Master in Artificial Intelligence and Robotics (AIRO)

Electives in Al
Reasoning Agents

Fabio Patrizi

Sapienza University of Rome, ltaly
patrizi@diag.uniromal.it

A.Y. 2021-2022

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 1/34

patrizi@diag.uniroma1.it

Planning for LTLf and LDLs Goals*

*slides based on G. De Giacomo's (www.diag.uniromal.it/degiacomo)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

www.diag.uniroma1.it/degiacomo

Outline

@ vris/LDLs: LTL/LDL on finite traces

© 1L /LDLf and automata

© Planning for LTL/LDLf goals: deterministic domains

@ ronps, for LTLf /LDLf goals: nondeteministic domains

© Conclusion

atrizi (Sapienza)

Outline

@ vris/LDLs: LTL/LDL on finite traces

i (Sapienza) Reasoning Agents

LTLf: LTL over finite traces

LTLs: the language

pu=A|-p|p1Ap | Op| L1l

® A: atomic propositions

® -, v1 A p2: boolean connectives

® Oyp: “next step exists and at next step (of the trace) ¢ holds”

® 1 U p2:“eventually @2 holds, and ¢; holds until p2 does”

® @p = —O—: "if next step exists then at next step ¢ holds” (weak next)
® Op = truelf p: “¢ will eventually hold”

® Op = —=O—g: “from current till last instant ¢ will always hold”

® |ast = —(Otrue: denotes last instant of trace. y

Main formal properties:

® Expressibility: FOL over finite sequences or Star-free RE
® Reasoning: satisfiability, validity, entailment PSPACE-complete
® Model Checking: linear on TS, PSPACE-complete on formula

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 4/34

LTLs: LTL over finite traces

Some interesting LTLs formulas:

name of template LTL semantics
responded existence(A, B) 0A= 0B
name of template LTL semantics
co-eistence(A, B) 0A OB o
not co-eristence(A, B) ~(0AAOB)
response(A, B) O(A= 0B)
not succession(A, B) 0(A = ~(0B))
precedence(A, B) (=B UA) v O(~B)
not chain succession(A, B) | O(A = O(~B))
..... AB) response(A, B) A
succession(A, B) Treredemsel A B)

alternate response(A, B) 0O(A = O(~A UB))
name of template LTL semantics
existence(l, A)
alternate precedence(4, B) | 1y g,)(‘;”(d“!)(q) ewistence(2, 4) O(A A Ofeistence(1, 4)))

n, A) O(A A Olezistence(n — 1, A)))

alternate ion(a,B) | Sl rere nac(d B)B'; absence(A) —egistence(1, A)
absence(2, A) Semistence(2, A)
chain response(A, B) 0= OB) absence(3, A) —existence(3, A)
absence(n + 1, 4) —existence(n + 1, A)
chain precedence(A, B) (OB = A) mit() N

rizi (Sapienza)) oning Agents

LDLs: LDL over finite traces

LDL¢: the language

pu=tt | [~p i A2 | (p)e|lple pu=¢|9?|p1+p2]|p1ip2]|p*

® tt and ff stand for true and false

® ¢: propositional formula on current state/instant

® —p, p1 A py: boolean connectives

® pis a regular expression on propositional formulas

® (p)o: exists an “execution” of RE p that ends with ¢ holding

® [p]e: all “executions” of RE p (along the trace!) end with ¢ holding

In the infinite trace setting, such enhancement strongly advocated by industrial model checking (ForSpec, PSL).)

Main formal properties:

® Expressibility: MSO over finite sequences: adds the power of recursion (as RE)
® Reasoning: satisfiability, validity, entailment PSPACE-complete
® Model Checking: linear on TS, PSPACE-complete on formula

.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 6/34

LDLs: Linear Dynamic Logic on finite traces

® All coffee requests from person p will eventually be served:

[true”](request, D (true™)coffee,)
® Every time the robot opens door d it closes it immediately after:
[true™]([openDoor 4] closeDoor 4)

® Before entering restricted area a the robot must have permission for a:

*

((minArea,™; getPermission,; —~inArea,™; inArea,)*; minArea,™) end

-

Note that the first two properties (not the third one) can be expressed also in LTL¢:

O(request,, O Ocoffeep) O(openDoory D OcloseDoor 4)

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

LDLs: Linear Dynamic Logic on finite traces

LDLf, not LTLy, is able to easily express procedural constraints [BaierFritzMcllraith07].

Let’s introduce a sort of propositional variant of GOLOG
§u=A|@?| 81+ 62| 1;02 | 7 | if ¢ then §; else 5, | while ¢ do §

where if and while can be seen as abbreviations for LDLs path expression, namely:
while ¢ do § = (¢7;0)"; —¢?

if ¢ then dielse 6, = (¢?; 01) + (—¢7?; 62)

Example (LDLf procedural constraints)
® “At every point, if it is hot then, if the air-conditioning system is off, turn it on, else don’t turn it off":

[true™](if (hot) then
if (—airOn) then turnOnAir
else ~turnOffAir) true

® ‘“alternate till the end the following two instractions: (1) while is hot if the air-conditioning system is off turn it on,
else don't turn it off; (2) do something for one step”
((while (hot) do
if (—airOn) then turnOnAir
else —turnOffAir;
true)™)end)

Reasoning Agents 2021-2022 8/34

F. Patrizi (Sapienza)

LDLs: Linear Dynamic Logic on finite traces

Example (LDLf captures finite domain variant of GOLOG in SitCalc)

GOLOG - finite domain variant

6 = A|@? |8+ 01;02 6% | mx.6(x) | if ¢ then dielse 5 | while ¢do &

® 7x.5(x) stands for &, c op; (o)
if ¢ then &pelse & stands for (¢?;61) + (—@7?; 52)
while ¢ do § stands for (¢7; §)* —¢?

® (5)¢ in LDLs captures SitCalc formula 3s’.Do(8,s,s’) As < s’ < last A ¢(s”).
® [5]¢ in LDLs captures SitCalc formula Vs’.Do(d,s,s") A's < s’ < last D ¢(s').

(¢(s) “uniform” in s.)}

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 9/34

Outline

© 1L /LDLf and automata

i (Sapienza) Reasoning Agents

LTLf/LDL and automata

Key point
LTLf /LDL¢ formulas can be translated into nondeterministic finite state automata (NFA).
tEiff t € L(Ayp)

where A, is the NFA ¢ is translated into.

We can compile reasoning into automata based procedures!

F. Patrizi (Sapienza) Reasoning Agents

TLf/LDLfs and automata

Both LTLf and LDLf formulas can be translated in exponential time to nondetermiistic automata on finite
words (NFA).

NFA A, associated with an LTLs formula ¢ (in NNF)

Auxiliary rules

(A, M) —trueifA €N Algorithm

5(A,) = falseif A g N

8(—A, M) = falseif A€M algorithm LTLf2NFA
8(—A, M) =trueif AZ N input LTL¢ formula ¢

3(p1 A 2, M) =38(e1, M A 3(p2, M)

_ (P
tput NFA A, = (27, S, , 0,
5(o1 V o2,) = 8(ip1, M) V 8(ip, M) outpUENTA Ay = ((=0}, & {or D)

so < {¥} D single initial state
7 if Last & N sp 0 > single final state
S ,n =

(O¢, M) false if Last € NN S {sg,5¢} 0+ 0
50w, M) :6() v 6(00‘%“) while (S or ¢ change) do
é =46 Y nAé

(p1U 92,0 («pz, 3(1, M) A 3(O(p1 U ©2), M) if(g € Sandq’ = /\ 5(w, M)

5) _ if Last & T (¢ €q)

0, ") true ifLast € N S+ Ssu{q} > update set of states
s(ae, N =5(p A (@0, M) S ete U {(q,N,4q")} D> update transition
5(p1 R Lpz, n = 5(@2,) A (8(e1, M)V 5(@(p1 R #2), M) relation 4

Observe these are the rules defining the transition function of the AFwW! J

F. Patrizi (Sapienza) Reasoning Agents

LTLf/LDLf and automata

NFA A, associated with an LDL¢ formula ¢ (in NNF)

Auxiliary rules

S(tt, M) = true
S(££, M) = false
3(p1 A w2, M) = 3(p1, M A (e, M n
(1 V 92, M) = S(e1, MV é(p2, M) Algorithm
5 _ false if M £ ¢ or Il = e (trace ended)

(P)e, M) - { e(p) o/w (¢ propositional) algorithm LDL £ 2NFA
5% e, M) = 8(%, M) A S(p, M) I 5 VR
5(<P1+pz)%“) = ((p1)w, MV 3((p2)e, M) output x1a A, = 27, S, {50}, e, {5¢})
5(<P1 p2) e, M) = 8({p1){p2)w, M) so +— {¥} > single initial state
S({p* Y, M) = 5(¢,H)V5((p)f(p*)¢, n) sp 0 > single final state
5 n _ true if M [~ ¢ or M = e (trace ended) S_“ {s0,s¢} e < 0

([P, M) = { () o/w (¢ propositional) while (S or o change) do
5([7)e, M) = S(anf(=9), M) V 5(p, M) . ,
3(lo1 + p2le, M) = 8(lprle, M) A 6([pale, M) if(g € Sand g" = /\(weq) (v, M)
3([p1: p2le, M) = d([p1lle2le, M) S+ SU{d'} 5 wptkie s of St
5([p* 1, M) = (e, M) A S(pltppx1pr M e+ eU{(q,M,d)} > update transition relationJ

(I'I) = false

(mn) = true

(e(sp) replaces in all occurrences of ty, and fy; by e(1))
4

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 13/34

TLf/LDLf reasoning

LTL¢/LDL¢ satisfiability (¢ SAT) LTL¢/LDLs validity (¢ VAL)
1: Given LTL¢ /LDL¢ formula ¢ 1: Given LTLf /LDL¢ formula o
2: Compute NFA for ¢ (exponential) 2: Compute NFA for —¢ (exponential)
S Check NFA for nonemptiness (NLOGSPACE) 3: Check NFA for nonemptiness (NLOGSPACE)
4: Return result of check 4: Return complemented result of check

L¢/LDL¢ logical implication (I = ¢)

1: Given LTLf /LDL¢ formulas I and ¢

24 Compute NFA for I A = (exponential)

3: Check NFA for nonemptiness (NLOGSPACE)
4: Return complemented result of check

Thm:[IJCAI13] All above reasoning tasks are PSPACE-complete. (As for infinite traces.)
(Construction of NFA can be done while checking nonemptiness.)

Relationship to Classical Planning

Let W gomain describe action domain (LTLf¢ formula), ¢ initial state (prop. formula), and G goal (prop. formula). Classical
planning amounts to LTLs satisfiability of:
Pinit N Wdomain N\ ©G Complexity: PSPACE-complete.

F. Patrizi (Sapienza) Reasoning Agents

Automata for some LTLs/LDLs formulas

Example (Automata for some LTL¢/LDL¢ formulas)
H e ‘

‘Oo

notA

0(A D O©B)

((—B*; A;—B*; B; B)*; ~B*)end
“each time new A before B (A and B not true simultaneously)

(online software for LTLf2DFA: http: // ltlf2dfa. diag. uniromal. it)
online software for D https: Lloat. herokuapp. com
li ft for LDLf2DFA ps://f PP y

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 15/34

http://ltlf2dfa.diag.uniroma1.it
https://flloat.herokuapp.com

Outline

© Planning for LTL/LDLf goals: deterministic domains

i (Sapienza) Reasoning Agents

Planning in deterministic domain

Deterministic domain (including initial state)

D= (27, A, %, 8, a) where:
® F fluents (atomic propositions)
® A actions (atomic symbols)
® 27 set of states
® s initial state (initial assignment to fluents)
® «afs) C A represents action preconditions

® §(s,a) = s’ with a € a(s) represents action effects (including frame).

G

Traces

A trace for D is a finite sequence:

S0, 91,51, " 5 dn; Sn

where s is the initial state, and a; € «a(s;) and siy1 = (s, aj+1) for each i.

G

Goals, planning, and plans

Goal = propositional formula G on fluents
Planning = find a trace sp, a1, s1, - - - , an, Sy such that s, = G. (PSPACE-complete)
Plan = project traces on actions, i.e., return aj, - - - , ap.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

Deterministic planning domains as automata

Let's transform the planning domain D = (2‘7:,.,4, so, 0, @) into a DFA recognizing all its traces.

DFA Ap for D

Ap = (2794, (27 U {sinit}), Sinit, 0, F) where:

® 27YA alphabet (actions A include dummy start action)
e 27y {sinit } set of states

® s dummy initial state

® F =27 (all states of the domain are final)

® (s, [a,s']) = s’ with a € a(s), and (s, a) = s’

p(Sinit, [start, so]) = so

(notation: [a, s'] stands for {a} U s’)J

Traces
Each trace so, a1, 51, -+ , an, Sp of the domain D becomes a finite sequence:
[start, so], [a1, s1], - - -, [an, 5]

recognized by the DFA Ap.

G

F. Patrizi (Sapienza) Reasoning Agents

Deterministic planning domains as automata

Example (Simplified Yale shooting domain)

® Domain D:

® DFA Ap:

ait/shoot,
not alive

shoot, not alive

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

Deterministic planning domains as automata

Planning in deterministic domains

Planning = find a trace of DFA Ap for deterministic domain D such that is also a trace for the DFA for &G where G is the
goal. That is:

CHECK for nonemptiness Ap N Aog: extract plan from witness.

(Computable on-the-fly, PSPACE in D, constant in G. i.e., optimal))

Example (Simplified Yale shooting domain)

wait, alive wait/shoot, alive
not alive
not alive

shoot, not alive \ @

wait/shoot,
not alive

shoot, not alive

F. Patrizi (Sapienza) Reasoning Agents

Generalization: planning for LTLf/LDLf goals in deterministic domains

Planning in deterministic domains for LTL¢s/LDLf goals

Planning = find a trace of DFA Ap for deterministic domain D such that is also a accepted by NFA A, for the LTL¢/LDL¢
formula ¢. That is:

CHECK for nonemptiness Ap N A, : extract plan from witness.

(Computable on-the-fly, PSPACE in D, PSPACE also in ¢ i.e., optimal)
We can use NFA directly since we are checking for existence of a trace satisfying ¢
4

Example (Simplified Yale shooting domain)

Ap Aon—alive
wait, alive wait/shoot, true not alive
rot alive
not alive
startalive shoot, not alive

Ap N Aog-alive: “notaive.

wait/shoot,
wait/shoot, not alive

ot alive

F. Patrizi (Sapienza) Reasoning Agents

Generalization: planning for LTLf/LDLf goals in deterministic domains

Planning for LTLf/LDL¢ goals
Algorithm: Planning for LDLs/LTLs goals

1: Given LTLf/LDLf domain D and goal ¢

2 Compute corresponding NFA (exponential)

3: Compute intersection with DFA of D (polynomial)
5

6:

Check nonemptiness of resulting NFA (NLOGSPACE)
Return plan

Theorem

Planning for LTL¢ /LDLf goals is:
® PSPACE-complete in the domain;
® PSPACE-complete in the goal.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

Outline

@ ronps, for LTLf /LDLf goals: nondeteministic domains

i (Sapienza) Reasoning Agents

FONDgp: strong planning in nondeterministic domains

Nondeterministic domain (including initial state)

D= (27, A, %, 8, a) where:
® F fluents (atomic propositions)
® A actions (atomic symbols)
27 set of states
so initial state (initial assignment to fluents)
a(s) C A represents action preconditions

(s, a,s’) with a € a(s) represents action effects (including frame).

e

Who controls what?
Fluents controlled by environment

Actions controlled by agent Observe: (5(5 a S/)

A

Goals, planning, and plans

Goal = propositional formula G on fluents
Planning = game between two players:

agent tries to force eventually reaching G no matter how other environment behave.

Plan = strategy to win the game. (FONDgp, is EXPTIMEfcomp/ete))

F. Patrizi (Sapienza) Reasoning Agents

Nondeterministic domains as automata

Let's transform the nondeterministic domain D = (2]:, A, sp, 8, &) into an automaton recognizing all its traces.

Automaton Ap for D is a

Ap = (2794, (27 U {sinit}), sinic, 0, F) where:
o pFUA

alphabet (actions A include dummy start action)

e 27y {sinit } set of states

® spir dummy initial state

® F =27 (all states of the domain are final)

® (s, [a,s']) = s’ with a € a(s), and (s, a,s”) p(sinit, [start, so]) = so

(notation: [a, s'] stands for {a} U s’))

F. Patrizi (Sapienza) Reasoning Agents

Nondeterministic domains as automata

Example (Simplified Yale shooting domain variant)

® Domain D:

wait wait/shoot

® DFA Ap:

shoot, a, not w hoot, nota,w

wait/shoot,
nota, w

F. Patrizi (Sapienza) Reasoning Agents

2021-2022

26 /34

Nondeterministic domains as automata

FONDg,: strong planning in nondeterministic domains

® Set the arena formed by all traces that satisfy both the brFA Ap for D and the DFA for &G where G is the goal.

® Compute a winning strategy. (EXPTIME-complete in D, constant in G))

Example (Simplified Yale shooting domain)
Ap

wait/shoot,
nota,w

wait, aw

CEROEYT . honi, nota,w

wait/shoot,
nota, w

Ap NAs_,:

shoot, nota, w strategy
shoot, a, not w init, 0 - st
hoot, not a, w a,w,0 — shoot
a
notw a, ~w, 0 — shoot
0 —a, w,1 — win!

F. Patrizi (Sapienza) Reasoning Agents

Generalization: FONDs, for LTL¢/LDLf goals

Example (Simplified Yale shooting domain)

waivshoot,
m aw

hoot, not a, w

wait/shoot,
nota, w

shoot, not a, w

wait/shoot,
nt aw

Ap N Aog-a:

wait, a,w

shoot, not a, w

No, because of a basic mismatch

® NFA have perfect foresight, or clairvoyance (angelic nondeterminism)

® Strategies must be runnable: depend only on past, not future

TPatr\'zT (Sapienza) Reasoning Agents

Generalization: FONDs, for LTL¢/LDLf goals

We need first to determinize the NFA for LTLs/LDLs formula

NFA for CO—a corresponding DFA
true nota a
@. Oy =
a

(DFA can be exponential in NFA in general))

nota

Example (Simplified Yale shooting dom

wait/shoot,

Aon-a

wait/shoot,
m aw

Ap N Aop-a: 8, shoot, not a, w strategy
init, 0 — start
shoot, a, notw Ferr o — shoot
— shoot
— win!

2021-2022

29 /34

F. Patrizi (Sapienza) Reasoning Agents

Generalization: DFA Games

DFA games

A DFA game G = (27Y4, S, s, 0, F), is such that:

® F controlled by environment; A controlled by agent;
o oFUA

, alphabet of game;

® S, states of game;

® s, initial state of game;

® p:Sx 27YA _, S, transition function of the game: given current state s and a choice of action a and resulting
fluents values E the resulting state of game is o(s, [a, E]) = s';

F, final states of game, where game can be considered terminated.

4

Winning Strategy:

® A play is winning for the agent if such a play leads from the initial to a final state.

® A strategy for the agent is a function f : (2}_)* — A that, given a history of choices from the environment,
decides which action A to do next.

® A winning strategy is a strategy f : (27)* — A such that for all traces 7 with a; = f(7|;) we have that 7 leads
to a final state of G.

g

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

Generalization: DFA Games

Winning condition for DFA games

Let
PreC(S) = {s € S| 3a € A.VE € 27 . o(s, [a, E]) € S}

Compute the set Win of winning states of a DFA game G, i.e., states from which the agent can win the game G, by
least-fixpoint:

® Wing = F (the final states of G)
® Winj 1 = Win; U PreC(Win;)
® Win = Ul_ Win;

(Computing Win is linear in the number of states in g))

Computing the winning strategy

Let's define w : S — 2 as:

w(s) = {a| if s € Wini1 — Win; then VE.o(s, [a, E]) € Win;}

® Every way of restricting w(s) to return only one action (chosen arbitrarily) gives a winning strategy for G.

® Note s is a state of the game! not of the domain only!
To phrase w wrt the domain only, we need to return a stateful transducer with transitions from the game.

g

F. Patrizi (Sapienza) Reasoning Agents

Generalization: FONDs, for LTL¢/LDLf goals

FONDg, for LTL¢/LDLf goals
Algorithm: FONDs, for LDL¢/LTL¢ goals

1: Given LTLf/LDLf domain D and goal ¢

2 Compute NFA for ¢ (exponential)

3 Determinize NFA to DFA (exponential)

4: Compute intersection with DFA of D (polynomial)
5 Synthesize winning strategy for DFA game (linear)
6: Return strategy

Theorem

FONDsp for LTL¢ /LDLs goals is:
® EXPTIME-complete in the domain;
® 2-EXPTIME-complete in the goal.

F. Patrizi (Sapienza) Reasoning Agents 2021-2022 32/34

Outline

© Conclusion

trizi (Sapienza)

Conclusion

In Planning we separate the domain from the goal (this is not the case in synthesis), for good reasons!

® Domain: it is arepresentation of the world in which the agent acts, hence typically large

o Cost for FONDg,, FONDg is EXPTIME-complete, ...
o ... independently from the goal being classical reachability, LTLf or LDL¢

® Goal: it is an objective the agent wants to obtain, hence typically small

o Costs depends on the size of the DFA corresponding the LTLf/LDLf expressing the goal

o Polynomial for reachability, i.e., &G, (G propositional), as well as for many LTLf/LDL¢ formulas that admit a
small (bounded) DFA.

o Exponential for those LTL/LDLs that do not require to determinization

o 2EXPTIME-complete, in general y

Two basic solvers

Two basic solvers on which the planning community has the best know-how:

® for DFA games (“eventually good”), i.e., a FOND strong planner

® for fair DFA games (“eventually good (under fairness)”), i.e., a FOND strong cyclic planner

See work in progress at: http:// fond4ltlfpltl. diag. uniromal. it

See papers by Alberto Camacho, Christian Muise, Jorge A. Baier, Sheila A. Mcllraith at IJCAI18 and /CAP518J

F. Patrizi (Sapienza) Reasoning Agents 2021-2022

http://fond4ltlfpltl.diag.uniroma1.it

	ltlf/ldlf: ltl/ldl on finite traces
	ltlf/ldlf and automata
	Planning for ltlf/ldlf goals: deterministic domains
	fondsp for ltlf/ldlf goals: nondeteministic domains
	Conclusion

