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Introduction

In this deck of slides we revisit the classical theory of finite state automata, having in mind as application
the verification and synthesis of finite state processes from language-based specifications.
We start by considering an example from digital design [5].

Example (A Simple Vending Machine)

Requirements. The vending machine delivers a package of gum after it has received 15 cents in coins. The
machine has a single coin slot that accepts nickels (5c) and dimes (10c), one coin at a time. A mechanical
sensor indicates to the control whether a dime or a nickel has been inserted into the coin slot. The
controller’s output causes a single package of gum to be released down a chute to the customer. One
further specification: We will design our machine so it does not give change. A customer who pays with
two dimes is out 5 cents.
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Solution

We proceed to the manual synthesis of the machine in steps from digital design [5].

Solution step 1: Understanding the problem.

Solution step 2: Define an abstract representation as a DFA.

Solution step 3: State minimization of the DFA.

Solution step 4: State encoding and implementation.
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Solution step 1: Understanding the problem

Example (Solution step 1: Understanding the problem)

The first step in the finite state machine design process is to understand the problem. Event 5c is asserted
when a nickel is inserted into the coin slot. Event 10c is asserted when a dime has been deposited. The
event gum is asserted when 15 cents (or more) has been deposited since the last reset. The specification
may not completely define the behavior of the finite state machine. For example, what happens if someone
inserts a penny (1c) into the coin slot? Or what happens after the gum is delivered to the customer?
Sometimes we have to make reasonable assumptions. For the first question, we assume that the coin sensor
returns any coins it does not recognize, leaving 5c and 10c unasserted. For the latter, we assume that the
machine resets after the gum is delivered.
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Solution step 2: Define an abstract representation as a DFA

Example (Solution step 2: Define an abstract representation as a DFA)

Once you understand the behavior reasonably well, it is time to map the specification into a more suitable
abstract representation as a finite state machine. A good way to begin is by enumerating the possible
unique sequences of inputs or configurations of the system. These will help define the states of the finite
state machine.
For this problem, it is not too difficult to enumerate all the possible input sequences that lead to releasing
the gum:

three nickels in sequence: 5c, 5c, 5c

two nickels followed by a dime: 5c, 5c, 10c

a nickel followed by a dime: 5c, 10c

a dime followed by a nickel: 10c, 5c

two dimes in sequence: 10c, 10c

This can be represented as a state diagram. For example, the machine will pass through the three states if
the input sequence is three nickels.
To keep the state diagram simple and readable, we include only transitions that explicitly cause a state
change. For example, in the initial state, if neither input 5c or 10c is asserted, we assume the machine
remains in the initial state (the specification allows us to assume that 5c and 10c are never asserted at the
same time). Also, we include the event gum only in states in which it is asserted. The event gum is
implicitly unasserted in any other state.
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Solution step 2: Define an abstract representation as a DFA - cont.d

Example (Solution step 2: Define an abstract representation as a DFA)

Two equivalent dfas: A (which is minimal) and A′ (which is not minimal)

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

t0

t1 t3

t4

10c5c

5c

10c 5c,10c

t2

5c,10c

gum gum

A'A
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Solution step 3: State minimization of the DFA

Example (Solution step 3: State minimization of the DFA)

Typically the dfa resulting from the previous step isn’t the “best” possible. States that have identical
behavior can be combined into a single state. To reduce the number of states even further, we can think of
each state as representing the amount of money received so far. For example, it shouldn’t matter whether
the state representing that 10c have been received was reached through two nickels or one dime. The
process of minimizing the states in a finite state machine description is called state minimization.

After minimization the two dfas: A and A′ become identical:

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

t0

t1

t4

10c5c

5c

10c

t2

5c,10c

gum gum

A'A
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Solution step 4: State encoding and implementation

Example (Solution step 4: State encoding and implementation)

At this point, we have a finite state machine with a minimum number of states, but it is still symbolic. The
next step is state encoding into actual flip-flop logic. The way you encode the state can have a major effect
on the amount of hardware you need to implement the machine. For example, a natural state assignment
would encode the states in 2 bits: state 0c received as 00, state 5c received as 01, state 10c received as 10,
and state 15c received as 11. A less obvious assignment could lead to reduced hardware. The next step is
to implement the state transition table on the basis of the chosen storage elements (various kinds of
flip-flops).

This step is not of direct interest for us.
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Comments

Suppose that two different teams come up with two different designs a dfa A and a dfa A′ as above.

How can we understand that they implement the same design?
A sufficient condition for this is that they recognize the same language. To check this, we can proceed
as follows: we check weather L(A) ⊆ L(A′) and L(A′) ⊆ L(A). To do so, focussing on the first

containment, we consider that L(A) ⊆ L(A′) iff L(A) ∩ L(A′) = ∅, which can be computed as
L(A ∧ A′) = ∅, where A′ is the dfa recognizing the complement of the language recognized by A′,
and A ∧ A′ denotes the dfa recognizing the intersection of the languages recognized by A and A′.
Similarly for the other containment.

Are the two designs minimal?
Actually A is indeed minimal, while A′ is not. If we apply minimization to A we get A′, since for every
dfa there is a single minimal equivalent dfa (modulo renaming of states).

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 10 / 61



What we will study

In these notes we study and give automata theoretic tools for Steps 2 and 3 of the above synthesis
methodology. The following figure summarizes what we will study.

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

complete
minimize

trim

nondet

det

not

In the figure, thin edges correspond to polynomial transformations, while thick ones correspond to
transformations that induce an exponential blowup.
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dfas: Deterministic Finite Automata

We are given a finite nonempty alphabet Σ .
A finite word is an element of Σ∗, i.e., a finite sequence a0 · · · an of symbols from Σ.
Automata on finite words define (finitary) languages, i.e., sets of finite words.
We start our review by considering deterministic finite automata first.

dfa

A dfa, deterministic finite automaton, A is a tuple A = (Σ,S , s0, ρ,F ), where

Σ is a finite nonempty alphabet;

S is a finite nonempty set of states;

s0 ∈ S is the initial state;

F ⊆ S is the set of accepting states;

ρ : S × Σ→ S is a transition function, which can be a partial function. Intuitively, s′ = ρ(s, a) is the
state that A can move into when it is in state s and it reads the symbol a. (If ρ(s, a) is undefined then
reading a leads to rejection.)
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DFAs: Deterministic Finite Automata

DFA as edge-labeled directed graphs

An automaton is essentially an edge-labeled directed graph: the states of the automaton are the nodes,
transitions are edges; the edges are labeled by symbols in Σ; a node is designated as initial, and a certain
set of nodes is designated as accepting (or final). Thus, s′ = ρ(s, a) means that that there is an edge from
s to s′ labeled with a.

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

t0

t1 t3

t4

10c5c

5c

10c 5c,10c

t2

5c,10c

gum gum

A'A
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dfas: Deterministic Finite Automata

Extended transition function

The transition function ρ of a dfa can be viewed as a partial mapping from S × Σ to S, and can then be
extended to a partial mapping from S × Σ∗ to S as follows:

ρ(s, ε) = s;

ρ(s, xw) = ρ(ρ(s, x),w), for s ∈ S, x ∈ Σ, and w ∈ Σ∗.

Runs

A run r of A on a finite word w = a0 · · · an−1 ∈ Σ∗ is a sequence s0 · · · sn of n + 1 states in S such that
s0 = s0, and si+1 = ρ(si , ai ) for 0 ≤ i ≤ n.

Note that a deterministic automaton can have at most one run on a given input word.

The run r is accepting if sn ∈ F . The word w is accepted by A if A has an accepting run on w . Since A is
deterministic, w ∈ L(A) if and only if ρ(s0,w) ∈ F .

One could picture the automaton as having a green light that is switched on whenever the automaton is in
an accepting state and switched off whenever the automaton is in a non-accepting state. Thus, the run is
accepting if the green light is on at the end of the run.
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Semantics

Semantics of a dfa

The semantics of a dfa A is the (possibly infinite) set of finite words accepted by A.

L(A) is typically called the language of A.

Notice that dfas are semantically fully characterized by the language that they recognize. Their structure,
number of states, transitions defined for each state, etc. are irrelevant with respect to semantics.

One key observation about dfas is that they can be easily implemented in software and in hardware: they
correspond to actual physical/virtual releasable devices or machines. This has to be contrasted to
nondeterministic and alternating automata to be introduced later, which do not correspond directly to
implementable devices (with current technology).
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Completion of a dfa

We say that a dfa is complete if its transition function ρ : S × Σ→ S is a total function, that is, for all
s ∈ S and all a ∈ Σ we have that ρ(s, a) = s′ for some s′ ∈ S (i.e., ρ(s, a) is defined).

Completion

Given an arbitrary dfa A = (Σ, S, s0, ρ,F ), its completed version AT , called completion of A, is
immediately obtained as follows: AT = (Σ, S ∪ {sink}, s0, ρT ,F ) where:

ρT (s, a) =

{
ρ(s, a), if defined in A
sink, otherwise

That is, the completion AT of A is obtained from A by adding an extra state sink, and by making the
transition function ρ total by setting ρT (s, a) = sink in AT every time that ρ(s, a) is undefined in A.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 17 / 61



Completion of a dfa

Example (Completions of dfas A and A′)

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

t0

t1 t3

t4

10c5c

5c

10c 5c,10c

t2

5c,10c

gum gum

A'A

sk

gum

gum

gum

5c,10c

tk

gum

gum

5c,10c

gum

gum5c,10c, gum 5c,10c, gum

Theorem (DFA Completion [7])

Let A be a dfa. Its completion AT is such that L(A) = L(AT ). The size of AT is linear in the size of A
(its states are that of A plus one).
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Closure of dfas under Complementation, Intersection, and Union

An important property of automata is their closure under Boolean operations:
complement (not),
intersection (and),
union (or)

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

complete
minimize

trim

nondet

det

not
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Closure under complementation (not)

Complementation

Let A = (Σ,S , s0, ρ,F ). We assume that A is complete (if not, apply the completion construction above).

Intuitively, we construct a dfa Ā that runs A but accepts whenever A does not. Formally:

Ā = (Σ, S , s0, ρ, S − F ).

Notice that Ā does exactly the same transitions as the dfa A (which is complete, and hence transitions are
always defined!), but accepts only the words that are not accepted by A. That is

L(Ā) = Σ∗ − L(A).

Theorem (DFA Closure Under Complementation [7])

Let A be dfa. Then there is a dfa Ā such that L(Ā) = Σ∗ − L(A). The size of Ā is linear in A.
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Closure under complementation (not)

Example (Complementation (not) of dfa A)

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

gum

A

sk

gum

gum

gum

5c,10c

s1 s2

s3

10c5c

5c

10c 5c,10c

gum

A

gum

gum

gum

5c,10c

sk

s0

5c,10c, gum 5c,10c, gum
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Closure under Intersection (and)

Intersection (and) of dfas

Let A1 = (Σ, S1, s
0
1 , ρ1,F1) and A2 = (Σ, S2, s

0
2 , ρ2,F2). Intuitively, we construct the intersection (and)

dfa A∧ that runs simultaneously both A1 and A2 on the input word and accepts when both accept. We
define A∧ as:

A∧ = (Σ, S1 × S2, (s0
1 , s

0
2 ), ρ, F1 × F2)

where:

The transition function requires to execute the two automata concurrently in a synchronized way:

ρ((s1, s2), a) = (s′1, s
′
2) iff s′1 = ρ1(s1, a) and s′2 = ρ2(s2, a)

Notice that if either ρ1(s1, a) or ρ2(s2, a) is undefined then also ρ((s1, s2), a) is undefined.

The condition defining the final states:
F1 × F2

says that we accept a word if both dfas A1 and A2 accept it.
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Closure under Intersection (and)

It is easy to see that the size of A∧ is the product of the sizes of A1 and of A2, and that
L(A∧) = L(A1) ∩ L(A2).

Theorem (DFA Closure Under Intersection [7])

Let A1 and A2 be dfas. Then there is a dfa A such that L(A) = L(A1) ∩ L(A2). The size of A is linear in
the product of the sizes of A1 and of A2.

Sometimes A∧ defined above is called the product of A1 and A2, and is denoted by A1 × A2.

Example (Intersection (and) of dfas A1 and A2)

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

gum

A1

t0

t1

t2

t3

10c5c

5c

10c

5c

gum, 5c, 10c

A2

00

11 22

33

10c5c

5c

10c 5c

gum

A1&A2
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Closure under union (or)

We observe that by De Morgan laws on Boolean operators, we have L(A1)∪L(A2) = L(A1) ∩ L(A2) Here,
however we give a direct construction for the union.

Union (or) of dfas

Let A1 = (Σ, S1, s
0
1 , ρ1,F1) and A2 = (Σ, S2, s

0
2 , ρ2,F2). Without loss of generality, we assume that S1 and

S2 are disjoint and that A1 and A2 are complete (i.e., their transition function is total, which is needed for
the implicit complementation above). Intuitively, we construct the union (or) dfa A∨ that runs
simultaneously both A1 and A2 on the input word and accepts when one of them accepts. Notice that the
two dfas can never get suck (with no transition available), since they are complete. We define

A∨ = (Σ, S1 × S2, (s0
1 , s

0
2 ), ρ, (F1 × S2) ∪ (S1 × F2))

where:

The transition function requires to execute the two automata concurrently in a synchronized way:

ρ((s1, s2), a) = (s′1, s
′
2) iff s′1 = ρ1(s1, a) and s′2 = ρ2(s2, a)

Though we require that both dfas A1 and A2 are complete and hence ρ1(s1, a) and ρ2(s2, a) are
always both defined.
The condition defining the final states:

(F1 × S2) ∪ (S1 × F2)

says that A∨ accepts a word if one of the two dfas A1 or A2 accepts it.F. Patrizi (Sapienza) Reasoning Agents 2021-2022 25 / 61



Closure under union (or)

It is easy to see that the size of A∨ is the product of the sizes of A1 and of A2, and that
L(A) = L(A1) ∪ L(A2). Sometimes A∨ defined above is denoted as A1 ∪ A2.

Theorem (DFA Closure Under Union [7])

Let A1 and A2 be dfas. Then there is a dfa A such that L(A) = L(A1) ∪ L(A2). The size of A is
polynomial in sizes of A1 and of A2.

Example (Union (or) of dfa’s A1 and A2)

A1

t0

t1

5cgum

A2
00

11 2k

3k

10c5c

5c

10c 5c, 10c

gum

A1 or A2

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

gum

sk

gum

gum

gum

5c,10c

tk

10c,gum

5c,10c
kk

5c,10c, gum

5c,10c, gum
5c,10c, gum

gum

5c,10c

k1

gum

5c
k0

5c,10cgum

0k 10c

1k 5c

10c

10c,gum

5c
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Projection of dfas

Appart from boolean operations automata are also closed under existential quantification, or projection,
on part of the alphabet.

However if we apply existential quantification/projection to a dfa we get and nfa.

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

complete
minimize

trim

nondet

det

not
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Projection of dfas

We define the operation of “projecting out the subset X of the alphabet Σ” as the operation that
removes from a word all occurrence of symbols in X . In other words, projecting out X from a word
corresponds to the word obtained by existentially quantifying over the symbols in X .

Projection of a language

Projection πX (w) wrt X of a word w is defined by induction on the length of w as follows:

πX (ε) = ε

πX (aw) =

{
aw , if a ∈ Σ− X
w , if a ∈ X

Given a language L, the projection πX (L) is the language

πX (L) = {w ′ | ∃w ∈ L s.t. w ′ = πX (w)}.
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Projection of dfas

Projection of a dfa

Given a dfa A = (Σ, S , s0, ρ,F ), we can define the projection nfa AπX that recognizes the language
πX (L(A)).
To do so, first we define by induction the relation εX ⊆ S × S formed by the pairs of states (s, s′) such
that s′ is reachable from s by making transition involving only symbols from X , as the smallest relation
εX such that:

(s, s) ∈ εX
if (s, s′) ∈ εX then for all s′′ such that s′′ = δ(s′, a) for some a ∈ X , we have that (s, s′′) ∈ εX .

Then we define the projection nfa AπX as follows:

AπX = (Σ− X ,S , S0, ρX ,F )

where:

S0 = {s | (s0, s) ∈ εX }
(s, a, s′) ∈ ρX iff there exist t, t′ s.t. (s, t) ∈ εX , t′ = ρ(t, a) and (t′, s′) ∈ εX

Theorem (dfa Projection)

Given a dfa A, there exists an nfa AπX computable in quadratic time such that L(AπX ) = πX (L(A)).
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Projection of dfas

Now we present some common structural operations that change the structure of a dfa without changing
the language that the dfa recognizes.

Minimization
Trimming

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

complete
minimize

trim

nondet

det

not
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Minimization

Given a dfa A = (Σ, S , s0, ρ,F ) there exists a single minimal dfa Am which is equivalent to A, i.e.,
L(A) = L(Am) and with a minimal number of states.
To construct such a dfa we need to introduce a suitable equivalence relation between states.

Bisimulation

We exploit bisimulationa between states of the dfa A, which we assume to be complete (if not we first
apply the completion operation introducing a sink state, see above).
A bisimulation relation E ∈ S × S is a relation between states that satisfies the following condition: if
(s, t) ∈ E then:

s ∈ F iff t ∈ F ;

For all s′, a such that ρ(s, a) = s′, there exists t′ such that ρ(t, a) = t′ and (s′, t′) ∈ E;

For all t′, a such that ρ(t, a) = t′, there exists s′ such that ρ(s, a) = s′ and (s′, t′) ∈ E.

We say that s is equivalent to t, written s ∼ t if there exists a bisimulation relation E such that
(s, t) ∈ E. It is to be shown that s ∼ t is indeed an equivalence relation: i.e., it is:

reflexive (i.e., s ∼ s);

symmetric (i.e., if s ∼ t then t ∼ s);

transitive (i.e., if s ∼ t and t ∼ q then s ∼ q).

aNotice that we should look at trace equivalence instead which is coarser that bisimilarity, however the two notions coincide
for dfas.
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Minimization

Computing Bisimulation

Notice that bisimulation is a coinductive definition which can be computed as a greatest fixpoint as
follows:

We set Z0 = S × S.

Then, we from Zi we compute Zi+1 as:

Zi+1 = Zi − {(s, t) | (s, t) does not satisfy one of the three conditions below}

s ∈ F iff t ∈ F (in fact this is used only when going from Z0 to Z1);

for all s′, a s.t. ρ(s, a) = s′, there exists t′ s.t. ρ(t, a) = t′ and (s′, t′) ∈ Zi ;

for all t′, a s.t. ρ(t, a) = t′, there exists s′ s.t. ρ(s, a) = s′ and (s′, t′) ∈ Zi .

When for some n we get Zn+1 = Zn, then we set s ∼ t iff (s, t) ∈ Zn.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 34 / 61



Minimization

Minimal dfa

Once we have compute the (maximal) equivalence relation based on bisimulation, we choose one state s for
each equivalence class:

[s] = {t | s ∼ t}

We use s0 for the equivalence class [s0].

Then, we define the minimal dfa Am = (Σ, Sm, s
0, ρm,Fm) as follows:

Sm is formed by the chosen states s (one for each equivalence class [s]);

ρm(s, a) = s′ if ρ(s, a) = s′′ and s′ ∈ [s′′] ∩ Sm;

Fm = {s | s ∈ F ∩ Sm}.

Notice that there is only one such minimal dfa modulo renaming of the states. This minimal dfa Am can
be considered as the canonical form of A, which is indeed unique (modulo renaming of states).
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Minimization

Computing minimization

Interestingly there is a svelte way of computing the (maximal) equivalence relation among states.

1 We build a matrix formed by the states of the original (complete) dfa A both in the columns and in
the rows.

2 Since the equivalence relation is symmetric and reflexive we can consider only the part of the matrix
that is below the diagonal.

3 Now we apply the fixpoint algorithm by marking all those pairs of states (elements in the matrix) for
which we have a conflict. Namely:

We mark all pairs such that one is final and the other is not.
Then we mark those pairs of states such that for some symbol in Σ we go to a pair of states that is already
marked.
We repeat the marking step until no more violation can be found.

4 The pairs of states that are not marked are equivalent.
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Minimization

Example (Example of minimization)

Consider the dfa A′

s0

s1 s2

s3

10c5c

5c

10c 5c,10c

t0

t1 t3

t4

10c5c

5c

10c 5c,10c

t2

5c,10c

gum gum

A'A

sk

gum

gum

gum

5c,10c

tk

gum

gum

5c,10c

gum

gum5c,10c, gum 5c,10c, gum

We get the conflicts matrix:

t0
t1 x
t2 x x
t3 x x
t4 x x x x
tk x x x x x

t0 t1 t2 t3 t4 tk

From such a conflict matrix we learn that t2 ∼ t3, so we
can merge the two states getting the dfa A of the figure.
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Trimming

Given a dfa A = (Σ, S , s0, ρ,F ), we describe some handy structural modifications of A that do not impact
the recognized language but structurally simplify the dfa.

Reachable dfa

We can remove from A all unreachable states as follows: We define the set SR ⊂ S of states that are
reachable from the initial state s0 by induction as the smallest SR set such that:

s0 ∈ SR ;

if s ∈ SR , then for every s′ such that s′ = ρ(s, a) for some a ∈ Σ, we have that s′ ∈ SR .

Then we define the reachable dfa AR corresponding to A as

AR = (Σ, SR , s
0, ρ|SR , F ∩ SR)

where ρ|SR is the restriction on SR × Σ of ρ.
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Trimming

Co-reachable dfa

Similarly we can remove from A all states that do not reach a final state. We define the set SF ⊆ S of
states that reach a state in F by induction as the smallest set such that:

F ⊆ SF ;

if s′ ∈ SF , then for every s such that ρ(s, a) = s′ for some a ∈ Σ, we have that s ∈ SF .

Then, assuming that s0 ∈ SF (if not the resulting dfa is empty), we define the co-reachable dfa AF

corresponding to A as
AF = (Σ, SF , s

0, ρ|SF , F )

where ρ|SF is the restriction on SF × Σ of ρ.
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Trimming

Trimmed dfa

We define the trimmed dfa ARF corresponding to A as the dfa

ARF = (Σ, SR ∩ SF , s
0, ρ|SR∩SF , F ∩ SR)

where ρ|SR∩SF is the restriction on (SR ∩ SF )× Σ of ρ. Notice that the trimmed dfa contains only those
states that are reachable from the initial state and that lead to a final state.

Theorem

Let A be a dfa and AR its corresponding reachable dfa, AF its corresponding co-reachable dfa, and ARF

its corresponding trimmed dfa. Then L(A) = L(AR) = L(AF ) = L(ARF ) and computing AR , AF , and ARF

requires linear time in the size of A.

Observe that the trimmed version of the minimal dfa corresponding to A (see above) is the most compact
dfa recognizing the language L(A).
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nfas: Nondeterministic Finite Automata

nfa

An nfa, nondeterministic finite automaton, A is a tuple A = (Σ, S ,S0, ρ,F ), where

Σ is a finite nonempty alphabet;

S is a finite nonempty set of states;

S0 is the nonempty set of initial states;

F is the set of accepting states;

ρ : S × Σ× S is a transition relation. Intuitively, (s, a, s′) ∈ ρ states that A can move from s into s′

when it reads the symbol a. It is allowed that (s, a, s′) ∈ ρ and (s, a, s′′) ∈ ρ with s′ 6= s′′.

It is also possible to define ρ as a function ρ : S × Σ→ 2S returning sets of states:

ρ(s, a) = {s′ | (s, a, s′) ∈ ρ}

Note that nfas are generally nondeterministic, since they have many initial states and the transition
relation may specify several possible transitions for each state and symbol. The automaton A is
deterministic if

∣∣S0
∣∣ = 1 and for all s, a, s′, s′′ we have that (s, a, s′) ∈ ρ and (s, a, s′′) ∈ ρ implies

s′ = s′′ (or, alternatively, |ρ(s, a)| = 1, for all s and a).
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nfas: Nondeterministic Finite Automata

Runs

A run r of A on a finite word w = a0 · · · an−1 ∈ Σ∗ is a sequences s0 · · · sn of n + 1 states in S such that
s0 ∈ S0, and (si , ai , si+1) ∈ ρ for 0 ≤ i ≤ n.

Note that a nondeterministic automaton can have many runs on a given input word. In contrast, a
deterministic automaton can have at most one run on a given input word.

The run r is accepting if sn ∈ F . The word w is accepted by A if there exists an accepting run of A on w .

Semantics

The semantics of an nfa A is the (possibly infinite) set L(A) of finite words accepted by A, i.e., the
language, accepted by A.

Notice that, as dfas, also nfas are semantically fully characterized by the language that they recognize,
while their structure, number of states, transitions defined for choices of actions at each state, etc. are
irrelevant with respect to semantics.
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Closure of NFAs under Intersection and Union

Nondeterministic automata are closed under:

Intersection (and)
Union (or)

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

complete
minimize

trim

nondet

det

not
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Closure under intersection (and)

Closure under intersection (and)

Let A1 = (Σ, S1,S
0
1 , ρ1,F1) and A2 = (Σ, S2, S

0
2 , ρ2,F2) be two nfas. Intuitively, we construct an nfa A∧

that runs simultaneously both A1 and A2 on the input word.
Let A∧ = (Σ, S, S0, ρ,F ) where:

S = S1 × S2

S0 = S0
1 × S0

2

F = F1 × F2

((s, t), a, (s′, t′)) ∈ ρ iff (s, a, s′) ∈ ρ1 and (t, a, t′) ∈ ρ2

It is easy to see that L(A∧) = L(A1) ∩ L(A2).

Theorem (NFA Closure Under Intersection [7])

Let A1 and A2 be two nfas. Then there is a nfa A such that L(A) = L(A1) ∩ L(A2). The size of A is
polynomial in the sizes of A1 and of A2.

As in the case of dfas, we call A∧ in the proof above the product of A1 and A2, denoted A1 × A2.
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Closure under union (or)

Closure under union (or)

Let A1 = (Σ, S1,S
0
1 , ρ1,F1) and A2 = (Σ, S2, S

0
2 , ρ2,F2) be two nfas. Without loss of generality, we

assume that S1 and S2 are disjoint. Intuitively, we construct the union nfa A∨ that nondeterministically
chooses A1 or A2 and runs it on the input word.
Let A∨ = (Σ, S, S0, ρ,F ) where:

S = S1 ∪ S2

S0 = S0
1 ∪ S0

2

F = F1 ∪ F2

ρ = ρ1 ∪ ρ2, that is (s, a, s′) ∈ ρ =

{
s ∈ S1 and (s, a, s′) ∈ ρ1, or
s ∈ S2 and (s, a, s′) ∈ ρ2

It is easy to see that L∨(A) = L(A1) ∪ L(A2).

Theorem (NFA Closure Under Union [7])

Let A1 and A2 be two nfas. Then there is an nfa A such that L(A) = L(A1) ∪ L(A2). The size of A is
polynomial in the sizes of A1 and of A2.

As in the case of dfas, we denote the union A∨ of of A1 and A2 as A1 ∪ A2.
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Closure of NFAs under Complementation and Deteminization

Both the union and the product constructions are effective and polynomial in the sizes of the constituent
automata. Let us consider now the issue of complementation.

We know that it is easy to complement deterministic automata; we just have to complement the
acceptance condition.

This does not work for nondeterministic automata, since a nondeterministic automaton can have many
runs on a given input word; it is not enough that some of these runs reject (i.e., not accept) the input
word, all runs should reject the input word. Thus, to complement a nondeterministic automaton we first
have to determinize it, and then complement to the resulting dfa.
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Determinization

Subset construction for deteminization

Let A = (Σ,S , S0, ρ,F ) be an nfa. Then we can define a dfa Ad such that L(Ad ) = L(A) as
Ad = (Σ, 2S , s0, ρd ,Fd ) where:

2S , i.e., the state set of Ad , consists of all sets of states S in A;

s0 = S0, i.e., the single initial state of Ad is the set S0 of initial states of A;

Fd = {Q | Q ∩ F 6= ∅}, i.e., the collection of sets of states that intersect F nontrivially;

ρd (Q, a) = {s′ | (s, a, s′) ∈ ρ for some s ∈ Q}.a

Intuitively, Ad collapses all possible runs of A on a given input word into one run over a larger state set.
This construction is called the subset construction.

aNote that ρd (Q, a) may be the empty set (of states of A), which is one of the states of the dfa Ad .

Theorem (NFA to DFA [7])

Let A be an nfa. Then there exists a dfa Ad such that L(Ad ) = L(A). The size of Ad can be exponential
in A.
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Nonemptiness and Nonuniversality

An automaton is “interesting” if it defines an “interesting” language, i.e., a language that is neither empty
nor contains all possible words.

Nonemptiness: an automaton A is nonempty if L(A) 6= ∅;
Nonuniversality:an automaton A is nonuniversal if L(A) 6= Σ∗.

It turns out that for nfas testing nonemptiness is easy, while testing nonuniversality is hard.

Theorem (NFA Nonemptiness [7, 4])

The nonemptiness problem for nfas is decidable in linear time, and is NLogSpace-complete.

How to check: check reachability of a final state.

Theorem (NFA Nonuniversality [7, 4])

The nonuniversality problem for nfas is decidable in exponential time, and is PSpace-complete.

How to check: Determinize, complement and check for nonemptiness (on-the-fly).
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AFW: Alternating Finite Automata on Words

Nondeterminism gives a computing device the power of existential choice.

Its dual gives a computing device the power of universal choice. (Compare this to the complexity
classes NP and coNP [3]).

It is therefore natural to consider computing devices that have the power of both existential choice
and universal choice. Such devices are called alternating.

(Alternation was studied in [2] in the context of Turing machines and in [1, 2] for finite automata.)

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

complete
minimize

trim

nondet

det

not
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AFW: Alternating Finite Automata on Words

Transitions as boolean functions

For a given set of propositions (standing for states) X , let B+(X ) be the set of positive Boolean
formulas over X (i.e., Boolean formulas built from elements in X using ∧ and ∨), where we also allow
the formulas true and false.

Let Y ⊆ X . We say that Y satisfies a formula θ ∈ B+(X ) if the truth assignment that assigns true to
the members of Y and assigns false to the members of X − Y satisfies θ.

For example, the sets {s1, s3} and {s1, s4} both satisfy the formula (s1 ∨ s2) ∧ (s3 ∨ s4), while the set
{s1, s2} does not satisfy this formula.
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AFW: Alternating Finite Automata on Words

nfa transitions

Consider an nfa A = (Σ, S, S0, ρ,F ). The transition function ρ maps a state s ∈ S and an input symbol
a ∈ Σ to a set of states. Each element in this set is a possible nondeterministic choice for the automaton’s
next state.

afw transitions

We can represent ρ by using B+(S); for example, ρ(s, a) = {s1, s2, s3} can be written as
ρ(s, a) = s1 ∨ s2 ∨ s3. In alternating automata, ρ(s, a) can be an arbitrary formula from B+(S). We can
have, for instance, a transition

ρ(s, a) = (s1 ∧ s2) ∨ (s3 ∧ s4)

meaning that the automaton accepts the word aw , where a is a symbol and w is a word, when it is in the
state s, if it accepts the word w from both s1 and s2 or from both s3 and s4. Thus, such a transition
combines the features of existential choice (the disjunction in the formula) and universal choice (the
conjunctions in the formula).
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AFW: Alternating Finite Automata on Words

AFW: Alternating Finite Automata on Words

An afw is a tuple A = (Σ, S , s0, ρ,F ), where:

Σ is a finite nonempty alphabet;

S is a finite nonempty set of states;

s0 ∈ S is the initial state (notice that, as in dfas, we have a unique initial state);

F ⊆ S is the set of accepting states;

ρ : S × Σ→ B+(S) is a transition function.
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AFW: Alternating Finite Automata on Words

Because of the universal choice in alternating transitions, a run of an alternating automaton is a tree rather
than a sequence.

Run of afws

A run of an afw A = (Σ, S, s0, ρ,F ) on a finite word w = a0a1 · · · an is a finite S-labeled tree r such that:

r(ε) = s0

for node x at depth (i.e., distance from the root) i < n, with r(x) = s and ρ(s, ai ) = θ we have:
x has k children x1, . . . , xk , for some k ≤ |S|,
{r(x1), . . . , r(xk )} satisfies θ.
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AFW: Alternating Finite Automata on Words

Example (Example of run)

For example, if ρ(s0, a) = (s1 ∨ s2) ∧ (s3 ∨ s4) then the nodes of the run tree at level 1 include the label s1

or the label s2 and also include the label s3 or the label s4.

Note that the depth of r (i.e., the maximal level of a node in r ) is at most n, but not all branches
need to reach such depth, since if ρ(r(x), ai ) = true, then x does not need to have any children.

On the other hand, for node at depth i < n, we cannot have ρ(r(x), ai ) = false, since false is not
satisfiable.

AFW acceptance condition

The run tree r is accepting if all nodes at depth n are labeled by states in F . Thus, a branch in an
accepting run has to hit the true transition or hit an accepting state after reading all the input word.
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afw and nfa

What is the relationship between alternating automata and nondeterministic automata?
It turns out that afw have the same expressive power as dfa and nfa
afw are exponentially more succinct then nfa, which in turn are exponentially more succinct then
dfa
In other words, any afw can be translated into a worst-case exponential nfa (in number of states) ,
and such nfa can be translated into a worst-case exponential dfa (i.e., the resulting dfa is double
exponential in the original afw)
Such worst-case exponential blow-ups are unavoidable, in general.
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Translating NFAs to AFWs

nfa to afw

Given an nfa A = (Σ, S ,S0, ρ,F ) we define the afw AA such that L(AA) = L(A) as follows
AA = (Σ,S ∪ {s0}, s0, ρA,F ) where s0 is a new state and ρA is defined as follows:

ρA(s, a) =
∨

(s,a,s′)∈ρ
s′, for all a ∈ Σ and s ∈ S

ρA(s0, a) =
∨

s∈S0,(s,a,s′)∈ρ

s′, for all a ∈ Σ

We take an empty disjunction in the definition of AA to be equivalent to false.

Essentially, the transitions of A are viewed as disjunctions in AA. A special treatment is needed for the
initial state, since we allow a set of initial states in nondeterministic automata, but only a single initial state
in alternating automata.

Theorem (NFA to AFW [1, 2, 6])

Let A be nfa. Then the afw AA defined as above is such that L(AA) = L(A).

Note that AA has essentially the same size as A; that is, the descriptions of AA and A have the same
length.
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Translating AFWs to NFAs.

afw to nfa

Given afw A = (Σ, S, s0, ρ,F ), we define the nfa AN such that L(AN) = L(A) as follows
AN = (Σ, SN , S

0
N , ρN ,FN) where:

SM = 2S

S0
N = {{s0}}

FN = 2F

(Q, a,Q′) ∈ ρN iff Q′ satisfies
∧
s∈Q

ρ(s, a)

Note that we take an empty conjunction in the definition of ρN to be equivalent to true; thus,
(∅, a, ∅) ∈ ρN .

Intuitively, AN guesses a run tree of A. At a given point of a run of AN , it keeps in its memory a whole
level of the run tree of A. As it reads the next input symbol, it guesses the next level of the run tree of A.

Theorem (AFW to NFA [1, 2, 6])

Let A be an afw. Then there the nfa AN defined above is such that L(AN) = L(A).

The translation from afws to nfas involves an exponential blow-up. This blow-up is unavoidable [1, 2, 6].
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Boolean Closure

One advantage of alternating automata is that it is very easy to take unions and intersection and complementation.

afw complementation

We first need to define the dual operation on formulas in B+(X ). Intuitively, the dual θ̄ of a formula θ is obtained from θ

by switching ∨ and ∧, and by switching true and false. For example, x ∨ (y ∧ x) = x ∧ (y ∨ x). (Note that we are

considering formulas in B+(X ), so we cannot simply apply negation to these formulas.) Formally, we define the dual
operation as follows:

x = x

true = false

false = true

α ∧ β = α ∨ β
α ∨ β = α ∧ β

Let A = (Σ, S, s0
, ρ, F ). Define Ā = (Σ, S, s0

, ρ̄, S − F ), where ρ̄(s, a) = ρ(s, a) for all s ∈ S and a ∈ Σ. That is, ρ̄ is
the dualized transition function. It can be shown that L(Ā) = Σ∗ − L(A).

Theorem (AFW Complementation [1, 2, 6])

Let A be afw. Then there exists an afw Ā such that L(Ā) = Σ∗ − L(A).
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Nonemptiness

To test for nonemptiness a afw:

Trasform it into a nfa (exponential)

Test for nonemptiness on the resulting nfa, i.e., check reachability of its final states (NLOGSPACE).

Since the transformation can be done on-the-fly, this procedure is PSPACE, and in fact optimal, since the
problem is PSPACE-hard.

Theorem (afw Nonemptiness and afw Nonuniversality [2])

The nonemptiness problem, as well as the nonuniversality problem, for afws is decidable in exponential
time, and is PSpace-complete.

How to check nonemptiness: transform into nfa and check nonemptiness

How to check nonuniversality: complement, transform into nfa and check nonemptiness
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