(C))?
© 7 EEGEF(on(B, A))?
@ 7 = EFAG(—on(B, A))?
with
@ holding = hi(A) V hi(B) V hi(C)

‘){ ont(A),c1(A),c1(0), he

piek(h)

stack(h,0)

on(C,B),c1(0) he

ent(8) ,<L(h) ont (8), ‘

BL(K) ,ont (),
on(c,B),c1(0)

<L), 0n(A,0),
ont(B),0n(C,B) e

S E paw e h,0)
L IR rick® ek,
ore 1 TRl Ty o o,
on), e15) 01 QB e e ey S ronte, oo
T e o
piekeh) stack(h,5)

ont (k) ,c1(A),on(8,C) ,
L(B),0n (€), he

cL() ,on(A,B),
on(B,0) 00t (0) he

BL(A),0n(B,0),
€1(8),0nt(0)

piek(B)

Pick(©)
> @pand
tack(B,0)

putd(h) unsti(B,4)

pick(e)

“@)xasu

stack(B,4) stack(c,B)

ont (), c1(8) ,ont (C)

ont(A),cL(A),h1(B),
(©,e1(0)

ont

ont(A),0n(B,0),

ont(C),€1(C), he on(C,B),c1(0) , he

LB ,h10)

ont(A),0n(8,4),c1(8) , ‘

ont (), 0n(8,4), ‘

putd(e)
stack(1,0)

putah)
|
s

unsti(B, A) pucd(©) unsti(C,B)

pick(®) stack(B,A)

BL(A), ont (8),c1(B) ,
ont(0),€1(0)

W), on(a,0),c1(B),
ont(B),0nt(C), he.

on(A,0),0n(B,4)

BL(B) ,ont (@) ont(0), c1(8) he

AW, onlh,0), ‘

unstk(h,C)

pick(O)

p—
|

putd(®) unsti(B,A)

stack(C,A)

€L(A) ,on(A,B) ,ont (B),
ont(0),c1(0), he

€10, 0n(k,B),
ont (8),h1.(0)

on(k,B), ont (B) ,
on(C,A),c1(0) he

putd(c)

unstk(C,A)

Observe: must explore infinitely many, infinite-length paths!

F. Patrizi (S

Reasoning Agents

Branching-time vs. linear-time

CTL has a branching-time semantics
@ Properties of computation tree, not of single paths

e Cannot express strong fairness: for every path, if p occurs infinitely
often, then g occurs infinitely often

Addressed by linear-time temporal logic (LTL [Pnu77, CGP99]):
o Expresses properties of paths (typically of a TS)

@ Can express strong fairness
@ Cannot quantify existentially over paths:
e E.g., cannot express CTL formula: AG(p — EF q)

LTL and CTL have incomparable expressive power

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 20/34

The Linear-time Temporal Logic

LTL (Linear-time temporal logic)
@ Expresses properties of a single (infinite) path
@ No path quantifiers

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 21/34

LTL Syntax

Definition (LTL: Syntax)

Let P be a countable set of atomic propositions

LTL formulas have the following syntax, with p € P

p=plwlerp|Xe|pUp

Intuitions:
@ ¢: formula ¢ holds in current state
@ X: ® holds in next state
@ pU4: 9 holds sometime in the future and until then ¢ always holds

Observe that both ¢ and v are LTL formulas

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 22/34

LTL Semantics

@ LTL semantics is provided over infinite paths (of a TS)

o Defined in terms of satisfaction relation |=

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 23 /34

LTL Semantics

Definition (LTL: Semantics)
Given
@ A path m = sps1--- (of some LTS T = (P, A, S, sp, —, \))

@ A state s; of 7

@ An LTL formula ¢ over P

we inductively define 7, s; |= ¢ as follows:
o m, s Epiff pe A(s;)
e 7,s; =~y iff it is not the case that m,s; = ¢
e msiEpAYIff T siEpand s EY
omsiEXpiffm,siti Eoe

o 7,5 = U iff m,s |= 1), for some k > i and 7, s; |= ¢ for all
=i k—1

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

LTL Semantics

Definition (LTL: Semantics)
Let 7 = (P,A,S,s0,—,A) be a LTS and ¢ an LTL formula over P

We say that T satisfies ¢, written T = ¢, if for all paths 7 of 7, we have
that 7, sp = .

2021-2022 25/34

F. Patrizi (Sapienza) Reasoning Agents

LTL Semantics

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 26 /34

LTL Syntax: Abbreviations

Abbreviations:
@ V and — are as usual
e Fo =T Uy (¢ eventually holds)
e Gp=-F-p=—(TU-=gp) (¢ always holds)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 27 /34

LTL Semantics

Gp:

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 28 /34

LTL: Examples

Safety properties (nothing bad will happen):
o G —(greeny A green;)
(traffic lights 1 and 2 are never green at the same time)
o G —(altitude < 0)
(plane altitude is never negative)

Liveness properties (something good will happen):
e F(/and A stop)
(airplane will eventually land and stop)
o G(work — F get_salary)
(it is always the case that if one works, (s)he is eventually paid)
o G(play — X win)
(it is always the case that if one plays, (s)he can win)
Observe:

@ This time formulas are interpreted over paths (not computation trees)

F. Patrizi (Sapienza) Reasoning Agents

2021-2022 29/34

LTL: Examples

G(work — F get_salary)

GF play — GF win

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 30/34

Path Quantification and CTL*

CTL limitation: only certain combinations of path quantifiers and
temporal modalities allowed, e.g.:
o Cannot express: for every path 7 s.t. eventually p there exists a path
7’ s.t. eventually g

@ Solved by CTL*[EH83, EH86, CGP99] (not seen in this course)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 31/34

e Computation-tree logic (CTL) can be used to express properties of
TSs

o Interpreted over infinite computation trees of TSs

@ Captures branching-time properties of practical interest

@ CTL Model checking is the problem of checking whether a TS
satisfies a CTL formula

@ Other logics exist:

o LTL (linear-time): incomparable to CTL (non-null intersection)
e CTL*: strictly more expressive than LTL and CTL

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

References |

ﬁ Edmund M. Clarke and E. Allen Emerson.

Design and synthesis of synchronization skeletons using branching-time temporal
logic.

In Dexter Kozen, editor, Logics of Programs, Workshop, Yorktown Heights, New
York, USA, May 1981, volume 131 of Lecture Notes in Computer Science, pages
52—71. Springer, 1981.

ﬁ Edmund M Clarke, Orna Grumberg, and Doron A. Peled.
Model checking.
MIT Press, London, Cambridge, 1999.

ﬁ E. Allen Emerson and Joseph Y. Halpern.
"sometimes” and "not never” revisited: On branching versus linear time.
In John R. Wright, Larry Landweber, Alan J. Demers, and Tim Teitelbaum, editors,
Conference Record of the Tenth Annual ACM Symposium on Principles of

Programming Languages, Austin, Texas, USA, January 1983, pages 127-140. ACM
Press, 1983.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 33/34

References |l

ﬁ E. Allen Emerson and Joseph Y. Halpern.

"sometimes” and "not never” revisited: on branching versus linear time temporal
logic.

J. ACM, 33(1):151-178, 1986.

[Amir Pnueli.
The temporal logic of programs.

In 18th Annual Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977, pages 46-57. IEEE Computer
Society, 1977.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 34 /34

