
Smart Objects
SAPIENZA Università di Roma, M.Sc. in Product Design

Fabio Patrizi

1



What is a Smart Object?

• Essentially, an object that: 

• Senses 

• Thinks 

• Acts 

2



Example 1

3

https://www.youtube.com/watch?v=6bNcjD8ekE0



Example 2

4

https://www.youtube.com/watch?v=TWjHFw_eDlY



Example 3

5

https://www.youtube.com/watch?v=YErWfe0aTiQ



Example 4

6

https://www.youtube.com/watch?v=OLfF4b49MLs



Example 5

7

https://www.youtube.com/watch?v=dvAfefBIR4c



Homework 1

• Browse the web to learn about Arduino projects 
and make a list of all the capabilities you encounter 
(e.g., can sense light, can rotate wheel, can switch 
light on, etc.) 

• This will be useful for your prototype, as you’ll learn 
about available features

8



Smart Objects 
(A closer look)

9

Remember Example 1 (motion-controlled lamp)

Ultrasonic  
sensor

Microcontroller 
(e.g., Arduino) Relay 

A simplified schema:



Smart Objects 
(A closer look)

10

Ultrasonic  
sensor

Senses distance to closest object (up to 30 cm)

Relay 

An electronically-controlled interruptor

We need to know WHAT these components do, not HOW 
THEY ARE INTERNALLY BUILT! 



Smart Objects 
(A closer look)

11

How does it work? 

1. The ultrasonic sensor measures the distance to the closest object 
2. Arduino reads the measurement  
3. If the distance is small enough, Arduino switches the relay on 
4. The relay lets the current flow and the lamp switch on 
5. If the distance is large, Arduino switches the relay off 
6. The relay interrupts the current flow and the lamp switches off



Sense-think-act

Sense-think-act is a popular interaction paradigm 
(and the one we will use in this course) 

• Sense: observe the environment (some features) 

• Think: based on observation, make a decision 

• Act: based on decision, perform some action(s) 

12



Sense-think-act

Who takes care of what? 

• Sense: sensors (e.g., ultrasonic sensor) 

• Think: micro controller (e.g., Arduino)  

• Act: actuators (e.g., relay)

13



Sense-think-act
We will learn how to make products interactive 

We will do so by implementing the sense-think-act 
paradigm with Arduino 

To do so, we need to: 

1. Understand a bit of the Arduino structure 

2. Learn how to program Arduino 

3. Learn how to physically connect sensors and actuators

14



Observations
• We chose Arduino as microcontroller 

• Arduino is a (fast) prototyping tool, not a 
component you want to embed into the final 
product (it costs too much, it is too large, it is not 
optimized for your product) 

• This is just for us to preview the final product (and 
decide whether it is worth to produce it)

15



Arduino Overview

16



Arduino Overview

17

Pins

Pins

Reset 
Button



Arduino Overview

18

• Arduino communicates with sensors and actuators through pins

• You can only write from or read to pins 

• We will connect actuators and sensors to pins 

• Programs consist of: 
• reading from pins (sensing) 
• elaborating (thinking) 
• writing to pins (acting) 



Part I: Programming
• Basics of Arduino Programming 

• Overview of Arduino programs 

• Variables, constants, assignments, 
comparison and logical operators 

• (pin and terminal) Input/output 

• Instructions: sequence, if-then-else, loops

19



Programming

• In order to work, Arduino needs to be programmed 

• Programs define the way Arduino behaves, when 
and how sensors and actuators are used 

• Programs tell Arduino what to do

20



Structure of Arduino 
Programs

• Every Arduino program consists of 2 parts: 

• setup: this defines the preliminary actions that 
Arduino needs to perform before starting the 
actual work 

• loop: this tells Arduino what  to do when running

21



My First Arduino Program

22

void setup(){ 
  pinMode(13,OUTPUT); 
} 

void loop(){ 
  digitalWrite(13,HIGH);   
  delay(1000); 
   
  digitalWrite(13,LOW); 
  delay(1000); 
} 

A program that makes 
a LED blink



My First Arduino Program

23

void setup(){ 
  pinMode(13,OUTPUT); 
} 

void loop(){ 
  digitalWrite(13,HIGH);   
  delay(1000); 
   
  digitalWrite(13,LOW); 
  delay(1000); 
} 



Sketch

• Sketch is the programming language of Arduino 

• It is very similar to the language C (for those of you 
who know it) 

• Let’s see the basic rules to write Sketch Programs 
(a.k.a. sketches)

24



loop and setup functions

25

Sketches consist of two functions: setup and loop 
• setup: executed once, when Arduino powered or reset button pressed 
• loop: executed over and over, after setup

void setup(){ 
} 

void loop(){ 
} 

To write your own program you need to put your code within the curly 
brackets of each function, i.e., write the function body



Function body 

26

The function body is a sequence of instructions, each terminating with `;`

void loop(){ 
  digitalWrite(13,HIGH);   
  delay(1000); 
   
  digitalWrite(13,LOW); 
  delay(1000); 
} 

function body
an instruction

When the function is executed, instructions are executed in the order they 
occur in the body



Some basic Instructions

27

pinMode(pin,mode): assigns mode mode to pin pin  
(mode can only be INPUT or OUTPUT) 

digitalWrite(pin,val): writes value val to pin pin  
(pin mode must have been set to OUTPUT, 
val can only be HIGH or LOW) 

delay(msec): waits for msec milliseconds

As you can see, instructions have parameters

You don’t need to memorize all the instructions!  
Use these slides any time you need! 

(This is what programmers do ;) )



My First Arduino Program / 2

28

void setup(){ 
  pinMode(13,OUTPUT); 
} 

void loop(){ 
  digitalWrite(13,HIGH);   
  delay(1000); 
   
  digitalWrite(13,LOW); 
  delay(1000); 
} 

Do we understand this program now?



Hands-on #1

29

Now, let’s make Arduino blink:

1. Install the Arduino software on your PC 
2. Start the Arduino software 
3. File -> New 
4. Write the blink program 
5. Connect your PC and Arduino through a USB cable 
6. Press the Upload Button  
7. Enjoy!



Advice

30

Before setting up a circuit, ALWAYS disconnect the USB cable 
(and any other power source) 

Unless you REALLY know what you’re doing,  
and ``really’’ means REALLY!!!,  

don't connect Arduino to a power source other than USB 

These are SAFETY advices, to protect Arduino and 
YOURSELF!



Hands-on #2

31

Next, we are going to make other lights blink 

We are going to setup a circuit that we will use for a while 

For now, you won’t understand all the circuit details but we will 
get to that 



Hands-on #2

32

Arduino Breadboard A-B USB cable

Jumper Wires

Common to all projects

Light Emitting Diode (LED) 
(Pin sizes matter)

220 Ohm Resistor 
(Color stripes matter)



Hands-on #2

33

(ALWAYS Keep the security advices in mind!)



Hands-on #2

34

We still don’t know much about circuits, but who built the 
circuit told us that: 

If you set pin 10 to HIGH, then current  flows through the LED 
and… 

…well, try it yourself!



Hands-on #2

35

void setup(){ 
  pinMode(10,OUTPUT); 
} 

void loop(){ 
  digitalWrite(10,HIGH);   
} 

How would you modify this program to make the LED blink?



Commenting your Code

36

Since programs are not always as clear as the ones above  
(which, btw, is clear just because we have commented on it),  
it is useful to use comments inside the code: 

void loop(){ 
/*  
The sequence of characters above starts a multi-line comment 
This is a multi-line comment. Anything you write until the end  
of the comment is ignored when the program runs  
The sequence of characters below closes the comment  
*/ 

  // Everything until the end of a line is a comment 
} 

Comments have no impact on program execution 

Comments are for you and for who reads your code! 
 



37

``Official’’ version of the blink program: 
/* 
  Blink 
  Turns on an LED on for one second, then off for one second, repeatedly. 

  Most Arduinos have an on-board LED you can control. On the Uno and 
  Leonardo, it is attached to digital pin 13. If you're unsure what 
  pin the on-board LED is connected to on your Arduino model, check 
  the documentation at http://arduino.cc 

  This example code is in the public domain. 

  modified 8 May 2014 
  by Scott Fitzgerald 
 */ 

// the setup function runs once when you press reset or power the board 
void setup() { 
  // initialize digital pin 13 as an output. 
  pinMode(13, OUTPUT); 
} 

// the loop function runs over and over again forever 
void loop() { 
  digitalWrite(13, HIGH);   // turn the LED on (HIGH is the voltage level) 
  delay(1000);              // wait for a second 
  digitalWrite(13, LOW);    // turn the LED off by making the voltage LOW 
  delay(1000);              // wait for a second 
} 

We will be using comments all the time!



Variables

38

Typically, programs need to store values 

For instance, suppose after every blink, we want to increase 
the delay by .5 secs 

To do so, we need to record how long the LED has been on at 
previous step  

To store and retrieve values, Sketch (like all programming 
languages) offers a structure called variable 

A variable can be thought of as a box containing a value



Variables

39

int t;  //Variable declaration 

void setup(){ 
 t = 0;  //Variable initialization: now t contains the value 0 
  pinMode(10,OUTPUT); 
} 

void loop(){ 
  t = t + 500; // New assignment: the value of t is increased by 500 
  digitalWrite(10,HIGH); 
  delay(t);  //Value retrieval 
   
  digitalWrite(10,LOW); 
  delay(t); 
} 



Observations

40

• Variables must be declared before use:  
int t; 

• Sketch variables have a type, the type of values they store, e.g.: 
int: integer 

• To change a variable’s value you use the assignment operator =, e.g.,: 
t = 0; 

• To access a variable’s value, you just use the variable as if it were the 
value, e.g.,: 

t = t + 500; 
delay(t);



Visibility of Variables

41

• In the example, t was declared outside the body of functions 
• In this case, it visible to all functions. It is called a global variable 

• You can also declare a variable inside a function body (or a block) 
• In this case, it is visible only to the function (or block) it was declared in   
• It is called a local variable 

• The rule is that a variable is visible  to the block (and sub-blocks) it is 
declared in



Constants

42

• Constants are similar to variables, but can be assigned a value only when 
declared, e.g.: 

const int INCREMENT = 500; 

(INCREMENT is an integer constant containing the value 500) 

• Visibility rules for constants are the same as for variables 

• It is a (stylistic) convention that constant names be capitalized 
(and we will stick to it!) 



Example

43

// Constant declarations and initialization (notice capitalization): 
const int PIN = 10; 
const int INCREMENT = 500; 

int t = 0;  //Variable declaration and initialization 

void setup(){ 
 pinMode(PIN,OUTPUT); 
} 

void loop(){ 
  t = t + INCREMENT; // New assignment: the value of t is increased by INCREMENT 
  digitalWrite(PIN,HIGH); 
  delay(t);  //Value retrieval 
   
  digitalWrite(PIN,LOW); 
  delay(t); 
} 



Observations

44

• We have already encountered some constants (guess which ones) 

• Constants are desirable because they give a meaning to numbers: 
•  t = t + 500; // What is 500???? 
•  t = t + INCREMENT; // The value by which you want to increase t! 

• Constants are desirable because they make changes easier:  
• Imagine you want to use pin 14 instead of 10 
• Compare which changes are required in the two program versions (with 

and without constants) 

• Whenever you have the choice, using a constant is better than not!



Program Structure Revisited

45

The previous observations suggest the following good practice of program 
organization:

// Global constant declarations and initialization (OPTIONAL) 

// Global variable declarations and initialization (OPTIONAL) 

// setup function (MANDATORY): 
void setup(){ 
/* YOUR CODE 
HERE */} 

// loop function (MANDATORY): 
void loop(){ 
/* YOUR CODE  
HERE */} 



Hands-on #3

46

Write and execute a program that makes the LED (on pin 10) 
blink according to the following rules: 

• Initially, the LED alternates 1 sec on and 2 secs off 

• After every blink, on and off times are swapped  
(i.e., at the second iteration, the LED will be 2 secs on and 1 
sec off, then 1 sec on and 2 off, then 2 secs on and 1 off, and 
so on)



47

// Global constant declarations 
const int PIN = 10; // output pin 
const int T1 = 1000; // initial on-time 
const int T2 = 2000; // initial off-time 

// Global variable declarations 
int t_on = T1; // on-time variable declaration and initialization 
int t_off = T2;// off-time variable declaration and initialization 

void setup(){  
  pinMode(PIN,OUTPUT); 
} 

void loop(){ 
  digitalWrite(PIN,HIGH); 
  delay(t_on); 
   
  digitalWrite(PIN,LOW); 
  delay(t_off); 
   
  int aux = t_on; // Using local variable aux to swap t_on and t_off 
  t_on = t_off; 
  t_off = aux; 
}



digitalRead

48

• We have already used the instruction digitalWrite 
• It can be used to write either HIGH or LOW on a pin 

• We can also read values from a pin 
• For HIGH or LOW we can use the instruction digitalRead 

• digitalRead(pin): returns the value read on pin pin 
(pin mode must be INPUT, return value is either HIGH or 
LOW) 

• The returned value can be stored in a variable to be used 

• Let see how it works… 



Hands-on #4

49

We are now going to build our first interactive device! 

We will switch the LED on whenever a button is pressed 

A button is a very simple contact sensor



Hands-on #4

50

Arduino Breadboard A-B USB cable

Common to all projects

We have these These are new



Hands-on #4

51



Hands-on #4

52

// Global constant declarations 
const int OUT_PIN = 10; // output pin 
const int IN_PIN = 2; // input pin 

void setup(){  
  pinMode(OUT_PIN,OUTPUT); 
  pinMode(IN_PIN,INPUT); 
} 

void loop(){ 
  int val = digitalRead(IN_PIN); 
  digitalWrite(OUT_PIN,val); 
} 



Observations

53

// Global constant declarations 
const int OUT_PIN = 10; // output pin 
const int IN_PIN = 2; // input pin 

void setup(){  
  pinMode(OUT_PIN,OUTPUT); 
  pinMode(IN_PIN,INPUT); 
} 

void loop(){ 
  int val = digitalRead(IN_PIN); 
  digitalWrite(OUT_PIN,val); 
} 

Global constants

(accessed by both functions)

local variable (used only by loop)

digitalRead reads the value on PIN 10

(HIGH if button pushed)



54

Did we buy an Arduino to push a button and 
switch a light on???????  

Boohoo!!!! 

OK, we can do better, but we need further 
instructions



Example

• Consider a variant of Hands-on #4 

• We want the LED to remain on 3 seconds when the 
button is pressed 

• What do we need?

55



Example/2
Ideally, we need a program like this: 

void loop(){ 
/* if button is pressed  

then switch LED on for 3 seconds 
*/ 

} 

We already know how to switch the LED on

Unfortunately, we don’t know how to check whether the 
button is pressed 

56



if-then-else

• The if-then-else instruction allows us to: 

• test a condition, and 

• if the condition is true, execute some instructions 

• if the condition is false, execute some other 
instructions

57



if-then-else / 2
if (<condition>){ 
  /* <if-branch>:  
           mandatory, executed if <condition> is true 
  */ 
} 
else{ 
  /*  
        <else-branch> 
            optional, if present, executed if <condition> is false 
*/ 
}

58



Example

59

// Global constant declarations 
const int OUT_PIN = 10; // output pin 
const int IN_PIN = 2; // input pin 

void setup(){  
  pinMode(OUT_PIN,OUTPUT); 
  pinMode(IN_PIN,INPUT); 
} 

void loop(){ 
  int val = digitalRead(IN_PIN); //Reads value on PIN 2 

  if (val == HIGH){ 
    digitalWrite(OUT_PIN,HIGH); //switches LED on 
    delay(3000); 
    digitalWrite(OUT_PIN,LOW); //switches LED off 
  } 
}



Observations

60

if (val == HIGH){ 
    digitalWrite(OUT_PIN,HIGH); //switches LED on 
    delay(3000); 
    digitalWrite(OUT_PIN,LOW); //switches LED off 
    delay(3000); 
  }

Condition

If-branch

Else-branch not present in this example 



Hands-on #5

61

Using the same circuit as that of hands-on #4, 

write a program that makes the LED blink 3 times, whenever 
the button is pressed



Hands-on #5

62

// Constant declarations and setup function same as before 

void loop(){ 
  int val = digitalRead(IN_PIN); //Reads value on PIN 10 
  if (val == HIGH){ 
    digitalWrite(OUT_PIN,HIGH); 
    delay(500); 
    digitalWrite(OUT_PIN,LOW);   
    delay(500); 
    digitalWrite(OUT_PIN,HIGH); 
    delay(500); 
    digitalWrite(OUT_PIN,LOW);   
    delay(500); 
    digitalWrite(OUT_PIN,HIGH); 
    delay(500); 
    digitalWrite(OUT_PIN,LOW);   
    delay(500); 
  } 
}



The else-branch

63

Imagine you want the LED (on pin 10) blink according to the 
following rules: 

• Initially, the LED alternates .5 sec on and .5 sec off 

• After every blink, on- and off-times are decreased by .025 sec 

• When .025 is reached, times are reset to .5 sec (after blinking) 

How would you write your sketch?



64

// Global constant and variable declarations 
const int OUT_PIN = 10; // output pin 
const int INIT_DELAY = 500; // initial delay 
const int DECREMENT = 25; // time decrement 
int t; // current delay 

void setup(){  
  pinMode(OUT_PIN,OUTPUT); // set pin as output 
  t = INIT_DELAY; // initialize current delay 
} 

void loop(){ 
  // Make the led blink 
  digitalWrite(OUT_PIN,HIGH); // on 
  delay(t); // wait 
  digitalWrite(OUT_PIN,LOW); // off 
  delay(t); // wait 
   
  // Set the delay 
  if(t == DECREMENT){ 
    t = INIT_DELAY; // reset delay 
  } 
  else{ 
    t = t - DECREMENT; // decrease wait time 
  } 
}



Conditions
• A condition represents some property of a program in 

execution 

• E.g., val == HIGH represents the fact that variable val is 
assigned value HIGH (notice the use of == instead of =) 

• Conditions can either be true or false (this matters, 
e.g., when the condition occurs in an if-then-else 
instruction) 

• To write conditions, we need to know the language of 
conditions 

65



• Conditions can be built in various way. We will consider the following: 

• Comparison of a variable against another variable, constant, or value, e.g.: 

• val == 8 (the value of variable val equals 8) 

• val != IN_PIN (the value of variable val is different than the value of constant IN_PIN) 

• val > x (the value of variable val is greater than that of variable x) 

• val <= 9 (the value of variable val is less than or equal to 9) 

• also >= (greater or equal), < (less than) available 

• Combination of above comparisons through logical operators && (and), || (or), ! (not): 

• (val >= 8) && (val != 9) 

• (val != 10) && (val <= 5) 

• !((val > 8) || (val == 10))

66
Don’t worry: you’ll learn with practice!



Hands-on #6

67

Add one button to the circuit used in hands-on #5 (and #4) 

Then, write a sketch such that: 

the LED is always on except when both buttons are pressed



Hands-on #6

68

You need another set of these



Hands-on #6

69



Hands-on #6

70

// Global constant declarations 
const int BUTTON1_PIN = 2; 
const int BUTTON2_PIN = 4; 
const int LED_PIN = 10; 

void setup(){  
  pinMode(BUTTON1_PIN,INPUT); 
  pinMode(BUTTON2_PIN,INPUT); 
  pinMode(LED_PIN,OUTPUT); 
} 

void loop(){ 
  int b1 = digitalRead(BUTTON1_PIN); 
  int b2 = digitalRead(BUTTON2_PIN); 

  if ((b1 == HIGH) && (b2 == HIGH)){ 
    digitalWrite(LED_PIN,LOW); 
  } 
  else{ 
    digitalWrite(LED_PIN,HIGH); 
  } 
} 



Loops

• Loops allow for iterating over a code block 

• Useful when one needs to execute the same 
instructions many times (possibly on different 
variables, pins, etc.)

71



Example

• Imagine you need to set the mode of all digital pins 
to OUTPUT 

• How would you write the setup function?

72



Example

73

void setup(){  
  pinMode(0,OUTPUT); 
  pinMode(1,OUTPUT); 
  pinMode(2,OUTPUT); 
  pinMode(3,OUTPUT); 
  pinMode(4,OUTPUT); 
  pinMode(5,OUTPUT); 
  pinMode(6,OUTPUT); 
  pinMode(7,OUTPUT); 
  pinMode(8,OUTPUT); 
  pinMode(9,OUTPUT); 
  pinMode(10,OUTPUT); 
  pinMode(11,OUTPUT); 
  pinMode(12,OUTPUT); 
  pinMode(13,OUTPUT); 
}



while loop
The previous example can be conveniently written as 

follows, using the while instruction:

74

int i = 0; 
while (i <= 13){ 
     pinMode(i,OUTPUT); 
     i = i +1; 
  }



while loop

75

int i = 0; 
while (i <= 13){ 
     pinMode(i,OUTPUT); 
     i = i +1; 
  }

Condition

Block

• Condition is evaluated: 
• if true: 

• Block is executed 
• loop is repeated 

• if false: loop exits



Hands-on #7

76



Hands-on #7

77

• Write a sketch that: 

• switches the led on pin 10 on for .2 secs, then 

• switches the led on pin 10 off and switches the led 
on pin 11 on for .2 secs, then 

• switches the led on pin 11 off and switches the led 
on pin 12 on for .2 secs, then switches the led on 
pin 12 off and repeats 



Hands-on #7

78

void setup(){  
  int i = 10; 
  while (i <= 12){ 
    pinMode(i,OUTPUT); 
    i = i+1; 
  } 
} 

void loop(){ 
  int i = 10; 
  while (i <= 12){ 
    digitalWrite(i,HIGH); 
    delay(200); 
    digitalWrite(i,LOW); 
    i = i+1; 
  } 
}



for loop
We can also use the for instruction:

79

 for (int i = 0; i <= 13; i++){ 
     pinMode(i,OUTPUT); 
  }

Note: i++ is used as a shortcut for i = i + 1



for loop

80

 for (int i = 0; i <= 13; i++){ 
     pinMode(i,OUTPUT); 
  }

Initialization

Exit condition
Increment

Block

1. Initialization is executed 
2. Exit condition is evaluated: 

• if true: 
• Block is executed 
• Increment is executed 
• 2. is repeated 

• if false: loop exits



Hands-on #8

81

• Rewrite the sketch of hands-on #7 using instruction 
for instead of while



Hands-on #8

82

void setup(){  
  for(int i = 10; i <= 12; i=i+1){ 
    pinMode(i,OUTPUT); 
  } 
} 

void loop(){ 
  for(int i = 10; i <= 12; i=i+1){ 
    digitalWrite(i,HIGH); 
    delay(100); 
    digitalWrite(i,LOW); 
  } 
}



Textual output

• Arduino can also output text to the PC connected  
via USB 

• Textual output is useful to keep track of program 
execution 

• The text can be read on a terminal (Tools -> 
Serial Monitor on the Arduino Software)

83



Example

84

void setup(){ 
  Serial.begin(9600); //set transmission rate 
} 

void loop(){ 
  if (digitalRead(4) == HIGH){ 
    Serial.print("Button pressed!"); // write to terminal 
    Serial.println(); // write end of line 
    Serial.println(“Button pressed!"); // write to terminal + end of line 
}



analogRead, analogWrite

• digitalRead and digitalWrite allow us to read/
write digital (HIGH or LOW) input/output 

• Sometimes, we need to read/write values on a 
scale (e.g., light intensity, noise volume, etc.) 

• For this we can use analogRead/analogWrite

85



Hands-on #9

86



Hands-on #9
• We are now going to change the light intensity of 

an LED, based on the amount of light in the 
environment 

• We will use a light sensor, called photoresistor or 
light-dependent resistor (LDR) 

• The light intensity of the LED will change based on 
the light intensity on the LDR

87



Hands-on #9
const int SENSOR = A0; 
const int LED = 11; 

void setup(){  
  pinMode(LED,OUTPUT); 
  /* NOTE:  
   *      - A0 is only input and doesn't need setup 
   */ 
} 

void loop(){ 
  int input_light = analogRead(SENSOR); // analogRead: 0 - 1023 
  analogWrite(LED, input_light / 4); // analogWrite: 0 - 255 
}

88



Observations

void loop(){ 
  int input_light = analogRead(SENSOR); // analogRead: 0 - 1023 
  analogWrite(LED, input_light / 4); // analogWrite: 0 - 255 
}

89

• analogRead returns on scale 0-1023 
• analogWrite writes on a scale 0 - 255 
• Need to scale value for LED



Hands-on #10

• Program Arduino so that the LED of the circuit of 
hands-on #9 reduces its intensity as the 
environment is more illuminated, and viceversa. 

90



Hands-on #10
const int SENSOR = A0; 
const int LED = 11; 
const int MAX_LIGHT = 1023; 

void setup(){  
  pinMode(LED,OUTPUT); 
} 

void loop(){ 
  int input_light = analogRead(SENSOR); 
  analogWrite(LED, (MAX_LIGHT-input_light)/4); 
} 

91



Powering Arduino
• In most cases, you will need to use Arduino without 

connecting to a PC 

• Once the sketch you want to execute is uploaded 
on Arduino, you can unplug the cable and run 
Arduino  

• However, you need to attach Arduino to a power 
source

92



Powering Arduino

Two ways: 

• Battery  

• Adapter (not portable, but useful in some cases)

93



Powering Arduino: battery

94



Powering Arduino: adapter

95

You can plug here a  
DC adapter with any  

voltage between 7V and 12V



Electric Circuits

• Electric circuits are networks of electric 
components 

• To work, electric circuits need electric current 
flowing through them

96



Example



Electric Current

• Electric current: flow of electric charges 

• Think of electric current as particles flowing in a 
conductor (metal) wire 

• Sometime easier to think about water in a pipe (not 
accurate but helpful)

98



Electric Current

• We don’t need to know what it is, but:  

• what we can do with it

• how we can deal with it 

• For this, we need some basics

99



Electric Current
• Power source (battery, adapter, etc.) provides two 

terminals: 
• Positive (+) 
• Negative (-, ground)  

• When the circuit is closed, current flows from + to - 

• When current flows through a component (e.g., a 
light bulb), the component is activated

100



Example

+
-

Power source

Component

Conductors

current

Terminals



Example

+
-

currentX



Breadboard

• Circuits are typically built by soldering components 
and cannot be reconfigured 

• Breadboards allow for quick&dirty circuit realization 
and are reconfigurable (this is why we use them!)

103



Part II: Basics on Electronics
• Electric circuits 

• Current, voltage 

• Breadboard 

• Short circuits 

• Basic components: resistors, LEDs, diodes, 
buttons, LDRs 

• Voltage reading

104



Breadboard

105



Example



Voltage
• Power source terminals provide a voltage, 

measured in Volts (V) 

• Negative (-) terminal provides (conventionally) 0V  

• Positive (+) terminal provides higher voltage 

• The higher the positive voltage, the higher the 
current in the circuit! (That is, if you increase the 
voltage on +, the light bulb emits more light)

107



Arduino Output Pins

108

• When Arduino is powered: 

• Any pin labelled with GND (ground) provides 0V 

• Pins labelled with 5V and 3.3V provide 5V and 3.3V 

• When used in OUTPUT mode, Arduino pins: 

• if set to LOW, provide 0V 

• if set to HIGH, provide 5V



Example

… 
digitalWrite(7,HIGH) 

…



Buttons

110

• Possibly the easiest kind of components 
• Allow to open/close a circuit 
• Pressed: closed 
• Released: open 
• Buttons we use: 

• Horizontally always connected 
• Vertically connected when pressed



Example

111



Short-Circuit
• If you connect the positive and the negative 

terminals, you create a short-circuit 

• In a short-circuit the current flow is extremely high 
and this can: 
• create sparks 
• induce battery explosions 
• lead to conductor heating and even melting  

• So… NEVER create a short circuit!!!

112



Example

113

Can this circuit create a short-circuit?



Resistors

• We have used resistors previously 
• Resistors offer resistance to current flow 
• The higher the resistance (measured in Ohm), the 

lower the current flow 
• Resistors are not directional: they let current flow in 

either way 
• Many components (e.g., light bulbs) show a 

resistor-like behavior

114



Example

115



Preventing Short-Circuits

• To prevent a short-circuit, make sure that a 
component of suitable resistance is put between + 
and - 

• This reduces current flow

116



Diodes and LEDs

• Diodes are components that let current flow in one 
direction only (anode to cathode) 

• LEDs (Light-emitting diodes) work the same as 
diodes but in addition emit light when current flows 

• Diodes and LEDs have essentially no resistance

117



Example

118

Is there a short-circuit? 

(Remember: diodes and LEDs have essentially no resistance)



Hands-on #11 

119

• Can this circuit generate a short-circuit? 
• If so, can it be prevented?



Voltage/2
• Each point of the circuit has a voltage 

• The voltage at each point depends on how the components are 
connected and how they are working 

• Voltage at the end of (constant) resisting components drops if 
current increases 

• If current does not flow, voltage is the same on both ends 

• If you connect a wire to a point of the circuit and plug it into an 
Arduino pin, you can read the voltage at that point 

• Calculating voltage (and current) at each point is complicated, and 
we will not get into it in details!

120



Example 1

121

Pin 2 is used to 

read voltage at 


this point of circuit

… 
pinMode(2,INPUT); 

… 
int val = digitalRead(2); 

…



Light-dependent Resistors 
(LDRs)

• Also called photoresistors  

• Reduce resistance as light increases 

• By reading the voltage at its ends, one gets an 
approximate measure of the environment light

122



Example 2

123

To read this, we need 
analogRead



Circuit Assembly

• A basic (yet powerful) approach to assemble 
circuits 

• Basic circuit for actuators 

• Basic circuit for sensors

124



Approach
• Arduino: 

1. Senses: gathers information from sensors 

2. Thinks: elaborates the information 

3. Acts: instructs actuators  

• No need to have sensor/actuator direct communication 

• Basic idea: have a separate circuit per sensor/actuator

125



Example

126

The breadboard hosts two separate circuits 
(except for powering) 

Sensor and actuator do not interact directly!!! 

Sensor Circuit

Actuator Circuit



Approach/2
• To assemble a circuit: 

• Focus on each sub-circuit separately  

• Consider only the interaction of sub-circuit with Arduino, not 
with other circuits (no interaction) 

• Most sub-circuits are analogous to those we have seen (LEDs, 
buttons), but they use different components, and might need 
different resistors (I will help in choosing the right ones ;)) 

• More complex circuits (e.g., to drive a motor) will be 
addressed on demand, depending on the needs of your 
projects

127



128


