Master in Artificial Intelligence and Robotics (AIRO) Electives in AI Reasoning Agents

Fabio Patrizi

Sapienza University of Rome, Italy patrizi@diag.uniroma1.it

A.Y. 2021-2022

Planning for LTL_f and LDL_f Goals*

* slides based on G. De Giacomo's (www.diag.uniroma1.it/degiacomo)

1 LTL_f/LDL_f: LTL/LDL on finite traces

2 LTL_f/LDL_f and automata

③ Planning for LTL_f/LDL_f goals: deterministic domains

If OND_{sp} for LTL_f/LDL_f goals: nondeteministic domains

5 Conclusion

1) LTL_f/LDL_f : LTL/LDL on finite traces

2 LTL_f/LDL_f and automata

3 Planning for LTL_f/LDL_f goals: deterministic domains

If OND_{sp} for LTL_f/LDL_f goals: nondeteministic domains

5 Conclusion

LTL $_f$: the language

$\varphi ::= A \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \mathcal{U} \varphi_2$

- A: atomic propositions
- $\neg \varphi, \varphi_1 \land \varphi_2$: boolean connectives
- $\bigcirc \varphi$: "next step exists and at next step (of the trace) φ holds"
- $\varphi_1 \mathcal{U} \varphi_2$: "eventually φ_2 holds, and φ_1 holds until φ_2 does"
- $\mathbf{\Phi}\varphi \doteq \neg \bigcirc \neg \varphi$: "if next step exists then at next step φ holds" (weak next)
- $\Diamond \varphi \doteq \operatorname{true} \mathcal{U} \varphi$: " φ will eventually hold"
- $\Box \varphi \doteq \neg \Diamond \neg \varphi$: "from current till last instant φ will always hold"
- Last $\doteq \neg \bigcirc$ true: denotes last instant of trace.

Main formal properties:

- Expressibility: FOL over finite sequences or Star-free RE
- Reasoning: satisfiability, validity, entailment PSPACE-complete
- Model Checking: linear on TS, PSPACE-complete on formula

LTL_f: LTL over finite traces

Some interesting LTL_f formulas:

name of template	LTL semantics			
$responded \ existence(A,B)$	$\Diamond A \Rightarrow \Diamond B$			
co-existence(A,B)	$\Diamond A \Leftrightarrow \Diamond B$	name of	name of template	
response(A, B)	$\Box(A \Rightarrow \Diamond B)$	not succes	not excession(A_B)	
precedence(A, B)	$(\neg B \ UA) \lor \Box (\neg B)$		not succession(A, D)	
succession(A, B)	$response(A, B) \land precedence(A, B)$	not chain suc	cession(A, B)	$\Box(A \Rightarrow \bigcirc(\neg B))$
$alternate \ response(A, B)$	$\Box(A \Rightarrow \bigcirc (\neg A \ UB))$	name of template	1	LTL semantics
$alternate\ precedence(A,B)$	$\begin{array}{c} precedence(A,B) \land \\ \Box(B \Rightarrow \bigcirc (precedence(A,B))) \end{array}$	existence(1, A) existence(2, A) existence(n, A)	$\Diamond(A \land \bigcirc (A \land \bigcirc)$	(existence(1, A))) (existence(n - 1, A)))
$alternate \ succession(A, B)$	alternate response $(A, B) \land$ alternate precedence (A, B)	absence(A)	$\neg existence(1, A)$	
$chain\ response(A,B)$	$\Box(A \Rightarrow \bigcirc B)$	absence(2, A) absence(3, A) absence(n + 1, A)	$\neg existence(2, A)$ $\neg existence(3, A)$ \neg $\neg existence(n + 1, A)$	
$chain\ precedence(A,B)$	$\Box(\bigcirc B \Rightarrow A)$	init(A)	A	

Reasoning Agents

LDL_f: the language

 $\varphi ::= \texttt{tt} \mid \texttt{ff} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \langle \rho \rangle \varphi \mid [\rho] \varphi \qquad \rho ::= \phi \mid \varphi? \mid \rho_1 + \rho_2 \mid \rho_1; \rho_2 \mid \rho^*$

- tt and ff stand for true and false
- φ: propositional formula on current state/instant
- $\neg \varphi, \varphi_1 \land \varphi_2$: boolean connectives
- ρ is a regular expression on propositional formulas
- $\langle \rho \rangle \varphi$: exists an "execution" of RE ρ that ends with φ holding
- $[\rho]\varphi$: all "executions" of RE ρ (along the trace!) end with φ holding

In the infinite trace setting, such enhancement strongly advocated by industrial model checking (ForSpec, PSL).

Main formal properties:

- Expressibility: MSO over finite sequences: adds the power of recursion (as RE)
- **Reasoning:** satisfiability, validity, entailment PSPACE-complete
- Model Checking: linear on TS, PSPACE-complete on formula

Example

• All coffee requests from person *p* will eventually be served:

```
[\texttt{true}^*](\texttt{request}_p \supset \langle \texttt{true}^* \rangle \texttt{coffee}_p)
```

• Every time the robot opens door *d* it closes it immediately after:

```
[true*]([openDoor<sub>d</sub>]closeDoor<sub>d</sub>)
```

• Before entering restricted area *a* the robot must have permission for *a*:

 $\langle (\neg inArea_a^*; getPermission_a; \neg inArea_a^*; inArea_a)^*; \neg inArea_a^* \rangle$ end

Note that the first two properties (not the third one) can be expressed also in LTL_f :

```
\Box(request_p \supset \diamond coffee_p) \qquad \Box(openDoor_d \supset \bigcirc closeDoor_d)
```

LDL_f: Linear Dynamic Logic on finite traces

LDL_f, not LTL_f, is able to easily express procedural constraints [BaierFritzMcllraith07].

Let's introduce a sort of propositional variant of GOLOG

 $\delta ::= A \mid \varphi? \mid \delta_1 + \delta_2 \mid \delta_1; \delta_2 \mid \delta^* \mid \text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \mid \text{while } \phi \text{ do } \delta$

where if and while can be seen as abbreviations for LDL_f path expression, namely:

if ϕ then δ_1 else $\delta_2 \doteq (\phi?; \delta_1) + (\neg \phi?; \delta_2)$ while ϕ do $\delta \doteq (\phi?; \delta)^*; \neg \phi?$

Example (LDL_f procedural constraints)

• "At every point, if it is hot then, if the air-conditioning system is off, turn it on, else don't turn it off":

[true^{*}]⟨if (hot) then if (¬airOn) then turnOnAir else ¬turnOffAir⟩true

• "alternate till the end the following two instractions: (1) while is hot if the air-conditioning system is off turn it on, else don't turn it off; (2) do something for one step"

```
((while (hot) do
    if (¬airOn) then turnOnAir
    else ¬turnOffAir,
    true)* >end
```

Example (LDL_f captures finite domain variant of GOLOG in SitCalc)

GOLOG – finite domain variant

 $\delta ::= A \mid \varphi? \mid \delta_1 + \delta_2 \mid \delta_1; \delta_2 \mid \delta^* \mid \pi x. \delta(x) \mid \text{if } \phi \text{ then } \delta_1 \text{else } \delta_2 \mid \text{while } \phi \text{do } \delta$

- $\pi x.\delta(x)$ stands for $\sum_{o \in Obj} \delta(o)$
- if ϕ then δ_1 else δ_2 stands for $(\phi?; \delta_1) + (\neg \phi?; \delta_2)$
- while ϕ do δ stands for $(\phi?; \delta)^* \neg \phi?$
- $\langle \delta \rangle \phi$ in LDL_f captures SitCalc formula $\exists s'. Do(\delta, s, s') \land s \leq s' \leq last \land \phi(s')$.
- $[\delta]\phi$ in LDL_f captures SitCalc formula $\forall s'.Do(\delta, s, s') \land s \leq s' \leq last \supset \phi(s')$.

($\phi(s)$ "uniform" in s.)

ITL_f/LDL_f: LTL/LDL on finite traces

2 LTL_f/LDL_f and automata

3 Planning for LTL_f/LDL_f goals: deterministic domains

If OND_{sp} for LTL_f/LDL_f goals: nondeteministic domains

Conclusion

Key point

 LTL_f/LDL_f formulas can be translated into nondeterministic finite state automata (NFA).

$$t\models arphi ext{ iff } t\in \mathcal{L}(\mathcal{A}_arphi)$$

where \mathcal{A}_{φ} is the NFA φ is translated into.

We can compile reasoning into automata based procedures!

Both LTL_f and LDL_f formulas can be translated in exponential time to nondetermiistic automata on finite words (NFA).

NFA \mathcal{A}_{φ} associated with an LTL_f formula φ (in NNF)

Auxiliary rules

$\delta(A, \Pi)$	$=$ true if $A \in \Pi$
δ(A, Π)	= false if $A \not\in \Pi$
$\delta(\neg A, \Pi)$	= false if $A \in \Pi$
$\delta(\neg A, \Pi)$	$=$ true if $A \not\in \Pi$
$\delta(\varphi_1 \wedge \varphi_2, \Pi)$	$=\delta(\varphi_1,\Pi)\wedge\delta(\varphi_2,\Pi)$
$\delta(\varphi_1 \vee \varphi_2, \Pi)$	$=\delta(\varphi_1,\Pi)\vee\delta(\varphi_2,\Pi)$
$\delta(\bigcirc arphi, \Pi)$	$= \begin{cases} \varphi & \text{if } Last \notin \Pi \\ \text{false} & \text{if } Last \in \Pi \end{cases}$
$\delta(\diamond \varphi, \Pi)$	$= \delta(\varphi, \Pi) \lor \delta(\bigcirc \diamond \varphi, \Pi)$
$\delta(\varphi_1 \mathcal{U} \varphi_2, \Pi)$	$= \delta(\varphi_2, \Pi) \vee (\delta(\varphi_1, \Pi) \wedge \delta(\bigcirc(\varphi_1 \mathcal{U} \varphi_2), \Pi))$
$\delta(ulletarphi,\Pi)$	$= \begin{cases} \varphi & \text{if } Last \notin \Pi \\ \text{true} & \text{if } Last \in \Pi \end{cases}$
$\begin{array}{l} \delta(\Box \varphi, \Pi) \\ \delta(\varphi_1 \mathrel{\mathcal{R}} \varphi_2, \Pi) \end{array}$	$ = \delta(\varphi, \Pi) \land \delta(\bigoplus \varphi, \Pi) = \delta(\varphi_2, \Pi) \land (\delta(\varphi_1, \Pi) \lor \delta(\bigoplus(\varphi_1 \mathcal{R} \varphi_2), \Pi)) $
Observe these are the rules	defining the transition function of the AFW!

Algorithm

 $\begin{array}{l} \operatorname{algorithm} \operatorname{LTL}_f \operatorname{2NFA} \\ \operatorname{input} \operatorname{ITL}_f \ formula \ \varphi \\ \operatorname{output} \operatorname{NFA} A_{\varphi} = (2^{\mathcal{D}}, \mathcal{S}, \{s_0\}, \varrho, \{s_f\}) \\ \operatorname{s}_0 \leftarrow \{\varphi\} \qquad \qquad \triangleright \ \operatorname{single} \ \operatorname{initial} \ \operatorname{state} \\ s_f \leftarrow \emptyset \\ \operatorname{sf} \leftarrow \{\sigma\}, s_f\}, \varrho \leftarrow \emptyset \\ \operatorname{while} (\mathcal{S} \ or \ \varrho \ \operatorname{change}) \ \operatorname{do} \\ \operatorname{if}(q \in \mathcal{S} \ \operatorname{and} \ q' \models \bigwedge_{(\psi \in q)} \delta(\psi, \Pi)) \\ \mathcal{S} \leftarrow \mathcal{S} \cup \{q'\} \qquad \qquad \triangleright \ \operatorname{update} \ \operatorname{set} \ \operatorname{of} \ \operatorname{states} \\ \varrho \leftarrow \varrho \cup \{(q, \Pi, q')\} \qquad \qquad \triangleright \ \operatorname{update} \ \operatorname{transition} \\ \end{array}$

NFA \mathcal{A}_{arphi} associated with an LDL $_{f}$ formula arphi (in NNF)

Auxiliary rules

$\delta(tt, \Pi)$	=	true
$\delta(ff,\Pi)$	=	false
$\delta(\varphi_1 \wedge \varphi_2, \Pi)$	=	$\delta(\varphi_1,\Pi) \wedge \delta(\varphi_2,\Pi)$
$\delta(\varphi_1 \lor \varphi_2, \Pi)$	=	$\delta(\varphi_1,\Pi) \vee \delta(\varphi_2,\Pi)$
$\delta(\langle \phi angle arphi, \Pi)$	=	$\left\{ \begin{array}{ll} \texttt{false} & \texttt{if } \Pi \not\models \phi \texttt{ or } \Pi = \epsilon \texttt{ (trace ended)} \\ \texttt{e}(\varphi) & \texttt{o/w} \texttt{ (}\phi \texttt{ propositional)} \end{array} \right.$
$\delta(\langle \psi ? \rangle \varphi, \Pi)$	=	$\delta(\psi,\Pi) \wedge \delta(\varphi,\Pi)$
$\delta(\langle \rho_1 + \rho_2 \rangle \varphi, \Pi)$	=	$\delta(\langle \rho_1 \rangle \varphi, \Pi) \vee \delta(\langle \rho_2 \rangle \varphi, \Pi)$
$\delta(\langle \rho_1; \rho_2 \rangle \varphi, \Pi)$	=	$\delta(\langle \rho_1 \rangle \langle \rho_2 \rangle \varphi, \Pi)$
$\delta(\langle \rho^* \rangle \varphi, \Pi)$	=	$\delta(\varphi,\Pi) \vee \delta(\langle \rho \rangle \mathbf{f}_{\langle \rho^* \rangle \varphi}, \Pi)$
$\delta([\phi]\varphi,\Pi)$	=	$\left\{\begin{array}{ll} true & if \ \Pi \not\models \phi \ or \ \Pi = \epsilon \ (trace ended) \\ e(\varphi) & o/w \ (\phi \ propositional) \end{array}\right.$
$\delta([\psi?]\varphi,\Pi)$	=	$\delta(nnf(\neg\psi), \Pi) \lor \delta(\varphi, \Pi)$
$\delta([\rho_1 + \rho_2]\varphi, \Pi)$	=	$\delta([\rho_1]\varphi,\Pi) \wedge \delta([\rho_2]\varphi,\Pi)$
$\delta([\rho_1; \rho_2]\varphi, \Pi)$	=	$\delta([\rho_1][\rho_2]\varphi,\Pi)$
$\delta([\rho^*]\varphi,\Pi)$	=	$\delta(\varphi, \Pi) \wedge \delta([ho] \mathbf{t}_{[ho*]\varphi}, \Pi)$
$\delta(\mathbf{f}_{a/a}, \Pi)$	=	false
$\delta(\mathbf{t}_{\psi}, \Pi)$	=	true
	(e(4	φ) replaces in $arphi$ all occurrences of ${f t}_\psi$ and ${f f}_\psi$ by ${f e}(\psi)$)

Algorithm

$$\begin{split} & \text{algorithm} \ \text{LD}_{\ell} 2\text{SEA} \\ & \text{input} \ \text{LD}_{\ell} f \ \text{orrula} \ \varphi \\ & \text{output} \ \text{INEA} \ A_{\varphi} = (2^{\mathcal{P}}, \ S, \ \{s_0\}, \ \varrho, \ \{s_f\}) \\ & \text{single initial state} \\ & s_0 \leftarrow \{\varphi\} \\ & \varphi \leftarrow \{\varphi\} \\ & \varphi \leftarrow \{\varphi\}, \ g_\ell \leftarrow \emptyset \\ & \text{while} \ (S \ or \ \varrho \ \text{change}) \ \text{do} \\ & \text{if}(q \in S \ \text{and} \ q' \models \bigwedge_{(\psi \in q)} \ \delta(\psi, \Pi)) \\ & \quad \mathcal{S} \leftarrow \mathcal{S} \cup \ \{q'\} \\ & \quad \varphi \leftarrow \varrho \cup \{(q, \Pi, q')\} \\ & \quad \text{bupdate transition relation} \end{split}$$

LTL_f/LDL_f reasoning

LTL_f/LDL_f satisfiability (φ SAT)

- 1: Given LTL_f/LDL_f formula φ
- 2: Compute NFA for φ (exponential)
- 3: Check NFA for nonemptiness (NLOGSPACE)
- 4: Return result of check

LTL_f/LDL_f validity (φ VAL)

1: Given LTL_f/LDL_f formula φ

- 2: Compute NFA for $\neg \varphi$ (exponential)
- 3: Check NFA for nonemptiness (NLOGSPACE)
- 4: Return complemented result of check

LTL_f/LDL_f logical implication ($\Gamma \models \varphi$)

- 1: Given LTL_f/LDL_f formulas Γ and φ
- 2: Compute NFA for $\Gamma \land \neg \varphi$ (exponential)
- 3: Check NFA for nonemptiness (NLOGSPACE)
- 4: Return complemented result of check

Thm:[IJCAI13] All above reasoning tasks are PSPACE-complete. (As for infinite traces.)

(Construction of NFA can be done while checking nonemptiness.)

Relationship to Classical Planning

Let Ψ_{domain} describe action domain (LTL_f formula), ϕ_{init} initial state (prop. formula), and G goal (prop. formula). Classical planning amounts to LTL_f satisfiability of:

 $\phi_{init} \wedge \Psi_{domain} \wedge \diamond G$

Complexity: PSPACE-complete.

(online software for LDLf2DFA: https://flloat.herokuapp.com)

1 LTL_f/LDL_f: LTL/LDL on finite traces

2 LTL_f/LDL_f and automata

③ Planning for LTL_f/LDL_f goals: deterministic domains

In FOND_{sp} for LTL_f/LDL_f goals: nondeteministic domains

5 Conclusion

Deterministic domain (including initial state)

 $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, \textbf{\textit{s}}_{0}, \delta, \alpha)$ where:

- *F* fluents (atomic propositions)
- A actions (atomic symbols)
- $2^{\mathcal{F}}$ set of states
- s₀ initial state (initial assignment to fluents)
- $\alpha(s) \subseteq \mathcal{A}$ represents action preconditions
- $\delta(s, a) = s'$ with $a \in \alpha(s)$ represents action effects (including frame).

Traces

A trace for ${\mathcal D}$ is a finite sequence:

 $s_0, a_1, s_1, \cdots, a_n, s_n$

where s_0 is the initial state, and $a_i \in \alpha(s_i)$ and $s_{i+1} = \delta(s_i, a_{i+1})$ for each *i*.

Goals, planning, and plans

Goal = propositional formula *G* on fluents **Planning** = find a trace $s_0, a_1, s_1, \dots, a_n, s_n$ such that $s_n \models G$. (PSPACE-complete) **Plan** = project traces on actions, i.e., return a_1, \dots, a_n .

F. Patrizi (Sapienza)

Deterministic planning domains as automata

Let's transform the planning domain $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, s_0, \delta, \alpha)$ into a DFA recognizing all its traces.

DFA A_D for \mathcal{D}

$$A_{\mathcal{D}} = (2^{\mathcal{F} \cup \mathcal{A}}, (2^{\mathcal{F}} \cup \{s_{init}\}), s_{init}, \varrho, F)$$
 where:

- $2^{\mathcal{F}\cup\mathcal{A}}$ alphabet (actions \mathcal{A} include dummy *start* action)
- $2^{\mathcal{F}} \cup \{s_{init}\}$ set of states
- sinit dummy initial state
- $F = 2^{\mathcal{F}}$ (all states of the domain are final)
- $\rho(s, [a, s']) = s'$ with $a \in \alpha(s)$, and $\delta(s, a) = s'$ $\rho(s_{init}, [start, s_0]) = s_0$

(notation: [a, s'] stands for $\{a\} \cup s'$)

Traces

Each trace $s_0, a_1, s_1, \cdots, a_n, s_n$ of the domain \mathcal{D} becomes a finite sequence:

```
[start, s_0], [a_1, s_1], \cdots, [a_n, s_n]
```

recognized by the DFA $A_{\mathcal{D}}$.

Example (Simplified Yale shooting domain)

• Domain \mathcal{D} :

• DFA $A_{\mathcal{D}}$:

Planning in deterministic domains

Planning = find a trace of DFA A_D for deterministic domain D such that is also a trace for the DFA for $\Diamond G$ where G is the goal. That is:

CHECK for nonemptiness $A_{\mathcal{D}} \cap A_{\diamond G}$: extract plan from witness.

(Computable on-the-fly, PSPACE in D, constant in G. i.e., optimal)

Generalization: planning for LTL_f/LDL_f goals in deterministic domains

Planning in deterministic domains for LTL_f/LDL_f goals

Planning = find a trace of DFA A_D for deterministic domain D such that is also a accepted by NFA A_{φ} for the LTL_f/LDL_f formula φ . That is:

CHECK for nonemptiness $A_{\mathcal{D}} \cap A_{\varphi}$: extract plan from witness.

(Computable on-the-fly, PSPACE in \mathcal{D} , PSPACE also in φ i.e., optimal) (We can use NFA directly since we are checking for **existence** of a trace satisfying φ)

Planning for LTL_f/LDL_f goals

Algorithm: Planning for LDL_f/LTL_f goals

- 1: Given LTL_f/LDL_f domain $\mathcal D$ and goal φ
- 2: Compute corresponding NFA (exponential)
- 3: Compute intersection with DFA of \mathcal{D} (polynomial)
- 5: Check nonemptiness of resulting NFA (NLOGSPACE)
- 6: Return plan

Theorem

Planning for LTL_f/LDL_f goals is:

- PSPACE-complete in the domain;
- PSPACE-complete in the goal.

- 1 LTL_f/LDL_f: LTL/LDL on finite traces
- 2 LTL_f/LDL_f and automata
- 3 Planning for LTL_f/LDL_f goals: deterministic domains
- If OND_{sp} for LTL_f/LDL_f goals: nondeteministic domains

Conclusion

Nondeterministic domain (including initial state)

 $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, \mathbf{s}_0, \delta, \alpha)$ where:

- *F* fluents (atomic propositions)
- A actions (atomic symbols)
- $2^{\mathcal{F}}$ set of states
- s₀ initial state (initial assignment to fluents)
- $\alpha(s) \subseteq \mathcal{A}$ represents action preconditions
- $\delta(s, a, s')$ with $a \in \alpha(s)$ represents action effects (including frame).

Who controls what?

Fluents controlled by environment

Actions controlled by agent

Observe: $\delta(s, a, s')$

(FOND_{sp} is EXPTIME-complete)

Goals, planning, and plans

Goal = propositional formula G on fluents

Planning = **game** between two players:

agent tries to force eventually reaching G no matter how other environment behave.

Plan = strategy to win the game.

F. Patrizi (Sapienza)

2021-2022 24 / 34

Let's transform the nondeterministic domain $\mathcal{D} = (2^{\mathcal{F}}, \mathcal{A}, \mathfrak{s}_0, \delta, \alpha)$ into an automaton recognizing all its traces.

Automaton $A_{\mathcal{D}}$ for \mathcal{D} is a DFA!!!

 $\begin{aligned} A_{\mathcal{D}} &= (2^{\mathcal{F} \cup \mathcal{A}}, (2^{\mathcal{F}} \cup \{s_{init}\}), s_{init}, \varrho, F) \text{ where:} \\ &= 2^{\mathcal{F} \cup \mathcal{A}} \text{ alphabet (actions } \mathcal{A} \text{ include dummy start action)} \\ &= 2^{\mathcal{F}} \cup \{s_{init}\} \text{ set of states} \\ &= s_{init} \text{ dummy initial state} \\ &= F = 2^{\mathcal{F}} \text{ (all states of the domain are final)} \\ &= \rho(s, [a, s']) = s' \text{ with } a \in \alpha(s), \text{ and } \delta(s, a, s') \qquad \rho(s_{init}, [start, s_0]) = s_0 \end{aligned}$

Example (Simplified Yale shooting domain variant)

• Domain \mathcal{D} :

• DFA $A_{\mathcal{D}}$:

FOND_{sp}: strong planning in nondeterministic domains

- Set the arena formed by all traces that satisfy both the DFA A_D for D and the DFA for $\diamond G$ where G is the goal.
- Compute a winning strategy.

(EXPTIME-complete in \mathcal{D} , constant in G)

Generalization: FOND_{sp} for LTL_f/LDL_f goals

- No, because of a basic mismatch
 - NFA have perfect foresight, or clairvoyance
 - Strategies must be runnable: depend only on past, not future
 F. Patrizi (Sapienza)
 Reasoning Agents

(angelic nondeterminism)

(devilish nondeterminism)

We need first to determinize the NFA for LTL_f/LDL_f formula

(DFA can be exponential in NFA in general)

Generalization: DFA Games

DFA games

- A DFA game $\mathcal{G} = (2^{\mathcal{F} \cup \mathcal{A}}, S, s_{init}, \varrho, F)$, is such that:
 - *F* controlled by environment; *A* controlled by agent;
 - $2^{\mathcal{F}\cup\mathcal{A}}$, alphabet of game;
 - S, states of game;
 - s_{init}, initial state of game;
 - *ρ*: S × 2^{F∪A} → S, transition function of the game: given current state s and a choice of action a and resulting fluents values E the resulting state of game is *ρ*(s, [a, E]) = s';
 - F, final states of game, where game can be considered terminated.

Winning Strategy:

- A play is winning for the agent if such a play leads from the initial to a final state.
- A strategy for the agent is a function f : (2^F)* → A that, given a history of choices from the environment, decides which action A to do next.
- A winning strategy is a strategy f : (2^F)* → A such that for all traces π with a_i = f(π_F|_i) we have that π leads to a final state of G.

Generalization: DFA Games

Winning condition for DFA games

Let

$$PreC(\mathcal{S}) = \{s \in \mathcal{S} \mid \exists a \in \mathcal{A}. \forall E \in 2^{\mathcal{F}}. \ \varrho(s, [a, E]) \in \mathcal{S}\}$$

Compute the set Win of winning states of a DFA game G, i.e., states from which the agent can win the game G, by least-fixpoint:

- $Win_0 = F$ (the final states of \mathcal{G})
- $Win_{i+1} = Win_i \cup PreC(Win_i)$
- $Win = \bigcup_i Win_i$

(Computing Win is linear in the number of states in G)

Computing the winning strategy

Let's define $\omega: S \to 2^{\mathcal{A}}$ as:

$$\omega(s) = \{a \mid \text{ if } s \in Win_{i+1} - Win_i \text{ then } \forall E.\varrho(s, [a, E]) \in Win_i\}$$

- Every way of restricting $\omega(s)$ to return only one action (chosen arbitrarily) gives a winning strategy for \mathcal{G} .
- Note s is a state of the game! not of the domain only!
 To phrase ω wrt the domain only, we need to return a stateful transducer with transitions from the game.

FOND_{sp} for LTL_f/LDL_f goals

Algorithm: FOND_{sp} for LDL_f/LTL_f goals

- 1: Given LTL_f/LDL_f domain \mathcal{D} and goal φ
- 2: Compute NFA for φ (exponential)
- 3: Determinize NFA to DFA (exponential)
- 4: Compute intersection with DFA of \mathcal{D} (polynomial)
- 5: Synthesize winning strategy for DFA game (linear)
- 6: Return strategy

Theorem

FOND_{sp} for LTL_f/LDL_f goals is:

- EXPTIME-complete in the domain;
- 2-EXPTIME-complete in the goal.

- 1 LTL_f/LDL_f: LTL/LDL on finite traces
- 2 LTL_f/LDL_f and automata
- 3 Planning for LTL_f/LDL_f goals: deterministic domains
- If OND_{sp} for LTL_f/LDL_f goals: nondeteministic domains

Conclusion

Conclusion

Summary

In Planning we separate the domain from the goal (this is not the case in synthesis), for good reasons!

- Domain: it is arepresentation of the world in which the agent acts, hence typically large
 - Cost for FOND_{sp}, FOND_{sc} is EXPTIME-complete, ...
 - \bullet ... independently from the goal being classical reachability, ${\rm LTL}_f$ or ${\rm LDL}_f$
- · Goal: it is an objective the agent wants to obtain, hence typically small
 - Costs depends on the size of the DFA corresponding the LTL_f/LDL_f expressing the goal
 - Polynomial for reachability, i.e., $\diamond G$, (G propositional), as well as for many LTL_f/LDL_f formulas that admit a small (bounded) DFA.
 - Exponential for those LTL_f/LDL_f that do not require to determinization
 - 2EXPTIME-complete, in general

Two basic solvers

Two basic solvers on which the planning community has the best know-how:

- for DFA games ("eventually good"), i.e., a FOND strong planner
- for fair DFA games ("eventually good (under fairness)"), i.e., a FOND strong cyclic planner

See work in progress at: http://fond4ltlfpltl.diag.uniroma1.it

See papers by Alberto Camacho, Christian Muise, Jorge A. Baier, Sheila A. McIlraith at IJCAI18 and ICAPS18