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a b s t r a c t

Starting from the paper by Nash and Sofer (1990), we propose a heuristic adaptive truncation criterion
for the inner iterations within linesearch-based truncated Newton methods. Our aim is to possibly
avoid ‘‘over-solving’’ of the Newton equation, based on a comparison between the predicted reduction
of the objective function and the actual reduction obtained. A numerical experience on unconstrained
optimization problems highlights a satisfactory effectiveness and robustness of the adaptive criterion
proposed, when a residual-based truncation criterion is selected.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the unconstrained optimization prob-
lem

min f (x), (1)

where f : Rn
−→ R is a real valued function possibly nonconvex,

and n is large.We consider the standard assumptions that f is twice
continuously differentiable, and that for a given x0 ∈ Rn the level
set Ω0 = {x ∈ Rn

| f (x) ≤ f (x0)} is compact.
Truncated Newton methods are widely used for solving such

problems. They are also called Newton–Krylov methods since a
Krylov subspace method is usually employed, for approximately
solving the Newton equation at each iteration. A general descrip-
tion of the truncated Newton methods can be found in the survey
paper [17]. Now we briefly recall the main features of this class
of methods. In the sequel, we denote by fk = f (xk), gk = ∇f (xk)
and Hk = ∇

2f (xk) respectively the function, the gradient and the
Hessian matrix of the function f at the point xk. Moreover, we do
not assume any sparsity pattern for Hk.

It is well known that, given an initial guess x0 of a local min-
imizer of problem (1), a truncated Newton method is based on
two nested loops: the outer iterations which represent the actual
steps of the method, where the current estimate of the solution is
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updated; the inner iterationswhich carry out an iterative algorithm
for computing, at each outer iteration k, a search direction dk by
approximately solving the Newton equation

Hkd = −gk. (2)

The iterative algorithm used for solving (2) is actually ‘‘truncated’’,
i.e. terminated before the exact solution is obtained. This strategy
is based on the fact that, since the benefits of using a Newton
direction are local, i.e. in the neighborhood of a stationary point,
an accurate solution of (2) may be unjustified when xk is far from
a local optimizer. As matter of fact, in this case, a much simpler
search direction can often perform comparably well. Instead, more
accuracy is required when the iterates approach a local minimizer.
A good trade-off between the accuracy in solving the Newton
equation (2) and the computational effort employed per outer
iteration is a key point, for the overall efficiency of a truncated
Newton method. Indeed, there might be significant advantages to
terminating the inner iterations early, when we are still far from
a solution and the problem has significant nonlinearities. On the
contrary, when close to a solution, there may be disadvantages to
early terminating, inasmuch as the corresponding search direction
dk might be poor.

Since the early papers [4,5] where truncated Newton methods
were introduced, the importance of an efficient truncation crite-
rion for the inner iterations was pointed out. The stopping rule
proposed therein is based on controlling the magnitude of the
residual. Under suitable assumptions, this allows to guarantee local
convergence and a good convergence rate. Another truncation rule
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has been proposed in [19]. It is based on a comparison between
the reduction of the quadratic model of the objective function, at
the current iteration, and the average reduction per iteration of the
model.

The proper choice of a suitable truncation criterion, along with
the necessity to handle the indefinite case (see also [8]) and the
choice of an effective preconditioning strategy, are three ‘‘open
questions’’ within truncated Newton frameworks, listed in the
early survey paper [21]. In subsequent years, even if the research
activity on these topics was greatly developed, actually no defini-
tive answer has been yet provided.

Another fundamental aspect of a truncated Newton method
concerns the global convergence. Indeed, as well known, a global-
ization strategy must be adopted to this aim, i.e. the method must
be embedded within a linesearch or a trust region framework.

On the basis of these remarks, in this paper we propose a
simple adaptive truncation criterion for the inner iterations within
a linesearch-based truncated Newton method, and analyze its ef-
fectiveness in both the unpreconditioned and the preconditioned
case. Our aim is to define an additional rule which enables to avoid
‘‘over-solving’’ of the Newton equation (2) in some circumstances.
The latter phenomenon occurs whenever unnecessary inner it-
erations are performed, so that indulging in solving the Newton
equation does not produce a better search direction. This possibly
yields a reduction of the overall inner iterations, for both convex
and nonconvex problems. Our proposal is partially inspired by
trust region approach (see e.g. [3]), and is based on a comparison
between the reduction of the objective function predicted by the
quadratic model, and the actual reduction obtained. In particular,
we consider a linesearch–based truncated Newton method where
the inner iterations are performed using the Conjugate Gradient
(CG) algorithm. A numerical experience was carried on for a se-
lection of large scale (convex and nonconvex) test problems from
CUTEst collection [11], showing the satisfactory effectiveness and
the robustness of the adaptive rule proposed, when the residual-
based criterion is adopted. For the sake of brevity, we only report
a few significant summary results. The complete numerical results
are detailed in the companion paper [1].

The paper is organized as follows: in Section 2 the two com-
monest truncation criteria used in the literature are reported and
discussed. Section 3 reports some introductory theoretical motiva-
tionswhich are at the basis of our proposal. The novel adaptive rule
is introduced in Section 4 and a summary of the numerical testing
is reported in Section 5. Finally, Section 6 reports some concluding
remarks. As regards the notations, ∥v∥ denotes the 2-norm of the
vector v ∈ Rn.

2. Common truncation criteria

In order to briefly recall the truncation criteria commonly used
in the literature, we denote by dk an approximate solution of (2),
and by rk = Hkdk + gk the corresponding residual.

A natural stopping criterion for the inner iterations is the
residual-based criterion, proposed in the seminal papers [4] and [5].
Indeed, the authors propose to terminate the inner iterations
whenever the residual rk is sufficiently small, namely
∥rk∥
∥gk∥

≤ ηk, (3)

for a specified value of ηk. It is well known that criterion (3) is
scale invariant and that the choice of the forcing sequence {ηk} is
crucial for controlling the convergence rate of the algorithm. A
widely used choice proposed in [5] is ηk = min{1/k, ∥gk∥r

}, with
0 < r ≤ 1. Other forcing sequences have been proposed later in [6]
and [7]. The possibility to easily control the rate of convergence of
the algorithm, bymeans of suitable choices of the sequence {ηk}, is

a key point for this criterion. On the other hand, some drawbacks
deriving from the adoption of this rule are well known. Indeed, at
the jth inner iteration of the Krylov subspace method adopted for
solving theNewton equation (2), a stationary point of the quadratic
model

qk(d) =
1
2
dTHkd + gT

k d (4)

over the Krylov subspace

Kj(Hk, gk) = span
{
gk,Hkgk,H2

k gk, . . . ,H
j−1
k gk

}
is sought. In the case of positive definite Hessian Hk, the quadratic
model (4) has a global minimizer which exactly solves the Newton
equation (2). Of course, this case corresponds to a null residual.
Conversely, whenever an approximate solution is sought,monitor-
ing the magnitude of the residual might be, as discussed in [19],
misleading. Indeed, the actual decrease of the objective function
values can be alternatively predicted by means of the quadratic
model decrease; however, themagnitude of the residual rk and the
quadratic model qk(dk) could be significantly different. Moreover,
the rounding error in computing ∥rk∥ could be relevant since rk
is usually computed by recurrence. In addition, whenever a CG
method is used in the inner iterations and Hk is positive definite,
the quadratic model monotonically decreases as the inner itera-
tions progress, while the sequence {∥rk∥} is not monotone (unlike,
for instance, using MINRES).

These remarks induced the authors to propose in [19] also a
truncation rule based on the decrease of the quadratic model, rather
than considering only the residual. Namely, the truncation crite-
rion proposed is the following: the inner iterations are terminated
if, for a specified value of ηk ∈ (0, 1),
qk(dj) − qk(dj−1)

qk(dj)
j

≤ ηk, (5)

where dj denotes the approximate solution of (2) at the jth inner
iteration. This criterion is then based on the comparison between
the reduction of the quadratic model qk(dj) − qk(dj−1), and the
average reduction per iteration qk(dj)/j. The criterion (5) is often
considered preferable to (3) , since it gains information directly
from the values of the quadratic model. Moreover, in [9] it was
extended to possibly consider also an indefinite HessianmatrixHk,
providing some theoretical results, too.

However, in the framework of truncated Newton methods, in
unconstrained as well as in constrained optimization, some codes
currently available on theweb and commonly used by the optimiz-
ers community still adopt the residual-based truncation criterion
(3), bothwithin linesearch-based and trust region-based codes (see
e.g. [2,13], [15] page 9, [12,22–24] and URL https://neos-guide.
org/content/truncated-newton-methods). This might be due also
to the fact that, as well known, the adoption of (3) ensures the-
oretical superlinear convergence. Conversely, the criterion based
on the quadratic model reduction (5), with the suggested value of
ηk = 0.5 (constant), guarantees only the theoretical linear rate of
convergence [19], even if it works very efficiently in practice.

On the basis of these remarks, in this paper we focus on the
possibility to ‘‘enrich’’ the residual-based criterion (3) by convey-
ing, also in this case, information gained from the behavior of
the quadratic model. To this aim, we propose an adaptive rule
for deciding the maximum number of inner iterations allowed at
each outer iteration. The latter rule combined with the criterion
(3) should enhance the overall efficiency of a truncated Newton
method, by possibly avoiding the over–solving phenomenon.

3. Motivation for the truncation rule

Both the stopping criteria (3) and (5) in the previous section
may not prevent over-solving of the Newton equation. For the
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residual-based criterion (3), different forcing sequences have been
proposed to stem this phenomenon [7], still guaranteeing a good
asymptotic rate of convergence.

As regards the criterion (5), it is well-grounded if the quadratic
model is accurate, i.e. if the quadratic model is a good (local)
approximation of the objective function. Conversely, if accuracy is
poor, a successful strategy has been proposed in [20] in the con-
text of block-truncated Newton methods. The strategy is simple
and consists of allowing only one inner iteration if the stepsize
determined by the linesearch procedure in the previous outer
iteration is different from one. The rationale behind this strategy
relies on the fact that a stepsize different from one (i.e. the search
direction likely does not resemble the Newton direction) means
that the quadratic model is likely inaccurate. In the context of a
block method where each inner iteration represents a significant
computation, this simple rulewas appropriate and effective.When
the standard CG method is used as the inner iteration, a more
nuanced strategy is desired.

Additional justification for avoiding over-solving is provided
by the computational results in [18]. This paper compares the
performance of a truncatedNewtonmethod and a limited-memory
BFGS method, and concludes that the truncated Newton method
displays superior performancewhen the quadratic model is a good
approximation to the objective function.

Based on this evidence, we propose an adaptive rule for dy-
namically setting themaximum number of inner iterations at each
outer iteration of a linesearch-based truncated Newton scheme,
possibly allowing the Hessian matrix Hk to be indefinite. In par-
ticular, inspired by trust region methods [3] (and borrowing their
terminology/notation), at each outer iteration k, our idea is to
compare the actual reduction of the objective function

Aredk = fk − f (xk + sk)

with the predicted reduction, i.e. the reduction predicted by the
quadratic model

Predk = qk(0) − qk(sk) = −

[
1
2
sTkHksk + gT

k sk

]
,

where sk = αkdk and αk is the stepsize computed by the linesearch
procedure. Our truncation criterion will be based on the difference
between actual and predicted reduction, an estimate of the differ-
ence between the quadratic model and the objective function. It is
this quantity that was determined in [18] to be significant to the
performance of a truncated Newton method.

To provide further insight into this choice, we examine the
difference between Ared and Pred. If they are similar then we will
conclude that the quadratic model is a good approximation to the
objective function, and that the inner iteration is computing an
effective search direction. Our focus is on the difference between
the quadraticmodel and the higher-order terms in the Taylor series
approximation to f , as motivated by the comments above.

Let us look at these quantities in more detail. Since f ∈ C2(Rn),

Aredk = fk − f (xk + sk) = −skTgk −
1
2
skTH(xk + ξ sk)sk,

where 0 ≤ ξ ≤ 1. For Predk we obtain

Predk = fk − [fk + skTgk +
1
2
skTHksk] = −skTgk −

1
2
skTHksk.

Combining these, we have

Aredk − Predk =
1
2
skT [Hk − H(xk + ξ sk)]sk.

Now, observe that if f (x) is a quadratic function then

Hk = H(xk + ξ sk)

yielding

Aredk − Predk = 0.

On the contrary, if f (x) is not quadratic and the quadratic model is
not a good approximation to it, then the difference Aredk − Predk
will be large. Similarly, if ∥sk∥ is small, this difference will be small,
aswe can expectwhen the truncatedNewton algorithmconverges.
Thus, on balance, we can monitor values of |Aredk − Predk| to
possibly introduce an adaptive truncation criterion.

Our focus on Ared and Pred is reminiscent of trust region meth-
ods, but our approach is distinct. In a trust region method, if there
is disagreement between Ared and Pred then a bound on the norm
of the search direction is reduced. In our case (see Section 4) we
will reduce a bound on the number of inner iterations, i.e., a bound
on the computational effort. As motivated by [18], if the quadratic
model is not a good approximation to the objective function, it
is not worthwhile to use a large number of inner iterations to
minimize the quadratic model, to compute a search direction.

There is a relationship between the trust region approach and
our approach. When the CG method is used in the inner iteration,
the estimate of the search direction sk increases monotonically in
norm (provided that a suitable norm is adopted), at each iteration.
Hence bounding the norm of sk will limit the number of inner
iterations, and vice versa, but the relationship between the two
approaches is not precise. Even if the bound on sk is small a
significant number of CG iterations might still result.

This is analogous to the relationship between the residual-
based stopping criterion (3) and the quadratic-based stopping
criterion (5). There is a theoretical relationship between them [16],
but the latter is based directly on limiting the computational effort
if it is determined that the inner iteration is not contributing to
the progress of the optimization. As shown in [19], the norm of the
residual can be a poor predictor of the quality of the search direc-
tion. It is our hope that we can reduce the effect of over-solving by
focusing directly on the computational effort in the algorithm.

Our adaptive truncation criterion (defined in Section 4) will be
based on |Ared−Pred|. Wewill be assessing howwell the quadratic
model approximates the objective function. This is different than
in a traditional trust region method, where it is more common to
assess only whether the predicted reduction underestimates the
actual reduction.

4. Our adaptive truncation criterion

The analysis of the previous section can be used for defining
an Adaptive Truncation Criterion (ATC) within a truncated Newton
scheme. The quantity

ρk =

⏐⏐⏐Aredk − Predk
⏐⏐⏐ (6)

is at the basis of our adaptive rule. In particular, we adaptively set
the maximum numbermax_itk+1 of inner iterations allowed at the
outer iteration k + 1, on the basis of the value of ρk.

The Adaptive Truncation Criterion we propose is detailed in the
following scheme:

Adaptive Truncation Criterion (ATC)

Data: 0 < γ1 < γ2, 0 < σ3 < 1 < σ2 < σ1, 0 < θ2 < θ1
and ℓ ∈ N, 1 ≤ ℓ < n.

If ρk ≤ Ckγ1 then (very successful step)
if αk ≥ θ1 then set max_itk+1 = min{n , ⌊σ1max_itk⌋}

else if ρk ≤ Ckγ2 then (successful step)
if αk ≥ θ2 then set max_itk+1 = min{n , ⌊σ2max_itk⌋}

else (unsuccessful step)
set max_itk+1 = max{ℓ , ⌊σ3max_itk⌋}
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The maximum number of inner iterations is increased in case of
successful steps, otherwise it is decreased (unsuccessful steps). Note
that in the successful steps an additional check on the stepsize αk
is introduced. This is motivated by the fact that when dk is poor,
then ∥sk∥ can actually be very small after the linesearch procedure,
possibly yielding an unexpected successful/very successful step. To
prevent the latter drawback, following the rationale behind the
proposal in [20], we verify that the quality of sk resembles dk, by
checking the steplength αk. Whenever the stepsize is too small,
then dk is likely poor and we leavemax_itk unchanged.

The quantity Ck is introduced in order to take into account
the magnitude of Aredk and Predk, so that the adopted test is
well scaled. A detailed discussion about possible choices for Ck
is reported in Section 5. The purpose of the threshold value ℓ is
to guarantee that a certain number ℓ ≪ n of inner iterations is
anyhow performed. This value plays an important role whenever
the information collected during the inner iterations is possibly
used to construct preconditioners [9] and [10]. Indeed, in this case
a threshold number of inner iterations should prevent the con-
struction of an unreliable preconditioner. Of course, other possible
preconditioning strategies might differently affect the choice of
parameter ℓ. Observe that, since in ATC we have ℓ ≥ 1, and since
the first CG iteration produces a search direction proportional to
the negative gradient, the ATC strategy always yields a gradient-
related direction, which guarantees global convergence.

We can summarize the importance of the ATC criterion by
observing that it complies with the following three issues:

1. it aims at extending the strategy in [20] already mentioned;
2. it attempts to partially exploit second order information on

the objective function (including also the indefinite case), by
considering in (6) a quadratic model update;

3. considering that we are dealing with large scale problems,
it does not require significant additional computational bur-
den and supplementary storage.

In order to clarify the latter key points, we first observe that the
strategy in [20] substantially uses information from the linesearch
procedure, to infer second order information on the function.
Indeed, whenever the stepsize is equal to one, then the search
direction is a Newton-like direction, implying that the local second
order model is a ‘‘qualified’’ approximation of the objective func-
tion. In this regard, ρk should be, to some extent, a measure of this
‘‘qualification’’. As regards item 2., note that ρk includes informa-
tion on second order derivatives of f , throughout the computation
of the quadraticmodel. Thus, ρk possibly summarizes some second
order information on f , too. Finally, as concerns item3., considering
the large scale setting, the computational cost of ATC is definitely
negligible.

Note that the early termination of the inner iterations is equiv-
alent to restarting the iterative method used (say the CG method).
In this regard, the use of a preconditioner (if any) could be helpful
in avoiding a possible deterioration in performance due to this
restart. This motivates the fact that in the numerical experiences
we also include the use of a preconditioning strategy, combined
with ATC. The considerations in the current paragraph deserve
a more accurate analysis based on numerical experiences, as re-
ported in the next section and in [1].

We conclude this section by observing that, as already said,
the rule we proposed is based on ρk. Since in (6) the predicted
reduction is based on the quadratic Taylor series approximation,
ρk can be bounded in terms of the third derivatives of the objective
function and the magnitude of the current search direction. As the
algorithm converges, ρk goes to zero, and our adaptive truncation
criterion reverts to a traditional truncated Newton method.

5. Numerical experiences

In this section, we report a brief summary of an extensive
numerical testing by considering a standard implementation of a
truncated Newton method. The complete results are included in
the companion paper [1]. The Conjugate Gradient method is em-
ployed in the inner iterations. The novelty consists in the adoption
of the adaptive criterion described in the previous section. Thus
the maximum number of CG inner iterations allowed per outer
iteration (initialized to n, i.e. max_it1 = n) is adaptively adjusted
according to ATC.We tested ATC bothwithin the unpreconditioned
and the preconditioned framework proposed in [9]. As regards the
stopping criterion for the CG inner iterations, we tested both the
criteria recalled in Section 2: the residual-based criterion (3) and
the quadratic model reduction-based criterion (5).

We remark that our main goal is to provide an adaptive rule
to enhance the residual-based criterion (3). Nevertheless, for com-
pletenesswe also coupled ATCwith criterion (5), though no signifi-
cant improvementwas expected, since (5) already contains second
order information.

5.1. Guidelines for the choice of Ck in ATC scheme

The quantity Ck in ATC plays the role of a scaling factor with
respect to values of the objective function, which should duly
take into account the size of Aredk and Predk. In particular, among
several possibilities we tested the following two expressions of Ck

Ck = min{1, |f (xk)|} (7)

Ck = max{1, |f (xk)|}, (8)

whose rationale may be interpreted as follows. The expression (7)
takes into account scaling of the function when f (xk) is relatively
small (i.e. |f (xk)| ≤ 1). On the other hand, the expression (8) for
Ck takes into account scaling when f (xk) is relatively large. We
experimented both the choices on the whole test set and, though
apparently the choice (8) might be more intuitive, setting Ck as
in (7) yields appreciably better results (at least on the test set
considered). Note that with the choice (7), whenever |f (xk)| is
small, we have Ck close to zero. However, in this case we expect
that also Aredk and Predk are not relatively large. Therefore, if
Ck is close to zero and the test in ATC scheme fails, we expect
that Aredk and Predk differ appreciably, hence the step must be
considered unsuccessful. In this regard, the choice for considering
the step successful or unsuccessful is completely determined by
the value of the parameter γ1 and γ2. The results concerning the
unpreconditioned and preconditioned cases are very similar. On
the basis of these results, we adopt Ck = min{1, |f (xk)|} for our
numerical experience reported in the sequel.

5.2. Numerical comparisons among different schemes

We now summarize the main results of the numerical experi-
ences, reported in [1], namely the use of our adaptive truncation
criterion ATC. In particular, our aim is to assess the improvement
of using (3) + ATC w.r.t. (3) (in short, ATC-true vs. ATC-false).
Moreover, we also consider results obtained by using (5). We first
observe that the adoption of ATC affects the results for several test
problems, both in the unpreconditioned and preconditioned case.
By observing the performance profiles reported in [1] we deduce
that the choice ATC-true outperforms ATC-false both in terms of
number of CG inner iterations and CPU time. This confirms the
expectation of our proposal, i.e., coupling the rule (3) with ATC, in
practice enhances first order information with some second order
information, thus improving the overall performance.
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Furthermore, a comparison between the rule (3) with ATC-true
and (5) is also considered, showing that, in practice, (3)+ ATC both
retains the appealing theoretical convergence properties of using
(3) and, to some extent, performs similarly to (5). This reveals also
that possibly the residual-based criterion does not include enough
information on the reduction of the quadratic model, and that the
joint use with ATC enables the partial recovery of this information.

As a matter of fact, pairing (3) with ATC proves to be successful,
while coupling ATC with (5) risks to spoil the information on
second order derivatives, thus yielding inefficiency.

5.3. Comparison with trust region approach

Our ATC rule proposed in this paper, to a large extent, draws
inspiration from trust region methods, so that it could be signifi-
cant to directly compare our (linesearch-based) approach versus
a trust region approach. We want to assess the behavior of a
truncated Newtonmethod based on our ATC strategy, with respect
to a standard trust region code. On this purpose we consider the
TRON code [13] which represents one of the most commonly
used implementations of a trust region truncated Newtonmethod,
for large bound-constrained problems (this code is available from
Jorge Moré’s web page). In this algorithm a descent direction for
the trust region subproblem is generated, by means of a precon-
ditioned conjugate gradient method, and the CG iterations are
stopped whenever the trust region bound is violated, a negative
curvature is encountered or a convergence condition is satisfied.
For all the details we refer to [13].

We compare the results obtained by TRON, on the whole test
set, versus those obtained by our approach. First, observe that,
due to differences among the computational schemes used, the
CPU time is likely the most significant indicator to assess the
overall computational burden. Hence, it could be misleading to
draw any conclusions by comparing, for instance, the number of
outer iterations/function evaluations. We run TRON by using all
the default parameters of the code and by using both the default
stopping criterion and the standard one in [14]. Of course, the
default stopping criterion is tighter than the one in [14], so that the
use of the stopping criterion in [14] enables early stops for TRON
code. As consequence, by using the stopping criterion in [14] in
place of the default one, TRON recovers some failures for CPU time
limit or number of function evaluations.

On this guideline, in order to make a fair comparison with our
proposal, we compare the results obtained by our preconditioned
truncated Newton method and by TRON, using the same default
stopping criterion for both the algorithms. This comparison is
reported in [1], showing that our algorithm outperforms TRON
in terms of CPU time, even if in terms of function evaluations
and CG inner iterations TRON is more efficient than our proposal.
The reason of this is clearly evidenced by observing some runs
of TRON. Indeed, on some large scale problems the Incomplete
Cholesky Factorization (ICF) used by TRON, when computing the
step in the trust region subproblem, is definitely time consuming.
This implies that, in solving some difficult large scale problems,
after 900 seconds only one or two outer iterations are possibly
performed.

As regards the robustness, TRON is much successful (in terms
of number of function evaluations and CG inner iterations), while
it tends to lack robustness. In order to better clarify the latter issue,
the detailed results for all the problems where at least one of the
algorithms fails to converge are reported in [1].

On summary, to large extent our proposal compares favorably
with respect to TRON.

6. Conclusions

In this paper we addressed the problem of ‘‘over-solving’’
the Newton equation within linesearch-based truncated Newton

methods. An adaptive rule for dynamically setting the maximum
number of inner iterations, at each outer iteration, is studied. It can
be used jointly with any truncation criterion. A significant numer-
ical study has been performed, in order to assess the effectiveness
and the robustness of the joint use of the adaptive rule and the two
most popular truncation criteria.

Overall, even if a careful tuning of the parameters used in
the adaptive rule is certainly still needed, the results obtained
definitely agree with those reported in [19] and [20], from which
we have drawn inspiration for this work. Finally, we assert that the
results obtained seem to indicate that the use of the adaptive rule
is promising, particularly in tackling large scale difficult nonconvex
problems.
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