
Master in Artificial Intelligence and Robotics (AIRO)
Electives in AI

Reasoning Agents

Fabio Patrizi

Sapienza University of Rome, Italy
patrizi@diag.uniroma1.it

A.Y. 2021-2022

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 1 / 63

patrizi@diag.uniroma1.it

Linear Temporal Logics on Finite Traces:
ltlf and ldlf

∗

∗slides based on G. De Giacomo’s (www.diag.uniroma1.it/degiacomo)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 1 / 63

www.diag.uniroma1.it/degiacomo

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 2 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 3 / 63

Motivation: AI

Artificial Intelligence and in particular the Knowledge Representation and Planning community well aware
of temporal logics since a long time:
• Temporally extended goals [BacchusKabanza96]
• Temporal constraints on trajectories [GereviniHaslumLongSaettiDimopoulos09 - PDDL3.0 2009]
• Declarative control knowledge on trajectories [BaierMcIlraith06]
• Procedural control knowledge on trajectories [BaierFrizMcIlraith07]
• Temporal specification in planning domains [CalvaneseDeGiacomoVardi02]
• Planning via model checking

Branching time (CTL)[CimattiGiunchigliaGiunchigliaTraverso97]
Linear time (LTL) [DeGiacomoVardi99]

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 4 / 63

Motivation: AI

Temporal extended goals and constraints in AI
Foundations borrowed from temporal logics studied in CS, in particular:
Linear Temporal Logic (ltl) [Pnueli77].

However:
• Often, ltl is interpreted on finite trajectories/traces.
• Often, distinction between interpreting ltl on infinite or on finite traces is blurred.

• Temporally extended goals [BacchusKabanza96] - infinite/finite
• Temporal constraints on trajectories [GereviniHslumLongSaettiDimopoulos09 - PDDL3.0 2009] - finite
• Declarative control knowledge on trajectories [BaierMcIlraith06] - finite
• Procedural control knowledge on trajectories [BaierFrizMcIlraith07] - finite
• Temporal specification in planning domains [CalvaneseDeGiacomoVardi02] - infinite
• Planning via model checking - infinite

Branching time (CTL) [CimattiGiunchigliaGiunchigliaTraverso97]
Linear time (LTL) [DeGiacomoVardi99]

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 5 / 63

Motivation: BPM

Business Process Management community has proposed a declarative approach to business process
modeling based on ltl on finite traces: Declare

Basic idea: Drop explicit representation of processes, and ltl formulas specify the allowed finite traces.
[VanDerAalstPesic06] [PesicBovsnavkiDraganVanDerAalst10].178 M. Pesic

forbidden

optional

allowed

possible

(a) forbidden, optional and allowed
in business processes

(b) procedural workflow

control-flow

(c) declarative workflow

constraints

constraints constraints

constraints

Fig. 6.3 Declarative vs. procedural workflows

the constraint-based approach can provide for all types of flexibility listed in the
previous paragraph. A concrete implementation that enables creating decomposi-
tions of YAWL (e.g., procedural) and declarative models is presented in Chap. 12 of
this book. Figure 6.3 illustrates the difference between procedural and declarative
process models.

Starting point for the declarative constraint-based approach is the observation
that only three types of “execution alternatives” can exist in a process: (1) forbidden
alternatives should never occur in practice, (2) optional alternatives are allowed, but
should be avoided in most of the cases, and (3) allowed alternatives can be executed
without any concerns. This is illustrated in Fig. 6.3a. Procedural workflow models
(e.g., YAWL nets) explicitly specify the ordering of tasks, that is, the control-flow
of a workflow. In other words, during the execution of the model, it will be possi-
ble to execute a process only as explicitly specified in the control-flow, as shown in
Fig. 6.3b. Because of the high level of unpredictability of processes, many allowed
and optional executions often cannot be anticipated and explicitly included in the
control-flow. Therefore, in traditional systems it is not possible to execute a sub-
stantial part of all potentially allowed alternatives, that is, users are unnecessarily
limited in their work and, hence, these systems lack flexibility by design.

Our declarative constraint-based approach to workflow models makes it pos-
sible to execute both allowed and optional alternatives in processes. Instead of
explicitly specifying the procedure, constraint workflow models are declarative:
they specify constraints, that is, rules that should be followed during the execution,
as shown in Fig. 6.3c. Moreover, there are two types of constraints: (1) mandatory
constraints focus on the forbidden alternatives, and (2) optional constraints specify
the optional ones. Constraint-based models are declarative: anything that does not
violate mandatory constraints is possible during execution. The declarative nature of

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 6 / 63

Motivation: BPM – Declare patterns

Declare promotes the use of a controlled set of notable ltl formulas on (finite traces) for process
specification. [VanDerAalstPesic06]

Example (Main Declare Patterns)
name notation ltlf description

Existence
1..∗

a 3a a must be executed at least once

Resp. existence a •−−−− b 3a ⊃ 3b If a is executed, then b must be executed as well

Response a •−−−I b 2(a ⊃ 3b) Every time a is executed, b must be executed afterwards

Precedence a −−−I• b ¬bW a b can be executed only if a has been executed before

Alt. Response a •===I b 2(a ⊃ #(¬aU b)) Every a must be followed by b, without any other a inbetween

Chain Response a •=−=−=−I b 2(a ⊃ #b) If a is executed then b must be executed next

Chain Precedence a =−=−=−I• b 2(#b ⊃ a) Task b can be executed only immediately after a

Not Coexistence a •−−−•‖ b ¬(3a ∧3b) Only one among tasks a and b can be executed

Neg. Succession a •−−I•‖ b 2(a ⊃ ¬3b) Task a cannot be followed by b, and b cannot be preceded by a

Neg. Chain Succ. a •=−=−I•‖ b 2(a ⊃ #¬b) Tasks a and b cannot be executed next to each other

Assumes only one activity (proposition) true at each point in time.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 7 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 8 / 63

ltl over finite traces

ltlf : the language

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | #ϕ | ϕ1 U ϕ2

• A: atomic propositions
• ¬ϕ, ϕ1 ∧ ϕ2: boolean connectives
• #ϕ: “next step exists and at next step (of the trace) ϕ holds”
• ϕ1 U ϕ2:“eventually ϕ2 holds, and ϕ1 holds until ϕ2 does”
• ϕ .= ¬#¬ϕ: “if next step exists then at next step ϕ holds” (weak next)
• 3ϕ .= trueU ϕ: “ϕ will eventually hold”
• 2ϕ .= ¬3¬ϕ: “from current till last instant ϕ will always hold”
• Last .= ¬#true: denotes last instant of trace.

Main formal properties:
• Expressibility: fol over finite sequences or Star-free RE
• Reasoning: satisfiability, validity, entailment PSPACE-complete
• Model Checking: linear on TS, PSPACE-complete on formula

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 9 / 63

ltl over finite traces

Assuming finite or infinite traces has big impact.

Example
Consider the following formula:

2(A ⊃ 3B)

• On infinite traces:

... A B A B ...

• On finite traces:

A B A B

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 10 / 63

ltl over finite traces

Interpreting ltl on infinite or finite traces has big impact.

Example
Consider the following formula:

2(A ⊃ 3B) ∧ 2(B ⊃ 3A)

• On infinite traces:

... A B A B ...A B

• On finite traces:

 A A
B

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 11 / 63

ltl over finite traces
Interpreting ltl on infinite or finite traces has big impact.

Example
Consider again the formula: 2(A ⊃ 3B) ∧ 2(B ⊃ 3A)

• Buchi automaton accepting its infinite traces:

• NFA accepting its finite traces:

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 12 / 63

ltl over finite traces

Example (Unintuitive ltlf formulas - “Response”)

23A

for any point in the trace there is a point later where A holds (“Response”).
• On infinite traces:

... A A A ... A...

• On finite traces becomes equivalent to last point in the trace satisfies A, i.e. 3(Last ∧ A)

 A

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 13 / 63

ltl over finite traces

Example (Unintuitive ltlf formulas - “Persistence”)

32ϕ

there exists a point in the trace such that from then on ϕ holds (“Persistence”).
• On infinite traces:

... A A AA ...A AA...

• On finite traces becomes equivalent to last point in the trace satisfies ϕ, i.e. 3(Last ∧ ϕ)

 A

In other words, no direct nesting of eventually and always connectives is meaningful in ltlf , this contrast
what happens in ltl of infinite traces.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 14 / 63

ltl over finite traces

Example (Unintuitive ltlf formulas)
• 23ϕ: for any point in the trace there is a point later where ϕ holds (“Response”).
But this is equivalent to say that the last point in the trace satisfies ϕ, i.e.:

3(Last ∧ ϕ).

Notice that this meaning is completely different from the meaning on infinite traces and cannot be considered a “fairness” property as
“response” is in the infinite case.

• 32ϕ: there exists a point in the trace such that from then on ϕ holds (“Persistence”).
But again this is equivalent to say that the last point in the trace satisfies ϕ, i.e.:

3(Last ∧ ϕ).

In other words, no direct nesting of eventually and always connectives is meaningful in ltlf , this contrast
what happens in ltl of infinite traces.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 15 / 63

ltl over finite traces

Example (Capturing STRIPS Planning as ltlf SAT)
• For each operator/action A ∈ Act with precondition ϕ and effects

∧
F∈Add(A) F ∧

∧
F∈Del(A) ¬F

2(#A ⊃ ϕ): if next action A has occurred (denoted by a proposition A) then now precondition ϕ must be true;
2(#A ⊃ #(

∧
F∈Add(A)

F ∧
∧

F∈Del(A)
¬F)): when A occurs, its effects are true;

2(#A ⊃
∧

F 6∈Add(A)∪Del(A)
(F ≡ #F)): everything not in add or delete list, remains unchanged.

• At every step one and only one action is executed: 2((
∨

A∈Act A) ∧ (
∧

Ai ,Aj∈Act,Ai 6=Aj
Ai ⊃ ¬Aj)).

• Initial situation is described as the conjunction of propositions Init that are true/false at the beginning
of the trace:

∧
F∈Init F ∧

∧
F 6∈Init ¬F .

• Finally goal ϕg eventually holds: 3ϕg .

Thm: A plan exists iff the ltlf formula is SAT.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 16 / 63

ltl over finite traces

Example (Propositional SitCalc Basic Action Theories in ltlf)
• Successor state axiom F (do(A, s)) ≡ ϕ+(s) ∨ (F (s) ∧ ¬ϕ−(s)) can be fully captured:

2(#A ⊃ (#F ≡ ϕ+ ∨ F ∧ ¬ϕ−).

• Precondition axioms Poss(A, s) ≡ ϕA(s) can only be captured in the part saying “if A happens then
its precondition must be true”:

2(#A ⊃ ϕA).

The part saying “if the precondition ϕA holds then action A is possible” cannot be expressed in linear
time formalisms, since they talk about traces that actually happen not the ones that are possible.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 17 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 18 / 63

Expressive Power of ltlf

ltlf can express any First-Order formula fol over finite sequences.
x

fol over finite sequences (aka fo[<])
• First-order language formed by:

One binary predicate <: denoting total ordering between points in sequence;
Unary predicate symbols A: denoting points in sequence where a certain property A holds.

• Notice that with < one can define:
succ(x , y) .= (x < y) ∧ ¬∃z.x < z < y : denote the successor relation;
x = y .= ∀z.x < z ≡ y < z: denotes equality between points
0, the initial point, can be defined as that x such that ¬∃y .succ(y , x);
last, the last point, can be defined as that x such that ¬∃y .succ(x , y).

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 19 / 63

Expressive Power of ltlf

ltlf to fol
We can translate any ltlf formula to fol
• fol(A, x) = A(x)
• fol(¬ϕ, x) = ¬fol(ϕ, x)
• fol(ϕ ∧ ϕ′, x) = fol(ϕ, x) ∧ fol(ϕ′, x)
• fol(#ϕ, x) = ∃y .succ(x , y) ∧ fol(ϕ, y)
• fol(ϕU ϕ′, x) = ∃y .x ≤ y ≤ last ∧ fol(ϕ′, y) ∧ ∀z.x ≤ z < y → fol(ϕ, z)

Example
2(LowPwr ⊃ 3Recharged) is translated to

∀x .LowPwr(x) ⊃ ∃y .x ≤ y ≤ last ∧ Recharged(y) [Kamp68]

And viceversa!

Theorem ([GabbayPnueliShelahStavi80] – see also [Kamp68])
ltlf has the same expressive power of fol.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 20 / 63

MSO on Finite Sequences

ltlf can express any fol formula over finite sequences (and viceversa).

Can we do better?

Monadic Second-Order Logic (mso) over finite sequences
mso is a strict extension of the fol language introduced above, where
• we add the possibility of writing formulas of the form

∀X .ϕ
∃X .ϕ

where X is a monadic (i.e., unary) predicate variable and ϕ may include atoms whose predicate is such
variable.
• Binary predicates and constants remain exactly those introduced for fol.

Reasoning in mso over finite sequences is decidable, though nonelementary.

Theorem (Büchi-Elgot-Trakhtenbrot[Buchi60, Elgot61, Trakh62])
mso on finite sequences has exactly the expressive power of Regular Expressions.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 21 / 63

Regular Expressions as Temporal Properties

re: Regular Expressions as temporal logic on finite traces
re expressions are defined as follows:

% ::= φ | %1 + %2 | %1; %2 | %∗

where φ is a propositional formula.

Reasoning in re
• A trace t satisfies a re expression % iff t ∈ L(%).
• A re expression % is satisfiable iff L(%) 6= ∅
• A re expression % is valid iff L(%) = Σ∗.

L(%) is the language associated to %.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 22 / 63

Regular Expressions as Temporal Properties

Example
• “Safety” (2ϕ):

ϕ
∗

that means that always, until the end of the trace, ϕ holds.
• “Liveness” (3ϕ):

true∗;ϕ; true∗

that means that eventually before the end of the trace ϕ holds.
• “Conditional response” (2(ψ ⊃ 3ϕ)):

(true∗;ψ ∧ ¬ϕ; (true∗;ϕ; true∗))

that means whenever ψ holds then later ϕ holds.
• “Ordered occurrence”:

true∗;ϕ1; true∗;ϕ2; true∗

that says ϕ1 and ϕ2 will both happen in order.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 23 / 63

Regular Expressions as Temporal Properties

Example (Interesting re expressions in BPM [DiCiccioMecella12])

(Mostly re translation of Declare ltlf patterns)
F. Patrizi (Sapienza) Reasoning Agents 2021-2022 24 / 63

Star-free Regular Expressions

Theorem ([McNaughtonPapert1971])
fol on finite sequences has the same expressive power as star-free re.

Star-free regular expressions

% ::= φ | %1 + %2 | %1; %2 | %

where % stands for the complement of %, i.e., L(%) = (2P)∗/L(%).
Star-free regular expressions are strictly less espressive then re since they do not allow for unrestrictedly
expressing properties involving the Kleene star ∗, which appears implicitly only to generate the universal
language used in complementation.

Example (Some interesting star-free regular expressions)
• (2P)∗ = true∗ is in fact star-free, as it can be expressed as false
• true∗;φ; true∗ is star-free, as true∗ is star-free.
• φ∗ for a propositional φ is also star-free, as it is equivalent to true∗;¬φ; true∗.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 25 / 63

ltlf is Equivalent to Star-Free re

Corollary
ltlf has exactly the same expressive power as star-free re.

Example (ltlf constructs as star-free regular expressions)
• 3φ can be expressed as true∗;φ; true∗

• 2φ can be expressed as (true∗;¬φ; true∗)
• φ1 U φ2 can be expressed as (true∗;¬φ1; true∗);φ2; true∗

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 26 / 63

ltlf is less expressive than re!

Rationale
• ltlf has the same expressive power as fol, which is that of star-free re.
• re have the same expressive power as mso, which is strictly higher than ltlf .

Should we use re instead of ltlf ?
• re as expressive as MSO – good
• But re is not closed under negation and conjunction (they require to deeply transform the expression)!
– bad
• Moreover, negation requires an exponential blow up! – bad NO

Any better logic?
Is there a logic with the expressive power of mso and re, but which is as intuitive as ltlf , possibly
maintaining the same computational characteristics?

YES

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 27 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 28 / 63

ldlf : Linear Dynamic Logic on Finite Traces
• Directly inspired by the syntax of pdl [FisherLadner79], which is possibly the most well-known
(propositional) logic of programs in CS.

(But now interpreted over finite traces.)
• Enhances ltlf by including regular expressions in the temporal formulas.
In the infinite trace setting, such enhancement strongly advocated by industrial model checking
[ForSpec02,PSL06].

ldlf [DeGiacomoVardi13]
Syntax:

ϕ ::= tt | ff | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ | [ρ]ϕ ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

• tt and ff stand for true and false
• φ: propositional formula on current state/instant
• ¬ϕ, ϕ1 ∧ ϕ2: boolean connectives
• ρ is a regular expression on propositional formulas
• 〈ρ〉ϕ: exists an “execution” of re ρ that ends with ϕ holding
• [ρ]ϕ: all “executions” of re ρ (along the trace!) end with ϕ holding

In the infinite trace setting, such enhancement strongly advocated by industrial model checking (ForSpec, PSL).

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 29 / 63

ldlf : Linear Dynamic Logic on Finite Traces

ltlf can be translated into ldlf in linear time
• f (A) = 〈A〉tt
• f (¬ϕ) = ¬f (ϕ)
• f (ϕ1 ∧ ϕ2) = f (ϕ1) ∧ f (ϕ2)
• f (#ϕ) = 〈true〉f (ϕ)
• f (ϕ1 U ϕ2) = 〈(f (ϕ1)?; true)∗〉f (ϕ2)

re can be translated into ldlf in linear time

g(%) = 〈%〉end

where end stands for “the traces ends”, i.e., [true]ff.

Also, ldlf can itself be translated into re, though in exponential time.

Theorem ([DeGiacomoVardi13])
ldlf has the same expressive power as re and mso on finite traces.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 30 / 63

ldlf : Linear Dynamic Logic on Finite Traces

Example (AI procedural constraints – Golog)
Formalisms like Golog [Reiter01] can be used for expressing “procedural” temporal constraints/goals in AI
[BaierFritzMcIlraith07]

Golog – propositional/finite domain variant
δ ::= A | ϕ? | δ1 + δ2 | δ1; δ2 | δ∗ | πx .δ(x) | if φ then δ1else δ2 | while φ δ

• πx.δ(x) stands for Σo∈Obj δ(o)
• if φ then δ1else δ2 stands for (φ?; δ1) + (¬φ?; δ2)
• while φ do δ stands for (φ?; δ)∗;¬φ?

• 〈δ〉φ in ldlf captures the following SitCalc formula:

∃s′.Do(δ, s, s′) ∧ s ≤ s′ ≤ last ∧ φ(s′).
• [δ]φ in ldlf captures the following SitCalc formula:

∀s′.Do(δ, s, s′) ∧ s ≤ s′ ≤ last ⊃ φ(s′).
(φ(s) “uniform” in s.)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 31 / 63

ltlf /ldlf : Linear Temporal Logics on Finite Traces

Example
• “All coffee requests from person p will eventually be served”:

2(requestp ⊃ 3coffeep) [true∗](requestp ⊃ 〈true∗〉coffeep)

• “Every time the robot opens door d it closes it immediately after”:

2(openDoord ⊃ #closeDoord) [true∗]([openDoord]closeDoord)

• “Before entering restricted area a the robot must have permission for a”:

¬inAreaa U getPerma ∨ 2¬inAreaa 〈(¬inAreaa)∗〉getPerma ∨ [true∗]¬inAreaa

• “Each time the robot enters the restricted area a it must have a new permission for a”:

〈(¬inAreaa∗; getPerma;¬inAreaa∗; inAreaa; inArea∗a)∗;¬inAreaa∗〉end
• “At every point, if it is hot then, if the air-conditioning system is off, turn it on, else don’t turn it off ”:

[true∗]〈if (hot) then
if (¬airOn) then turnOnAir
else ¬turnOffAir〉true

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 32 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 33 / 63

ltlf and Automata

Key point
Both ltlf (and ldlf) formulas can be translated in linear time to Alternating Automata on Finite Words
(afw).

t |= ϕ iff t ∈ L(Aϕ)

where Aϕ is the afw ϕ is translated into.

We can compile reasoning into automata based procedures!

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 34 / 63

ltlf and Automata

Alternating Automata on Finite Words (afw)
A = (2P , Q, q0, δ, F)

• 2P alphabet
• Q is a finite nonempty set of states
• q0 is the initial state
• F is a set of accepting states

• δ is a transition function δ : Q × 2P → B+(Q), where B+(Q) is a set of positive boolean formulas whose atoms are states of Q.

afw run
Given an input word a0, a1, . . . an−1, an afw run of an afw is a tree (rather than a sequence) labelled by states of afw such that

• root is labelled by q0;
• if node x at level i is labelled by a state q and δ(q, ai) = Θ, then either Θ is true or some P ⊆ Q satisfies Θ and x has a child for each element in P.

A run is accepting if all leaves at depth n are labeled by states in F .

(We adopt notation of [Vardi96].)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 35 / 63

ltlf and Automata

To define the afw Aϕ associated with an ltlf formula ϕ (in NNF), we need first to introduce its
synthactic closure.

Syntactic Closure of an ltlf formula
The syntactic closure, also called Fisher-Ladner closure, CLϕ of an ltlf formula ϕ is a set of ldlf formulas inductively
defined as follows:

ϕ ∈ CLϕ
¬A ∈ CLϕ if A ∈ CLϕ
A ∈ CLϕ if ¬A ∈ CLϕ
ϕ1 ∧ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
ϕ1 ∨ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
#ϕ ∈ CLϕ implies ϕ ∈ CLϕ
3ϕ ∈ CLϕ implies ϕ,#3ϕ ∈ CLϕ
ϕ1 U ϕ2 ∈ CLϕ implies ϕ1, ϕ2,#(ϕ1 U ϕ2) ∈ CLϕ
 ϕ ∈ CLϕ implies ϕ ∈ CLϕ
2ϕ ∈ CLϕ implies ϕ, 2ϕ ∈ CLϕ
ϕ1Rϕ2 ∈ CLϕ implies ϕ1, ϕ2, (ϕ1Rϕ2) ∈ CLϕ

Observe that the cardinality of CLϕ is linear in the size of ϕ.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 36 / 63

ltlf and Automata

afw Aϕ associated with an ltlf formula ϕ (in NNF)
Aϕ = (2P , CLϕ, "ϕ", δ, {}) where

• 2P is the alphabet,
• CLϕ is the state set,
• ϕ is the initial state
• δ is the transition function, defined as:

δ("A", Π) = true if A ∈ Π
δ("A", Π) = false if A 6∈ Π
δ("¬A", Π) = false if A ∈ Π
δ("¬A", Π) = true if A 6∈ Π
δ("ϕ1 ∧ ϕ2", Π) = δ("ϕ1", Π) ∧ δ("ϕ2", Π)
δ("ϕ1 ∨ ϕ2", Π) = δ("ϕ1", Π) ∨ δ("ϕ2", Π)

δ("#ϕ", Π) =

{
"ϕ" if Last 6∈ Π
false if Last ∈ Π

δ("3ϕ", Π) = δ("ϕ", Π) ∨ δ("#3ϕ", Π)
δ("ϕ1 U ϕ2", Π) = δ("ϕ2", Π) ∨ (δ("ϕ1", Π) ∧ δ("#(ϕ1 U ϕ2)", Π))

δ(" ϕ", Π) =

{
"ϕ" if Last 6∈ Π
true if Last ∈ Π

δ("2ϕ", Π) = δ("ϕ", Π) ∧ δ(" 2ϕ", Π)
δ("ϕ1Rϕ2", Π) = δ("ϕ2", Π) ∧ (δ("ϕ1", Π) ∨ δ(" (ϕ1Rϕ2)", Π))

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 37 / 63

ltlf and Automata

ltlf (and ldlf) formulas can be directly translated in exponential time to nfas, using afw only implicitly.

nfa Aϕ associated with an ltlf formula ϕ (in NNF)

Auxiliary rules
δ("A", Π) = true if A ∈ Π
δ("A", Π) = false if A 6∈ Π
δ("¬A", Π) = false if A ∈ Π
δ("¬A", Π) = true if A 6∈ Π
δ("ϕ1 ∧ ϕ2", Π) = δ("ϕ1", Π) ∧ δ("ϕ2", Π)
δ("ϕ1 ∨ ϕ2", Π) = δ("ϕ1", Π) ∨ δ("ϕ2", Π)

δ("#ϕ", Π) =

{
"ϕ" if Last 6∈ Π
false if Last ∈ Π

δ("3ϕ", Π) = δ("ϕ", Π) ∨ δ("#3ϕ", Π)
δ("ϕ1 U ϕ2", Π) = δ("ϕ2", Π) ∨ (δ("ϕ1", Π) ∧ δ("#(ϕ1 U ϕ2)", Π))

δ(" ϕ", Π) =

{
"ϕ" if Last 6∈ Π
true if Last ∈ Π

δ("2ϕ", Π) = δ("ϕ", Π) ∧ δ(" 2ϕ", Π)
δ("ϕ1Rϕ2", Π) = δ("ϕ2", Π) ∧ (δ("ϕ1", Π) ∨ δ(" (ϕ1Rϕ2)", Π))

Observe these are the rules defining the transition function of the afw!

Algorithm
algorithm ltlf 2nfa
input ltlf formula ϕ
output nfa Aϕ = (2P ,S, {s0}, %, {sf })
s0 ← {"ϕ"} . single initial state
sf ← ∅ . single final state
S ← {s0, sf }, % ← ∅
while (S or % change) do

if(q ∈ S and q′ |=
∧

("ψ"∈q)
δ("ψ", Π))

S ← S ∪ {q′} . update set of states
% ← % ∪ {(q, Π, q′)} . update transition

relation

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 38 / 63

ltlf and Automata

Using function δ we can build the nfa Aϕ of an ltlf formula ϕ in a forward fashion. States of Aϕ are sets of atoms
(recall that each atom is quoted ϕ subformulas) to be interpreted as a conjunction; the empty conjunction ∅ stands for
true. In building the nfa we assume to have a special proposition Last ∈ P.

Removing the special proposition Last
If we want to remove such an assumption, we can easily transform the obtained nfa

Aϕ = (2P , S, {"ϕ"}, %, {∅}) into the new nfa A′ϕ = (2P
′
, S′, S0, %′, F ′)

where:
• P′ = P − {Last};
• S′0 = {s0};
• S′ = S ∪ {ended};
• F ′ = {∅, ended};

• (q,Π′, q′) ∈ %′ iff
{

(q,Π′, q′) ∈ % or
(q,Π′ ∪ {Last}, ∅) ∈ % and q′ = ended

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 39 / 63

ltlf and Automata: Examples

Example (nfa for 2A)
The nfa for 2A is as follows:
• Initial state {2A};
• Final state {∅};
• Transitions:

ρn({2A},A ∧ Last, q′) with q′ |= δ(2A,A ∧ Last) = δ(A,A ∧ Last) ∧ δ(2A,A ∧ Last) =
true ∧ δ(2A,A ∧ Last), i.e., q′ = {∅};

ρn({2A},A ∧ ¬Last, q′) with q′ |= δ(2A,A ∧ ¬Last) =
δ(A,A ∧ ¬Last) ∧ δ(2A,A ∧ ¬Last) = true ∧ δ(2A,A ∧ ¬Last), i.e., q′ = {2A};

ρn({2A},¬A, q′) with q′ |= δ(2A,¬A) = δ(A,¬A) ∧ δ(2A,¬A) = false ∧ δ(2A,¬A), i.e., there are
not such q′. (Notice same behavior with Last and ¬Last.)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 40 / 63

ltlf and Automata: Examples

Example (nfa for 3A)
The nfa for 3A is as follows:
• Initial state {3A};
• Final state {∅};
• Transitions:

ρn({3A},A ∧ Last, q′) with q′ |= δ(3A,A ∧ Last) = δ(A,A ∧ Last) ∨ δ(#3A,A ∧ Last) = true ∨ false,
i.e., q′ = {∅};

ρn({3A},A ∧ ¬Last, q′) with q′ |= δ(3A,A ∧ ¬Last) =
δ(A,A ∧ ¬Last) ∨ δ(#3A,A ∧ ¬Last) = true ∨ 3A, i.e., q′ = {∅};

ρn({3A},¬A ∧ Last, q′) with q′ |= δ(3A,¬A ∧ Last) =
δ(A,¬A ∧ Last) ∨ δ(#3A,¬A ∧ Last) = false ∨ false, i.e., no such q′ exists;

ρn({3A},¬A ∧ ¬Last, q′) with q′ |= δ(3A,¬A ∧ ¬Last) =
δ(A,¬A ∧ ¬Last) ∨ δ(#3A,¬A ∧ ¬Last) = false ∨ δ(#3A,¬A ∧ ¬Last), i.e., q′ = {3A}.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 41 / 63

ltlf and Automata: Examples

Example (nfa for 23a)
The nfa for 23a is as follows:
• Initial state {23a};
• Final state {∅};
• Other states {3a,23a};

• Transitions:
ρn({23a}, a ∧ Last, q′) with
q′ |= δ(23a, a ∧ Last) = δ(3a, a ∧ Last) ∧ δ(23a, a ∧ Last) = δ(a, a ∧ Last) ∨ δ(#3a, a ∧ Last) = δ(a, a ∧ Last), i.e., q′ = {∅};

ρn({23a}, a ∧ ¬Last, q′) with
q′ |= δ(23a, a ∧ ¬Last) = δ(3a, a ∧ ¬Last) ∧ δ(23a, a ∧ ¬Last) = (δ(a, a ∧ ¬Last) ∨ δ(#3a, a ∧ ¬Last)) ∧ 23a, i.e., q′ = {23a};

ρn({23a},¬a ∧ Last, q′) with
q′ |= δ(23a,¬a∧ Last) = δ(3a,¬a∧ Last)∧ δ(23a,¬a∧ Last) = δ(3a,¬a∧ Last) = δ(a,¬a∧ Last)∨ δ(#3a,¬a∧ Last) = false,
i.e., there exists no such q′ ;

ρn({23a},¬a ∧ ¬Last, q′) with
q′ |= δ(23a,¬a ∧ ¬Last) = δ(3a,¬a ∧ ¬Last) ∧ δ(23a,¬a ∧ ¬Last) = (δ(a,¬a ∧ ¬Last) ∨ 3a) ∧ 23a, i.e., q′ = {3a,23a};

ρn({3a,23a}, a ∧ Last) = δ(3a, a ∧ Last) ∧ δ(23a, a ∧ Last); this gives rise to: q′ = {∅};

ρn({3a,23a}, a ∧ ¬Last) = δ(3a, a ∧ ¬Last) ∧ δ(23a, a ∧ ¬Last) = δ(3a, a ∧ ¬Last) ∧ δ(3a, a ∧ ¬Last) ∧ δ(23a, a ∧ ¬Last); this
gives rise to:q′ = {23a};

ρn({3a,23a},¬a ∧ Last) = δ(3a,¬a ∧ Last) ∧ δ(23a, a ∧ Last) = false, i.e., there exists no such q′ ;

ρn({3a,23a},¬a∧¬Last) = δ(3a,¬a∧¬Last)∧δ(23a,¬a∧¬Last) = δ(3a,¬a∧¬Last)∧δ(3a,¬a∧¬Last)∧δ(23a,¬a∧¬Last);
this gives rise to: q′ = {3a,23a}.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 42 / 63

ldlf and Automata

To define the afw Aϕ associated with an ldlf formula ϕ (in NNF), we need first to introduce its
syntactic closure.

Syntactic Closure of an ldlf formula
The syntactic closure, also called Fisher-Ladner closure, CLϕ of an ldlf formula ϕ is a set of ldlf formulas inductively
defined as follows:

ϕ ∈ CLϕ
¬ψ ∈ CLϕ if ψ ∈ CLϕ and ψ not of the form ¬ψ′
ϕ1 ∧ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
〈ρ〉ϕ ∈ CLϕ implies ϕ ∈ CLϕ
〈φ〉ϕ ∈ CLϕ implies φ ∈ CLϕ (φ is propositional)
〈ψ?〉ϕ ∈ CLϕ implies ψ ∈ CLϕ
〈ρ1; ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉〈ρ2〉ϕ ∈ CLϕ
〈ρ1 + ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉ϕ, 〈ρ2〉ϕ ∈ CLϕ
〈ρ∗〉ϕ ∈ CLϕ implies 〈ρ〉〈ρ∗〉ϕ ∈ CLϕ

We then put all formulas in NNF. Observe that the cardinality of CLϕ is linear in the size of ϕ.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 43 / 63

ldlf and Automata

afw Aϕ associated with an ldlf formula ϕ (in NNF)
Aϕ = (2P , CLϕ, "ϕ", δ, {}) where, as before, 2P is the alphabet; CLϕ is the state set, ϕ is the initial state; and δ is the transition function, defined as:

δ(tt, Π) = true
δ(ff, Π) = false
δ(ϕ1 ∧ ϕ2, Π) = δ(ϕ1, Π) ∧ δ(ϕ2, Π)
δ(ϕ1 ∨ ϕ2, Π) = δ(ϕ1, Π) ∨ δ(ϕ2, Π)

δ(〈φ〉ϕ, Π) =
{

false if Π 6|= φ or Π = ε (trace ended)
e(ϕ) o/w (φ propositional)

δ(〈ψ?〉ϕ, Π) = δ(ψ, Π) ∧ δ(ϕ, Π)
δ(〈ρ1 + ρ2〉ϕ, Π) = δ(〈ρ1〉ϕ, Π) ∨ δ(〈ρ2〉ϕ, Π)
δ(〈ρ1 ; ρ2〉ϕ, Π) = δ(〈ρ1〉〈ρ2〉ϕ, Π)
δ(〈ρ∗〉ϕ, Π) = δ(ϕ, Π) ∨ δ(〈ρ〉f〈ρ∗〉ϕ, Π)

δ([φ]ϕ, Π) =
{

true if Π 6|= φ or Π = ε (trace ended)
e(ϕ) o/w (φ propositional)

δ([ψ?]ϕ, Π) = δ(nnf (¬ψ), Π) ∨ δ(ϕ, Π)
δ([ρ1 + ρ2]ϕ, Π) = δ([ρ1]ϕ, Π) ∧ δ([ρ2]ϕ, Π)
δ([ρ1 ; ρ2]ϕ, Π) = δ([ρ1][ρ2]ϕ, Π)

δ([ρ∗]ϕ, Π) = δ(ϕ, Π) ∧ δ([ρ]t[ρ∗]ϕ, Π)

δ(fψ, Π) = false
δ(tψ, Π) = true

(e(ϕ) replaces in ϕ all occurrences of tψ and fψ by e(ψ))

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 44 / 63

ltlf /ldlf and automata

Key point
ltlf /ldlf formulas can be translated into deterministic finite state automata (dfa).

t |= ϕ iff t ∈ L(Aϕ)

where Aϕ is the dfa ϕ is translated into.

Example (Automata for some ltlf /ldlf formulas)

3G
10

true

G

not G

2G
0

G

2(A ⊃ #3B)
10

not B

A

B

not A

¬B U A ∨ 2¬B “A before B”
10

true

A

not B
not A

〈(¬B∗;A;¬B∗;B;B)∗;¬B∗〉end
10

A
A

not B
not A

2 B

A

not B
not A

B
“each time new A before B” (A and B not true simultaneously)

(online software for LTLf2DFA: http: // ltlf2dfa. diag. uniroma1. it)
(online software for LDLf2DFA: https: // flloat. herokuapp. com)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 45 / 63

http://ltlf2dfa.diag.uniroma1.it
https://flloat.herokuapp.com

ltlf /ldlf and Automata
Summary of automata theory on finite sequences:

DFA

NFA

AFW

and, or, not

and, or, exists not

exists

and, or, not

exists

reverse

reverse

reverse

seq, star

seq, star

seq, star

nondet

det

not

• nfa’s and afw’s are mathematical devices.
• dfa’s, instead, can be implemented and run.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 46 / 63

ltlf /ldlf Reasoning

ltlf /ldlf Satisfiability (ϕ SAT)
1: Given ltlf /ldlf formula ϕ
2: Compute afw for ϕ (linear)
3: Compute corresponding nfa (exponential)
4: Check nfa for nonemptiness (NLOGSPACE)
5: Return result of check

ltlf /ldlf Validity (ϕ VAL)
1: Given ltlf /ldlf formula ϕ
2: Compute afw for ¬ϕ (linear)
3: Compute corresponding nfa (exponential)
4: Check nfa for nonemptiness (NLOGSPACE)
5: Return complemented result of check

ltlf /ldlf Logical Implication (Γ |= ϕ)
1: Given ltlf /ldlf formulas Γ and ϕ
2: Compute afw for Γ ∧ ¬ϕ (linear)
3: Compute corresponding nfa (exponential)
4: Check nfa for nonemptiness (NLOGSPACE)
5: Return complemented result of check

Thm: All the above reasoning tasks are PSPACE-complete. (Construction of NFA can be done while
checking nonemptiness.)

As for the infinite traces.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 47 / 63

ltlf /ldlf Verification

ltlf /ldlf Verification
Given a transition system T (i.e. a planning domain or a process/behavior), check that all executions
allowed by T satisfy an ltlf /ldlf specification ϕ.

Key Observation
T can be seen as an automaton by considering every state of T as accepting.

Hence, we have the following verification algorithm:
1: Given Transition System T and ltlf /ldlf formula ϕ
2: Compute afw for ¬ϕ (linear in ϕ)
3: Compute corresponding nfa A (exponential in ϕ)
4: Compute nfa AT for (T AND A) (polynomial)
4: Check resulting nfa AT for nonemptiness (NLOGSPACE)
5: Return complemented result of check

Thm: Verification is PSPACE-complete, and most importantly polynomial in the transition system.
As for the infinite traces.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 48 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 49 / 63

ltlf /ldlf Synthesis Under Full Controllability (BPM)
This is a first, very simple, form of program synthesis!

Synthesis under full controllability
Given declarative specification in terms of ltlf /ldlf constraints, extract process/program/domain
description/transition system that captures exactly specification.

(From Declare [PesicBovsnavkiDraganVanDerAalst10])
F. Patrizi (Sapienza) Reasoning Agents 2021-2022 50 / 63

ltlf /ldlf Synthesis Under Full Controllability (BPM)

Process corresponding to ltlf /ldlf specification always exists for finite traces!
1: Given ltlf /ldlf formula ϕ
2: Compute afw for ϕ (linear in ϕ)
3: Compute corresponding nfa (exponential in ϕ)
4: Compute corresponding dfa (exponential in nfa)
5: Trim dfa to avoid dead ends (polynomial)
6: Optional: Minimize dfa (polynomial)
7: Return resulting dfa

IMPORTANT
This is a BEAUTIFUL RESULT, which does NOT hold in the infinite trace settings!
[AbadiLamportWolper89]

Example (Over infinite traces the following ltl formulas do not correspond to any process)

32A
10

A

A

True

23A
10

A

A

not A

not A

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 51 / 63

Program Synthesis in Formal Methods

Program Synthesis
• Basic Idea: “Mechanical translation of human-understandable task specifications to a program that is
known to meet the specifications.” [Vardi - The Siren Song of Temporal Synthesis 2018]
• Classical vs. Reactive Synthesis:

Classical: Synthesize transformational programs [Green1969], [WaldingerLee1969], [Manna and Waldinger1980]
Reactive: Synthesize programs for interactive/reactive ongoing computations (protocols, operating systems,
controllers, robots, etc.) [Church1963], [HarelPnueli1985], [AbadiLamportWolper1989], [PnueliRosner1989]

Reactive Synthesis
• Reactive synthesis is by now equipped with a elegant and comprehensive theory
[EhlersLafortuneTripakisVardi2017], [Finkbeiner2018]

• Reactive synthesis is conceptually related to planning in fully observable nondeterministic domains
(FOND) [DeGiacomoVardi2015], [DeGiacomoVardi2016], [DeGiacomoRubin2018],
[CamachoTriantafillouMuiseBaierMcIlraith2017], [CamachoMuiseBaierMcIlraith2018],
[CamachoBienvenuMcIlraith2019]

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 52 / 63

Planning and Reactive Synthesis

Planning in Fully Observable
Nondeterministic domain
• fluents F (propositions) – controlled by the

environment
• actions A (actions) – controlled by the agent
• domain D – specification of the dynamics
• goal G – propositional formula on fluents describing

desired state of affairs to be reached

Planning = game between two players
• arena: the domain
• players: the agent and the environment
• game: agent tries to force eventually reaching G no

matter how other environment behave
• Plan = agent-strategy (2F)∗ → A to win the game

Algorithms
EXPTIME-complete.
But we have very good algorithms.

(The entire ICAPS community involved!)

Reactive Synthesis
• inputs X (propositions) – controlled by the

environment
• outputs Y (propositions) – controlled by the agent
• domain – not considered
• goal ϕ – arbitrary ltl (or other temporal logic

specification) on both X and Y

Synthesis = game between two players
• arena: unconstrained clique among all possible

assignments for X and Y
• players: the agent and the environment
• game: agent tries to force a play that satisfies ϕ no

matter how environment behaves
• Winning strategy = agent-strategy (2X)∗ → 2Y to

win the game.

Algorithms
2EXPTIME-complete.
But we only have non-scalable algorithms.

(In spite of 30 years of research!)
F. Patrizi (Sapienza) Reasoning Agents 2021-2022 53 / 63

Focus on finite traces!

Synthesis for general linear time logic (ltl) specifications does not scale.

Solving reactive synthesis

Algorithm for ltl synthesis
Given ltl formula ϕ
1: Compute corresponding Buchi Nondeterministic Aut. (NBW) (exponential)
2: Determinize NBW into Deterministic parity Aut. (DPW) (exp in states, poly in priorities)
3: Synthesize winning strategy for parity game (poly in states, exp in priorities)
Return strategy

Reactive synthesis is 2EXPTIME-complete, but more importantly the problems are:
• The determinization in Step 2: no scalable algorithm exists for it yet.

From 9-state NBW to 1,059,057-state DRW [AlthoffThomasWallmeier2005]
No symbolic algorithms

• Solving parity games requires computing nested fixpoints (possibly exp many)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 54 / 63

Reactive Synthesis from ltlf /ldlf Specifications

Reactive Synthesis for ltlf /ldlf Specifications
• Focus on finite traces [DeGiacomoVardi2013,DeGiacomoVardi2015,DeGiacomoVardi2016]
• Specify task with ltlf /ldlf formulas
• Rely on transformation of ltlf /ldlf formulas into automata on finite traces (much more
well-behaved wrt infinite traces)
• Same theory as reactive synthesis, but implementable!

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 55 / 63

Reactive Syntesis from ltlf /ldlf Specifications

Reactive synthesis
• Framework: We partition the set P of propositions into two disjoint sets:

X controlled by environment
Y controlled by agent

Can the agent set the values of Y in such a way that for all possible values of X a certain ltlf /ldlf
formula remains true?
• Solution: compute a function f : (2X)∗ → 2Y such that for all generated traces π with Xi arbitrary
and Yi = f (πX |i), we have that π satisfies the formula φ.

Algorithm for ldlf /ltlf synthesis
1: Given ltlf /ldlf formula ϕ
2: Compute afw for ϕ (linear)
2: Compute corresponding nfa (exponential)
3: Determinize nfa to dfa (exponential)
4: Synthesize winning strategy for dfa game (linear)
5: Return strategy

Thm: ltlf /ldlf synthesis is 2-EXPTIME-complete.
Same as for infinite traces

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 56 / 63

DFA Games

dfa games
A dfa game G = (2X×Y , S, s0, δ, F), is such that:
• X controlled by environment; Y controlled by agent;

• 2X×Y , alphabet of game;
• S, states of game;
• s0, initial state of game;

• δ : S × 2X×Y → S, transition function of the game: given current state s and a choice of propositions X and Y , respectively for enviroment and agent,
δ(s, (X, Y)) = s′ is resulting state of game;

• F , final states of game, where game can be considered terminated.

Winning condition for dfa games
Let

PreC(E) = {s ∈ S | ∃Y ∈ 2Y .∀X ∈ 2X .δ(s, (X, Y)) ∈ E}

Compute the set Win(G) of winning states of a DFA game G, i.e., states from which the agent can win the DFA game G, by least-fixpoint:
• Win0(G) = F (the final states of G)
• Wini+1(G) = Wini (G) ∪ PreC(Wini (G))

• Win(G) =
⋃

i
Wini (G)

From states in Win(G) we can easily extract winning strategies.

Computing Win(G) is linear in the number of states in G.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 57 / 63

Computing Strategies

To actually compute a strategy, we define a strategy generator based on the winning sets Wini (G). This is a
nondeterministic transducer, where nondeterminism is of the kind don’t-care: all nondeterministic choices are equally good.

Strategy generator
The strategy generator is a transducer TG = (2X×Y , S, s0, %, ω) where:
• 2X×Y is the alphabet of the trasducer;
• S are the states of the trasducer;
• s0 is the initial state;
• % : S × 2X → 2S is the transition function such that

%(s,X) = {s′ | s′ = δ(s, (X ,Y)) and Y ∈ ω(s)};

• ω : S → 2Y is the output function such that

ω(s) = {Y | if s ∈ Wini+1(G)−Wini (G) then ∀X .δ(s, (X ,Y)) ∈ Wini (G)}.

The transducer TG generates strategies in the following sense: for every way of further restricting ω(s) to return only one
of its values (chosen arbitrarily), we get a strategy.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 58 / 63

Example of DFA Game

Example (Toss a coin)
Consider the following (very simple) dfa game. Where the agent can grab a coin, toss it and turn it and the environment
responds to grab with the deterministic effect holding, to toss by tail or head (devilish nondeterminism), and to turn by
(deterministically) changing the coin side. The goal of the game is to choose appropriately grab, toss, and turn to get
head in the hand.

s1 s2

s3

s4

grab/holding

toss/tail

toss/head

turn/head
turn/tail

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 59 / 63

Example of DFA Game

Example (Toss a coin)

Compute the winning set
• Win0 = {s4} (the final states of the game)

• Win1 = Win0 ∪ {s ∈ S | ∃Y ∈ 2Y .∀X ∈ 2X .δ(s, (X, Y)) ∈ Win0} = {s4} ∪ {s3}

• Win2 = Win1 ∪ {s ∈ S | ∃Y ∈ 2Y .∀X ∈ 2X .δ(s, (X, Y)) ∈ Win1} = {s3, s4} ∪ {s2}

• Win3 = Win3 ∪ {s ∈ S | ∃Y ∈ 2Y .∀X ∈ 2X .δ(s, (X, Y)) ∈ Win2} = {s2, s3, s4} ∪ {s1}

So the agent win from all states!

Compute the strategy generator
In fact it is necessary to compute only the output function ω (the rest of the trasducer is determined by such an ω):

ω(s) = {Y | if s ∈ Wini+1(G) − Wini (G) then ∀X.δ(s, (X, Y)) ∈ Wini (G)}.

In our case:
ω(s1) = {grab}
ω(s2) = {toss}
ω(s3) = {turn}
ω(s4) = {} it is the goal state!

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 60 / 63

Outline

1 Motivation

2 ltlf : ltl on Finite Traces

3 ltlf : Expressive Power

4 ldlf : Linear Dynamic Logic on Finite Traces

5 ltlf /ldlf Reasoning and Verification

6 ltlf /ldlf Program Synthesis

7 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 61 / 63

Summary

• We have looked at impact of expressing temporal properties/constraints/goals on traces that are finite as typical in
AI Planning and BPM modeling.

• By the way, this assumption has been considered a sort of accident in much of the AI and BPM literatures, and
standard temporal logics (on infinite traces) have been hacked to fit this assumption, with some success, but only
lately clean solutions have been devised.

• We have surveyed results on expressing temporal constraints/goals on finite traces, by reconstructing and integrating
results coming from some classical papers.

• We have seen that standard ltlf on finite traces is less expressive than expected, and that we can extend its
expressiveness at no cost.

• We have presented an example of logic that has the same naturalness of ltlf but the“right” expressive power: ldlf
(a nice combination of ltlf and re).

• We have looked at three basic tasks:
Satisfiability (Validity, Logical Implication)
Verification
Synthesis

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 62 / 63

What to bring home

• Interpreting temporal constraints/goals on finite traces is different than interpreting them on infinite traces (and
much more well-behaved)

• When expressing temporal constraints and temporally extend goals we can add to usual ltlf more powerful
constructs a la ldlf at no cost (possibly for future versions of PDDL).

• There are very general and effective techniques for reasoning, verification and synthesis in this setting – it’s not just
theory.

• In perspective, the Planning community may come up with a new generation of performing algorithms to deal with
these basic tasks (after all, these are all compilable to reachability in large search spaces).

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 63 / 63

	Motivation
	ltlf: ltl on Finite Traces
	ltlf: Expressive Power
	ldlf: Linear Dynamic Logic on Finite Traces
	ltlf/ldlf Reasoning and Verification
	ltlf/ldlf Program Synthesis
	Conclusion

