
Master in Artificial Intelligence and Robotics (AIRO)
Electives in AI

Reasoning Agents

Fabio Patrizi

Sapienza University of Rome, Italy
patrizi@diag.uniroma1.it

A.Y. 2021-2022

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 1 / 34

patrizi@diag.uniroma1.it

Planning for ltlf and ldlf Goals∗

∗slides based on G. De Giacomo’s (www.diag.uniroma1.it/degiacomo)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 1 / 34

www.diag.uniroma1.it/degiacomo

Outline

1 ltlf /ldlf : ltl/ldl on finite traces

2 ltlf /ldlf and automata

3 Planning for ltlf /ldlf goals: deterministic domains

4 fondsp for ltlf /ldlf goals: nondeteministic domains

5 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 2 / 34

Outline

1 ltlf /ldlf : ltl/ldl on finite traces

2 ltlf /ldlf and automata

3 Planning for ltlf /ldlf goals: deterministic domains

4 fondsp for ltlf /ldlf goals: nondeteministic domains

5 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 3 / 34

ltlf : ltl over finite traces

ltlf : the language

ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | #ϕ | ϕ1 U ϕ2

• A: atomic propositions
• ¬ϕ, ϕ1 ∧ ϕ2: boolean connectives
• #ϕ: “next step exists and at next step (of the trace) ϕ holds”
• ϕ1 U ϕ2:“eventually ϕ2 holds, and ϕ1 holds until ϕ2 does”
• ϕ .= ¬#¬ϕ: “if next step exists then at next step ϕ holds” (weak next)
• 3ϕ .= trueU ϕ: “ϕ will eventually hold”
• 2ϕ .= ¬3¬ϕ: “from current till last instant ϕ will always hold”
• Last .= ¬#true: denotes last instant of trace.

Main formal properties:
• Expressibility: fol over finite sequences or Star-free RE
• Reasoning: satisfiability, validity, entailment PSPACE-complete
• Model Checking: linear on TS, PSPACE-complete on formula

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 4 / 34

ltlf : ltl over finite traces
Some interesting ltlf formulas:

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 5 / 34

ldlf : ldl over finite traces

ldlf : the language

ϕ ::= tt | ff | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ | [ρ]ϕ ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

• tt and ff stand for true and false
• φ: propositional formula on current state/instant
• ¬ϕ, ϕ1 ∧ ϕ2: boolean connectives
• ρ is a regular expression on propositional formulas
• 〈ρ〉ϕ: exists an “execution” of re ρ that ends with ϕ holding
• [ρ]ϕ: all “executions” of re ρ (along the trace!) end with ϕ holding

In the infinite trace setting, such enhancement strongly advocated by industrial model checking (ForSpec, PSL).

Main formal properties:
• Expressibility: mso over finite sequences: adds the power of recursion (as RE)
• Reasoning: satisfiability, validity, entailment PSPACE-complete
• Model Checking: linear on TS, PSPACE-complete on formula

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 6 / 34

ldlf : Linear Dynamic Logic on finite traces

Example
• All coffee requests from person p will eventually be served:

[true∗](requestp ⊃ 〈true∗〉coffeep)

• Every time the robot opens door d it closes it immediately after:

[true∗]([openDoord]closeDoord)

• Before entering restricted area a the robot must have permission for a:

〈(¬inAreaa∗; getPermissiona;¬inAreaa∗; inAreaa)∗;¬inAreaa∗〉end

Note that the first two properties (not the third one) can be expressed also in ltlf :

2(requestp ⊃ 3coffeep) 2(openDoord ⊃ #closeDoord)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 7 / 34

ldlf : Linear Dynamic Logic on finite traces
ldlf , not ltlf , is able to easily express procedural constraints [BaierFritzMcIlraith07].

Let’s introduce a sort of propositional variant of Golog
δ ::= A | ϕ? | δ1 + δ2 | δ1; δ2 | δ∗ | if φ then δ1 else δ2 | while φ do δ

where if and while can be seen as abbreviations for ldlf path expression, namely:

if φ then δ1else δ2
.= (φ?; δ1) + (¬φ?; δ2) while φ do δ .= (φ?; δ)∗;¬φ?

Example (ldlf procedural constraints)
• “At every point, if it is hot then, if the air-conditioning system is off, turn it on, else don’t turn it off”:

[true∗]〈if (hot) then
if (¬airOn) then turnOnAir
else ¬turnOffAir〉true

• “alternate till the end the following two instractions: (1) while is hot if the air-conditioning system is off turn it on,
else don’t turn it off; (2) do something for one step”

〈(while (hot) do
if (¬airOn) then turnOnAir
else ¬turnOffAir;

true)∗〉end

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 8 / 34

ldlf : Linear Dynamic Logic on finite traces

Example (ldlf captures finite domain variant of Golog in SitCalc)

Golog – finite domain variant
δ ::= A | ϕ? | δ1 + δ2 | δ1; δ2 | δ∗ | πx .δ(x) | if φ then δ1else δ2 | while φdo δ

• πx.δ(x) stands for Σo∈Obj δ(o)
• if φ then δ1else δ2 stands for (φ?; δ1) + (¬φ?; δ2)
• while φ do δ stands for (φ?; δ)∗¬φ?

• 〈δ〉φ in ldlf captures SitCalc formula ∃s′.Do(δ, s, s′) ∧ s ≤ s′ ≤ last ∧ φ(s′).
• [δ]φ in ldlf captures SitCalc formula ∀s′.Do(δ, s, s′) ∧ s ≤ s′ ≤ last ⊃ φ(s′).

(φ(s) “uniform” in s.)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 9 / 34

Outline

1 ltlf /ldlf : ltl/ldl on finite traces

2 ltlf /ldlf and automata

3 Planning for ltlf /ldlf goals: deterministic domains

4 fondsp for ltlf /ldlf goals: nondeteministic domains

5 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 10 / 34

ltlf /ldl and automata

Key point
ltlf /ldlf formulas can be translated into nondeterministic finite state automata (nfa).

t |= ϕ iff t ∈ L(Aϕ)

where Aϕ is the nfa ϕ is translated into.

We can compile reasoning into automata based procedures!

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 11 / 34

ltlf /ldlf and automata

Both ltlf and ldlf formulas can be translated in exponential time to nondetermiistic automata on finite
words (nfa).

nfa Aϕ associated with an ltlf formula ϕ (in NNF)

Auxiliary rules
δ(A, Π) = true if A ∈ Π
δ(A, Π) = false if A 6∈ Π
δ(¬A, Π) = false if A ∈ Π
δ(¬A, Π) = true if A 6∈ Π
δ(ϕ1 ∧ ϕ2, Π) = δ(ϕ1, Π) ∧ δ(ϕ2, Π)
δ(ϕ1 ∨ ϕ2, Π) = δ(ϕ1, Π) ∨ δ(ϕ2, Π)

δ(#ϕ, Π) =

{
ϕ if Last 6∈ Π
false if Last ∈ Π

δ(3ϕ, Π) = δ(ϕ, Π) ∨ δ(#3ϕ, Π)
δ(ϕ1 U ϕ2, Π) = δ(ϕ2, Π) ∨ (δ(ϕ1, Π) ∧ δ(#(ϕ1 U ϕ2), Π))

δ(ϕ, Π) =

{
ϕ if Last 6∈ Π
true if Last ∈ Π

δ(2ϕ, Π) = δ(ϕ, Π) ∧ δ(2ϕ, Π)
δ(ϕ1Rϕ2, Π) = δ(ϕ2, Π) ∧ (δ(ϕ1, Π) ∨ δ((ϕ1Rϕ2), Π))

Observe these are the rules defining the transition function of the afw!

Algorithm
algorithm ltlf 2nfa
input ltlf formula ϕ
output nfa Aϕ = (2P ,S, {s0}, %, {sf })
s0 ← {ϕ} . single initial state
sf ← ∅ . single final state
S ← {s0, sf }, % ← ∅
while (S or % change) do

if(q ∈ S and q′ |=
∧

(ψ∈q)
δ(ψ, Π))

S ← S ∪ {q′} . update set of states
% ← % ∪ {(q, Π, q′)} . update transition

relation

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 12 / 34

ltlf /ldlf and automata

nfa Aϕ associated with an ldlf formula ϕ (in NNF)

Auxiliary rules
δ(tt, Π) = true
δ(ff, Π) = false
δ(ϕ1 ∧ ϕ2, Π) = δ(ϕ1, Π) ∧ δ(ϕ2, Π)
δ(ϕ1 ∨ ϕ2, Π) = δ(ϕ1, Π) ∨ δ(ϕ2, Π)

δ(〈φ〉ϕ, Π) =
{

false if Π 6|= φ or Π = ε (trace ended)
e(ϕ) o/w (φ propositional)

δ(〈ψ?〉ϕ, Π) = δ(ψ, Π) ∧ δ(ϕ, Π)
δ(〈ρ1 + ρ2〉ϕ, Π) = δ(〈ρ1〉ϕ, Π) ∨ δ(〈ρ2〉ϕ, Π)
δ(〈ρ1; ρ2〉ϕ, Π) = δ(〈ρ1〉〈ρ2〉ϕ, Π)
δ(〈ρ∗〉ϕ, Π) = δ(ϕ, Π) ∨ δ(〈ρ〉f〈ρ∗〉ϕ, Π)

δ([φ]ϕ, Π) =
{

true if Π 6|= φ or Π = ε (trace ended)
e(ϕ) o/w (φ propositional)

δ([ψ?]ϕ, Π) = δ(nnf (¬ψ), Π) ∨ δ(ϕ, Π)
δ([ρ1 + ρ2]ϕ, Π) = δ([ρ1]ϕ, Π) ∧ δ([ρ2]ϕ, Π)
δ([ρ1; ρ2]ϕ, Π) = δ([ρ1][ρ2]ϕ, Π)

δ([ρ∗]ϕ, Π) = δ(ϕ, Π) ∧ δ([ρ]t[ρ∗]ϕ, Π)

δ(fψ, Π) = false
δ(tψ, Π) = true

(e(ϕ) replaces in ϕ all occurrences of tψ and fψ by e(ψ))

Algorithm
algorithm ldlf 2nfa
input ldlf formula ϕ
output nfa Aϕ = (2P ,S, {s0}, %, {sf })
s0 ← {ϕ} . single initial state
sf ← ∅ . single final state
S ← {s0, sf }, % ← ∅
while (S or % change) do

if(q ∈ S and q′ |=
∧

(ψ∈q)
δ(ψ, Π))

S ← S ∪ {q′} . update set of states
% ← % ∪ {(q, Π, q′)} . update transition relation

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 13 / 34

ltlf /ldlf reasoning

ltlf /ldlf satisfiability (ϕ SAT)
1: Given ltlf /ldlf formula ϕ
2: Compute nfa for ϕ (exponential)
3: Check nfa for nonemptiness (NLOGSPACE)
4: Return result of check

ltlf /ldlf validity (ϕ VAL)
1: Given ltlf /ldlf formula ϕ
2: Compute nfa for ¬ϕ (exponential)
3: Check nfa for nonemptiness (NLOGSPACE)
4: Return complemented result of check

ltlf /ldlf logical implication (Γ |= ϕ)
1: Given ltlf /ldlf formulas Γ and ϕ
2: Compute nfa for Γ ∧ ¬ϕ (exponential)
3: Check nfa for nonemptiness (NLOGSPACE)
4: Return complemented result of check

Thm:[IJCAI13] All above reasoning tasks are PSPACE-complete. (As for infinite traces.)
(Construction of NFA can be done while checking nonemptiness.)

Relationship to Classical Planning
Let Ψdomain describe action domain (ltlf formula), φinit initial state (prop. formula), and G goal (prop. formula). Classical
planning amounts to ltlf satisfiability of:

φinit ∧ Ψdomain ∧ 3G Complexity: PSPACE-complete.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 14 / 34

Automata for some ltlf /ldlf formulas

Example (Automata for some ltlf /ldlf formulas)

3G
10

true

G

not G

2G
0

G

2(A ⊃ #3B)
10

not B

A

B

not A

¬B U A ∨ 2¬B “A before B”
10

true

A

not B
not A

〈(¬B∗;A;¬B∗;B;B)∗;¬B∗〉end
10

A
A

not B
not A

2 B

A

not B
not A

B
“each time new A before B” (A and B not true simultaneously)

(online software for LTLf2DFA: http: // ltlf2dfa. diag. uniroma1. it)
(online software for LDLf2DFA: https: // flloat. herokuapp. com)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 15 / 34

http://ltlf2dfa.diag.uniroma1.it
https://flloat.herokuapp.com

Outline

1 ltlf /ldlf : ltl/ldl on finite traces

2 ltlf /ldlf and automata

3 Planning for ltlf /ldlf goals: deterministic domains

4 fondsp for ltlf /ldlf goals: nondeteministic domains

5 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 16 / 34

Planning in deterministic domain

Deterministic domain (including initial state)
D = (2F ,A, s0, δ, α) where:
• F fluents (atomic propositions)
• A actions (atomic symbols)
• 2F set of states
• s0 initial state (initial assignment to fluents)
• α(s) ⊆ A represents action preconditions
• δ(s, a) = s′ with a ∈ α(s) represents action effects (including frame).

Traces
A trace for D is a finite sequence:

s0, a1, s1, · · · , an, sn
where s0 is the initial state, and ai ∈ α(si) and si+1 = δ(si , ai+1) for each i .

Goals, planning, and plans
Goal = propositional formula G on fluents
Planning = find a trace s0, a1, s1, · · · , an, sn such that sn |= G. (PSPACE-complete)
Plan = project traces on actions, i.e., return a1, · · · , an.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 17 / 34

Deterministic planning domains as automata

Let’s transform the planning domain D = (2F ,A, s0, δ, α) into a dfa recognizing all its traces.

dfa AD for D
AD = (2F∪A, (2F ∪ {sinit}), sinit , %, F) where:
• 2F∪A alphabet (actions A include dummy start action)
• 2F ∪ {sinit} set of states
• sinit dummy initial state
• F = 2F (all states of the domain are final)
• ρ(s, [a, s′]) = s′ with a ∈ α(s), and δ(s, a) = s′

ρ(sinit , [start, s0]) = s0
(notation: [a, s′] stands for {a} ∪ s′)

Traces
Each trace s0, a1, s1, · · · , an, sn of the domain D becomes a finite sequence:

[start, s0], [a1, s1], · · · , [an, sn]
recognized by the dfa AD .

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 18 / 34

Deterministic planning domains as automata

Example (Simplified Yale shooting domain)
• Domain D:

not
alivealive shoot

wait wait/shoot

• DFA AD :

alive not
aliveshoot, not alive

wait, alive wait/shoot,
not alive

init
start,alive

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 19 / 34

Deterministic planning domains as automata

Planning in deterministic domains
Planning = find a trace of dfa AD for deterministic domain D such that is also a trace for the dfa for 3G where G is the
goal. That is:

CHECK for nonemptiness AD ∩ A3G : extract plan from witness.

(Computable on-the-fly, PSPACE in D, constant in G. i.e., optimal)

Example (Simplified Yale shooting domain)
AD A3¬alive

alive not
aliveshoot, not alive

wait, alive wait/shoot,
not alive

init
start,alive

10

true

not alive

alive

AD ∩ A3G :

not
alive

1
alive

0 shoot, not alive

wait, alive wait/shoot,
not alive

init
0 start,alive

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 20 / 34

Generalization: planning for ltlf /ldlf goals in deterministic domains

Planning in deterministic domains for ltlf /ldlf goals
Planning = find a trace of dfa AD for deterministic domain D such that is also a accepted by nfa Aϕ for the ltlf /ldlf
formula ϕ. That is:

CHECK for nonemptiness AD ∩ Aϕ: extract plan from witness.

(Computable on-the-fly, PSPACE in D, PSPACE also in ϕ i.e., optimal)
(We can use nfa directly since we are checking for existence of a trace satisfying ϕ)

Example (Simplified Yale shooting domain)
AD A32¬alive

alive not
aliveshoot, not alive

wait, alive wait/shoot,
not alive

init
start,alive

10

not alive

not alive

true

AD ∩ A32¬alive :

not
alive

1
alive

0 shoot, not alive

wait, alive wait/shoot,
not alive

init
0 start,alive

not
alive

0

shoot, not alive

wait/shoot,
not alive

wait/shoot,
not alive

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 21 / 34

Generalization: planning for ltlf /ldlf goals in deterministic domains

Planning for ltlf /ldlf goals

Algorithm: Planning for ldlf /ltlf goals
1: Given ltlf /ldlf domain D and goal ϕ
2: Compute corresponding nfa (exponential)
3: Compute intersection with dfa of D (polynomial)
5: Check nonemptiness of resulting nfa (NLOGSPACE)
6: Return plan

Theorem
Planning for ltlf /ldlf goals is:
• PSPACE-complete in the domain;
• PSPACE-complete in the goal.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 22 / 34

Outline

1 ltlf /ldlf : ltl/ldl on finite traces

2 ltlf /ldlf and automata

3 Planning for ltlf /ldlf goals: deterministic domains

4 fondsp for ltlf /ldlf goals: nondeteministic domains

5 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 23 / 34

fondsp: strong planning in nondeterministic domains

Nondeterministic domain (including initial state)
D = (2F ,A, s0, δ, α) where:
• F fluents (atomic propositions)
• A actions (atomic symbols)
• 2F set of states
• s0 initial state (initial assignment to fluents)
• α(s) ⊆ A represents action preconditions
• δ(s, a, s′) with a ∈ α(s) represents action effects (including frame).

Who controls what?
Fluents controlled by environment
Actions controlled by agent Observe: δ(s, a, s ′)

Goals, planning, and plans
Goal = propositional formula G on fluents
Planning = game between two players:

agent tries to force eventually reaching G no matter how other environment behave.

Plan = strategy to win the game. (fondsp is EXPTIME-complete)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 24 / 34

Nondeterministic domains as automata

Let’s transform the nondeterministic domain D = (2F ,A, s0, δ, α) into an automaton recognizing all its traces.

Automaton AD for D is a dfa!!!
AD = (2F∪A, (2F ∪ {sinit}), sinit , %, F) where:
• 2F∪A alphabet (actions A include dummy start action)
• 2F ∪ {sinit} set of states
• sinit dummy initial state
• F = 2F (all states of the domain are final)
• ρ(s, [a, s′]) = s′ with a ∈ α(s), and δ(s, a, s′) ρ(sinit , [start, s0]) = s0

(notation: [a, s′] stands for {a} ∪ s′)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 25 / 34

Nondeterministic domains as automata

Example (Simplified Yale shooting domain variant)
• Domain D:

not a
wa,w

shoot

wait wait/shoot

a,
not w

shoot
shoot

• DFA AD :

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
start, a, w

a
not w

shoot, a, not w shoot, not a, w

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 26 / 34

Nondeterministic domains as automata

fondsp: strong planning in nondeterministic domains
• Set the arena formed by all traces that satisfy both the dfa AD for D and the dfa for 3G where G is the goal.
• Compute a winning strategy. (EXPTIME-complete in D, constant in G)

Example (Simplified Yale shooting domain)
AD A3¬a

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
start, a, w

a
not w

shoot, a, not w shoot, not a, w

10

true

not alive

alive

AD ∩ A3¬a:

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
0 start, a, w

a
not w

0

shoot, a, not w shoot, not a, w

strategy

init, 0 → start
a, w, 0 → shoot
a,¬w, 0 → shoot
¬a, w, 1 → win!

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 27 / 34

Generalization: fondsp for ltlf /ldlf goals

Example (Simplified Yale shooting domain)
AD A32¬a

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
start, a, w

a
not w

shoot, a, not w shoot, not a, w

10

not a

not a

true

AD ∩ A32¬a:

not a
w
0

not a
w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
0 start, a, w

a
not w

0

shoot, a, not w shoot, not a, w

wait/shoot,
not a, w

shoot, not a, w

shoot, not a, w

Can we use directly nfa’s?
No, because of a basic mismatch
• nfa have perfect foresight, or clairvoyance (angelic nondeterminism)
• Strategies must be runnable: depend only on past, not future (devilish nondeterminism)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 28 / 34

Generalization: fondsp for ltlf /ldlf goals

We need first to determinize the nfa for ltlf /ldlf formula
nfa for 32¬a corresponding dfa

10

not a

not a

true

10

not a

not a

a

a

(dfa can be exponential in nfa in general)

Example (Simplified Yale shooting domain)
AD A32¬a

not a
wa,w

shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
start, a, w

a
not w

shoot, a, not w shoot, not a, w

10

not a

not a

a

a

AD ∩ A32¬a:
not a

w
1

a,w
0 shoot, not a, w

wait, a,w wait/shoot,
not a, w

init
0 start, a, w

a
not w

0

shoot, a, not w shoot, not a, w

strategy

init, 0 → start
a, w, 0 → shoot
a,¬w, 0 → shoot
¬a, w, 1 → win!

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 29 / 34

Generalization: DFA Games

dfa games
A dfa game G = (2F∪A, S, sinit , %, F), is such that:
• F controlled by environment; A controlled by agent;
• 2F∪A, alphabet of game;
• S, states of game;
• sinit , initial state of game;
• % : S × 2F∪A → S, transition function of the game: given current state s and a choice of action a and resulting

fluents values E the resulting state of game is %(s, [a, E]) = s′;
• F , final states of game, where game can be considered terminated.

Winning Strategy:
• A play is winning for the agent if such a play leads from the initial to a final state.
• A strategy for the agent is a function f : (2F)∗ → A that, given a history of choices from the environment,

decides which action A to do next.
• A winning strategy is a strategy f : (2F)∗ → A such that for all traces π with ai = f (πF |i) we have that π leads

to a final state of G.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 30 / 34

Generalization: DFA Games

Winning condition for dfa games
Let

PreC(S) = {s ∈ S | ∃a ∈ A. ∀E ∈ 2F . %(s, [a, E]) ∈ S}
Compute the set Win of winning states of a dfa game G, i.e., states from which the agent can win the game G, by
least-fixpoint:
• Win0 = F (the final states of G)
• Wini+1 = Wini ∪ PreC(Wini)

• Win =
⋃

i
Wini

(Computing Win is linear in the number of states in G)

Computing the winning strategy
Let’s define ω : S → 2A as:

ω(s) = {a | if s ∈ Wini+1 −Wini then ∀E .%(s, [a, E]) ∈ Wini}

• Every way of restricting ω(s) to return only one action (chosen arbitrarily) gives a winning strategy for G.
• Note s is a state of the game! not of the domain only!

To phrase ω wrt the domain only, we need to return a stateful transducer with transitions from the game.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 31 / 34

Generalization: fondsp for ltlf /ldlf goals

fondsp for ltlf /ldlf goals

Algorithm: fondsp for ldlf /ltlf goals
1: Given ltlf /ldlf domain D and goal ϕ
2: Compute nfa for ϕ (exponential)
3: Determinize nfa to dfa (exponential)
4: Compute intersection with dfa of D (polynomial)
5: Synthesize winning strategy for dfa game (linear)
6: Return strategy

Theorem
fondsp for ltlf /ldlf goals is:
• EXPTIME-complete in the domain;
• 2-EXPTIME-complete in the goal.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 32 / 34

Outline

1 ltlf /ldlf : ltl/ldl on finite traces

2 ltlf /ldlf and automata

3 Planning for ltlf /ldlf goals: deterministic domains

4 fondsp for ltlf /ldlf goals: nondeteministic domains

5 Conclusion

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 33 / 34

Conclusion

Summary
In Planning we separate the domain from the goal (this is not the case in synthesis), for good reasons!
• Domain: it is arepresentation of the world in which the agent acts, hence typically large

Cost for fondsp , fondsc is EXPTIME-complete, ...
... independently from the goal being classical reachability, ltlf or ldlf

• Goal: it is an objective the agent wants to obtain, hence typically small
Costs depends on the size of the dfa corresponding the ltlf /ldlf expressing the goal
Polynomial for reachability, i.e., 3G, (G propositional), as well as for many ltlf /ldlf formulas that admit a
small (bounded) dfa.
Exponential for those ltlf /ldlf that do not require to determinization
2EXPTIME-complete, in general

Two basic solvers
Two basic solvers on which the planning community has the best know-how:
• for dfa games (“eventually good”), i.e., a FOND strong planner
• for fair dfa games (“eventually good (under fairness)”), i.e., a FOND strong cyclic planner

See work in progress at: http: // fond4ltlfpltl. diag. uniroma1. it

See papers by Alberto Camacho, Christian Muise, Jorge A. Baier, Sheila A. McIlraith at IJCAI18 and ICAPS18

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 34 / 34

http://fond4ltlfpltl.diag.uniroma1.it

	ltlf/ldlf: ltl/ldl on finite traces
	ltlf/ldlf and automata
	Planning for ltlf/ldlf goals: deterministic domains
	fondsp for ltlf/ldlf goals: nondeteministic domains
	Conclusion

