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@ A fully detailed presentation of the topics discussed in these slides can
be found in [CGP99]
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Computation Tree Logic

CTL [CE81, CGP99]: logic expressing properties about TSs seen as
computation trees

Computation tree: “unfolding” of TS
o formally, tree containing all infinite paths of TS

Branching-time, as opposed to linear-time, semantics

CTL can express:

e existence of a path satisfying certain properties
e properties that mix wuniversal and existential quantification over paths
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Computation Trees

Computation Tree

Transition System

Observe:
e Computation trees are infinite (but have regular structure)
e Transition labels are irrelevant (and will be dropped)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 5/34



0
(D]
(D)
—
_I
=
.0
)
Q]
=
>
o
S
(@)
O

O—
O—
O—
O—

(DG
&
N

)
[N e large Uo__mnf

34

6/

2021-2022

Reasoning Agents

@
]
k]
Q
@
‘a
N
=}
13
a
w




CTL Examples

With propositions P = {p,q,r,...}:
© There exists a path containing a state where p holds
© There exists no path containing a state where g holds
© Every path contains always contains either p or g

@ There exists a path such that all the past departing from its states
contain a state where g holds
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CTL Syntax

Definition (CTL: Syntax)

Let P be a countable set of atomic propositions

CTL formulas have the following syntax, with p € P

o=p|@|eNp|EXp|EGp|pEUp

Intuitions:
@ ¢: formula ¢ holds in current state
o EX p: there exists a path s.t. in the next state ¢ holds
@ EG y: there exists a path s.t. ¢ always holds

@ @ EU: there exists a path s.t. ¥ holds sometime in the future and
until then ¢ always holds

Observe that both ¢ and % are CTL formulas themselves
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CTL Semantics

@ CTL semantics is provided over the computation tree of a TS T

e Defined in terms of satisfaction relation |=

e For:

o TST =(P,A,S,s0,—, )
o statese S
e a CTL formula ¢ over P

we write 7, s |= ¢ if the computation tree of T rooted in state s
satisfies p, as inductively defined next
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CTL Semantics

Definition (CTL: Semantics)

Let 7 = (P,A,S,sp,—,A) be a labelled transitions system, ¢ a CTL
formula over P, and s; a state of the computation tree of 7.

We inductively define 7, s; = ¢ as follows:
o T,si = piff pe A(si)
e T,s; E —yiff it is not the case that T,s; = ¢
o T,siEpAyYiff T,siE@and T,s; =
o T,si EEXpiff Imr =s;s5i11-+ sit. T,siv1 E @
o 7T,si FEGyiff Imr =sjsii1--- s.t. T,sj =, forall j > i

o 7,si EpEUY iff
dr = sisit1--- st. T, sk = 4, for some k > i and T, s; |= ¢ for all
=i k-1
Where m = s;sj1 - - - is an infinite path of T starting from s;
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CTL Semantics

Definition (CTL: Semantics)

Let 7 =(P,A,S,s0,—,A) be a LTS and ¢ a CTL formula over P.

We say that T satisfies o, written T = @, if T, 59 = .
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CTL Semantics

EX p E pEUgq

S A A
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CTL Syntax: Abbreviations

Abbreviations:
° pVih=(-pA-y)
=P =V
EF o = T EU ¢ (there exists a path s.t. ¢ eventually holds)
AX ¢ = =~ EX =g (for all paths, ¢ holds next)
AG p = = EF —¢ (for all paths, ¢ always holds)
AF ¢ = = EG —y (for all paths, ¢ eventually holds)
@ AU ¢ = AF ¢ A =(—1p EU(—¢p A —p)) (for all paths, ¢ holds until 1)
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CTL Semantics

PONP NN

pAU g

PONFON
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CTL: Examples

Safety properties (nothing bad will happen):

o AG —(green; A greeny)
(traffic lights 1 and 2 are never green at the same time)

o AG —(altitude < 0)
(plane altitude is never negative)

Liveness properties (something good will happen):
e AF(/and A stop)
(airplane will eventually land and stop)
o AG(work — AF get_salary)
(it is always the case that if one works, (s)he is eventually paid)

o AG(play — EX win)
(it is always the case that if one plays, (s)he can win)
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CTL: Examples

G(work — AF get _salary) G(play — EX win)
AG(play — EF win)
Il A
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The CTL Model Checking Problem

CTL Model Checking

Given:
e ALTS T =(P,A,S,s0,—, )
e A CTL formula ¢

Check whether T = ¢
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CTL Model Checking

Example
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CTL Model Checking

Example

@ 7 = EF(on(B, A) A on(C, B) A ont(A))?
@ 7 = EF(holding A EX —he)?
© 7 = AG(holding — AX he)?
@ 7 = AGAF(on(B, A))?
e T = AG(clear(c) — EF —clear(C))?
© 7 EEGEF(on(B, A))?
@ 7 = EFAG(—on(B, A))?
with
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Observe: must explore infinitely many, infinite-length paths!
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Branching-time vs. linear-time

CTL has a branching-time semantics
@ Properties of computation tree, not of single paths

e Cannot express strong fairness: for every path, if p occurs infinitely
often, then g occurs infinitely often

Addressed by linear-time temporal logic (LTL [Pnu77, CGP99]):
o Expresses properties of paths (typically of a TS)

@ Can express strong fairness
@ Cannot quantify existentially over paths:
e E.g., cannot express CTL formula: AG(p — EF q)

LTL and CTL have incomparable expressive power
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The Linear-time Temporal Logic

LTL (Linear-time temporal logic)
@ Expresses properties of a single (infinite) path
@ No path quantifiers
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LTL Syntax

Definition (LTL: Syntax)

Let P be a countable set of atomic propositions

LTL formulas have the following syntax, with p € P

p=plwlerp|Xe|pUp

Intuitions:
@ ¢: formula ¢ holds in current state
@ X: ® holds in next state
@ pU4: 9 holds sometime in the future and until then ¢ always holds

Observe that both ¢ and v are LTL formulas
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LTL Semantics

@ LTL semantics is provided over infinite paths (of a TS)

o Defined in terms of satisfaction relation |=
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LTL Semantics

Definition (LTL: Semantics)
Given
@ A path m = sps1--- (of some LTS T = (P, A, S, sp, —, \))

@ A state s; of 7

@ An LTL formula ¢ over P

we inductively define 7, s; |= ¢ as follows:
o m, s Epiff pe A(s;)
e 7,s; =~y iff it is not the case that m,s; = ¢
e msiEpAYIff T siEpand s EY
omsiEXpiffm,siti Eoe

o 7,5 = U iff m,s |= 1), for some k > i and 7, s; |= ¢ for all
=i k—1
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LTL Semantics

Definition (LTL: Semantics)
Let 7 = (P,A,S,s0,—,A) be a LTS and ¢ an LTL formula over P

We say that T satisfies ¢, written T = ¢, if for all paths 7 of 7, we have
that 7, sp = .

2021-2022 25/34
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LTL Semantics
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LTL Syntax: Abbreviations

Abbreviations:
@ V and — are as usual
e Fo =T Uy (¢ eventually holds)
e Gp=-F-p=—(TU-=gp) (¢ always holds)
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LTL Semantics

Gp:
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LTL: Examples

Safety properties (nothing bad will happen):
o G —(greeny A green;)
(traffic lights 1 and 2 are never green at the same time)
o G —(altitude < 0)
(plane altitude is never negative)

Liveness properties (something good will happen):
e F(/and A stop)
(airplane will eventually land and stop)
o G(work — F get_salary)
(it is always the case that if one works, (s)he is eventually paid)
o G(play — X win)
(it is always the case that if one plays, (s)he can win)
Observe:

@ This time formulas are interpreted over paths (not computation trees)
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LTL: Examples

G(work — F get_salary)

GF play — GF win
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Path Quantification and CTL*

CTL limitation: only certain combinations of path quantifiers and
temporal modalities allowed, e.g.:
o Cannot express: for every path 7 s.t. eventually p there exists a path
7’ s.t. eventually g

@ Solved by CTL*[EH83, EH86, CGP99] (not seen in this course)
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e Computation-tree logic (CTL) can be used to express properties of
TSs

o Interpreted over infinite computation trees of TSs

@ Captures branching-time properties of practical interest

@ CTL Model checking is the problem of checking whether a TS
satisfies a CTL formula

@ Other logics exist:

o LTL (linear-time): incomparable to CTL (non-null intersection)
e CTL*: strictly more expressive than LTL and CTL
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