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1 Introduction

This paper is focused on both theoretical and computational results, for the parameter
dependent class of preconditioners M ♯

ℎ(a, �,D), addressed in the companion paper [6]. The
latter proposal is specifically suited for large scale problems, and our preconditioners are
built using information collected by any Krylov subspace method, when solving the sym-
metric linear system Ax = b, A ∈ IRn×n indefinite.

There is plenty of real applications and/or theoretical frameworks where the solution
of large symmetric linear systems is amenable, including several contexts from nonlinear
optimization. Examples of the latter contexts range from truncated Newton methods to
KKT systems and interior point methods, not to mention the growing interest for PDE
constrained optimization.

The class of preconditioners we propose is computationally cheap (in terms of the num-
ber of flops), and the construction of its members depends on the structural properties of
matrix A. In particular, when A is positive definite, the Krylov subspace method adopted to
solve the linear system provides, as by product, a factorization of a tridiagonal matrix, used
to define our preconditioners. On the other hand, in case A is indefinite, the computation
of the eigenpairs of a very small symmetric matrix (say at most 20 × 20) is performed, in
order to construct the preconditioners. We remark that our parameter dependent precon-
ditioners can be addressed by using a general Krylov subspace method. Moreover, we prove
theoretical properties for the preconditioned matrix and we provide results which indicate
how to possibly select the preconditioners parameters.

In this paper we experienced our preconditioners in the solution of linear systems from
numerical analysis and in nonlinear optimization frameworks. In this regard, we prelimi-
narily tested our proposal on significant linear systems from the literature, both including
small/medium scale difficult linear systems and large systems. Then, we focused on Newton–
Krylov methods (see [13] for a survey), and since our proposal may be extended to indefinite
linear systems, we considered both convex and nonconvex problems.

The paper is organized as follows: in Section 2, we describe some properties of our class
of preconditioners, recalling the results of the companion paper [6]. Section 3 is devoted to
estimate the condition number of the preconditioned system matrix. In Section 4 we provide
an extensive numerical experience using our preconditioners, and a section of conclusions
and future work completes the paper.

As regards the notations, for a n×n real matrix M we denote with Λ[M ] the spectrum
of M ; Ik is the identity matrix of order k. We indicate with �(C) the condition number of
the real matrix C ∈ IRn×n. Finally, with C ≻ 0 we indicate that the matrix C is positive
definite, tr(C) and det(C) are the trace and the determinant of C, while ∥ ⋅ ∥ denotes the
Euclidean norm.
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2 Our class of preconditioners

We recall here our class of preconditioners defined in the companion paper [6]. On this
purpose, consider the indefinite linear system

Ax = b, (2.1)

where A ∈ IRn×n is symmetric, n is large and b ∈ IRn. Suppose any Krylov subspace method
is used for the solution of (2.1).

Assumption 2.1 Let us consider any Krylov subspace method to solve the symmetric linear
system (2.1). Suppose at step ℎ of the Krylov method, with ℎ ≤ n − 1, the matrices
Rℎ ∈ IRn×ℎ, Tℎ ∈ IRℎ×ℎ and the vector uℎ+1 ∈ IRn are generated, such that

ARℎ = RℎTℎ + �ℎ+1uℎ+1e
T
ℎ , �ℎ+1 ∈ IR, (2.2)

Tℎ =

⎧

⎨

⎩

VℎBℎV
T
ℎ , if Tℎ is indefinite

LℎDℎL
T
ℎ , if Tℎ is positive definite

(2.3)

where

Rℎ = (u1 ⋅ ⋅ ⋅ uℎ), uTi uj = 0, ∥ui∥ = 1, 1 ≤ i ∕= j ≤ ℎ,

uTℎ+1ui = 0, ∥uℎ+1∥ = 1, 1 ≤ i ≤ ℎ,

Tℎ is symmetric and nonsingular, with eigenvalues �1, . . . , �ℎ not all coincident

Bℎ = diag1≤i≤ℎ{�i}, Vℎ = (v1 ⋅ ⋅ ⋅ vℎ) ∈ IRℎ×ℎ orthogonal, (�i, vi) is eigenpair of Tℎ,

Dℎ ≻ 0 is diagonal, Lℎ is unit lower bidiagonal.

Then, using the notation (see also [8, 6])

∣Tℎ∣
def
=

⎧

⎨

⎩

Vℎ∣Bℎ∣V
T
ℎ , ∣Bℎ∣ = diag1≤i≤ℎ{∣�i∣}, if Tℎ is indefinite,

Tℎ, if Tℎ is positive definite,

the matrix ∣Tℎ∣ is positive definite, for any choice of A and for any integer ℎ. Now, recalling

the matrix Mℎ, along with our class of preconditioners M ♯
ℎ(a, �,D)

M ♯
ℎ(a, �,D) = D

[

In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)
T
]

DT ℎ ≤ n− 1,

+ (Rℎ ∣ Duℎ+1)

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

(Rℎ ∣ Duℎ+1)
T (2.4)

M ♯
n(a, �,D) = Rn∣Tn∣

−1RT
n , (2.5)

both introduced in the companion paper [6], we have the following result.
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Theorem 2.1 Consider any Krylov-subspace method to solve the symmetric linear sys-
tem (2.1), where A is indefinite. Suppose that Assumption 2.1 holds and the Krylov-
subspace method performs ℎ ≤ n iterations. Let a ∈ IR, � ∕= 0, and let the matrix
D ∈ IRn×n be such that [Rℎ ∣ Duℎ+1 ∣ DRn,ℎ+1] is nonsingular, where Rn,ℎ+1R

T
n,ℎ+1 =

In − (Rℎ ∣ uℎ+1) (Rℎ ∣ uℎ+1)
T . Then, we have the following properties:

a) the matrix M ♯
ℎ(a, �,D) is symmetric. Furthermore,

– when ℎ ≤ n − 1, for any a ∈ IR ∖ {±�(eTℎ ∣Tℎ∣
−1eℎ)

−1/2}, M ♯
ℎ(a, �,D) is nonsin-

gular. In addition, if D = In then

det
(

M ♯
ℎ(a, �, In)

)

= �−2ℎ det(∣Tℎ∣
−1)

(

1−
a2

�2
eTℎ ∣Tℎ∣

−1eℎ

)−1

;

– when ℎ = n the matrix M ♯
ℎ(a, �,D) is nonsingular. In addition, if D = In then

det
(

M ♯
n(a, �, In)

)

= det(∣Tℎ∣
−1);

b) setting D = In and � = 1 the matrix M ♯
ℎ(a, 1, In) coincides with M−1

ℎ ;

c) for ∣a∣ < ∣�∣(eTℎ ∣Tℎ∣
−1eℎ)

−1/2 the matrix M ♯
ℎ(a, �,D) is positive definite. Moreover, if

D = In the spectrum Λ[M ♯
ℎ(a, �, In)] is given by

Λ[M ♯
ℎ(a, �, In)] = Λ

[

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1
]

∪ Λ
[

In−(ℎ+1)

]

;

d) when ℎ ≤ n− 1, D = In and either Tℎ ≻ 0 or Tℎ is indefinite

– then M ♯
ℎ(a, �, In)A has at least (ℎ− 3) singular values equal to +1/�2;

– if a = 0 then the matrix M ♯
ℎ(0, �, In)A has at least (ℎ − 2) singular values equal

to +1/�2;

e) when ℎ = n, then M ♯
n(a, �,D) = M−1

n , Λ[Mn] = Λ[∣Tn∣] and Λ[M−1
n A] = Λ[AM−1

n ] ⊆

{−1,+1}, i.e. the n eigenvalues of the preconditioned matrix M ♯
ℎ(a, �,D)A are either

+1 or −1.

Proof: See the companion paper [6].

3 On the condition number of matrix M
♯
ℎ(a, �,D)A

In this section we want to estimate the condition number �(M ♯
ℎ(a, �,D)A) of the unsymmet-

ric matrix M ♯
ℎ(a, �,D)A (where M ♯

ℎ(a, �,D) is computed as in (2.4)-(2.5) and A is defined
in (2.1)). We immediately have

�(M ♯
ℎ(a, �,D)A)

def
= ∥M ♯

ℎ(a, �,D)A∥2 ⋅ ∥(M
♯
ℎ(a, �,D)A)−1∥2

= ∥M ♯
ℎ(a, �,D)A∥2 ⋅ ∥A

−1(M ♯
ℎ(a, �,D))−1∥2, (3.1)
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and we can prove the next technical lemma.

Lemma 3.1 Let C ∈ IRℎ×ℎ be a symmetric and positive definite matrix. Let 0 < !1 ≤
⋅ ⋅ ⋅ ≤ !ℎ be the ordered eigenvalues of C, with !1, . . . , !ℎ not all coincident, and let a ∈ IR,
� ∈ IR. Then, given the quantities

� = −�2(ℎ− 1)!1 + �2tr(C) + 1,

� =

�2det(C)

[

1−
a2

�2
eTℎC

−1eℎ

]

(!ℎ)ℎ−1
,

we have
�2 − 4� > 0

In addition
[tr(C)− (ℎ− 1)!1]!

ℎ−1
ℎ

det(C)
> 1. (3.2)

Proof: By the definition of � and �, and since C ≻ 0, the condition �2−4� ≥ 0 is satisfied
if and only if

�2(eTℎC
−1eℎ)

−1

[

1−
�2(!ℎ)

ℎ−1

4�2det(C)

]

≤ a2. (3.3)

Now, observing that !1, . . . , !ℎ are not all coincident, � > �2!ℎ + 1 and for any !1 ≥ 0 we
have (�2!1 + 1)2 ≥ 4�2!1, we obtain

�2(!ℎ)
ℎ−1

4�2det(C)
≥

�2

4�2!1
>

(�2!ℎ + 1)2

4�2!1
≥

(�2!1 + 1)2

4�2!1
≥ 1, (3.4)

so that (3.3) holds for any choice of a, which also implies that �2 − 4� ≥ 0. Also observe
that by (3.4) �2(!ℎ)

ℎ−1/[4�2det(C)] > 1, so that (3.3) can never be satisfied as an equality,
i.e. �2 − 4� ∕= 0 for any value of the parameter a.

Finally, note that since det(C) = !1 ⋅ ⋅ ⋅ ⋅ ⋅ !ℎ we have

!ℎ−1
ℎ >

det(C)

tr(C)− (ℎ− 1)!1
, (3.5)

inasmuch as !1, . . . , !ℎ are not all coincident and

det(C)

tr(C)− (ℎ− 1)!1
≤

det(C)

!ℎ
=

ℎ−1
∏

i=1

!i < !ℎ−1
ℎ .

As a consequence, we have the condition

[tr(C)− (ℎ− 1)!1]!
ℎ−1
ℎ

det(C)
> 1. (3.6)
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In the following result we provide a general estimation of the condition number �(M ♯
ℎ(a, �,D)A),

which depends on the parameters ‘�’ and ‘a’, and the matrix ‘D’ in (2.4). Note that for the
sake of clarity, but with a little abuse of notation, in the sequel we directly indicate with
�1, . . . , �ℎ the eigenvalues of ∣Tℎ∣ and not the eigenvalues of Tℎ.

Proposition 3.2 Consider the matrix M ♯
ℎ(a, �,D) in (2.4)-(2.5), with ℎ ≤ n − 1, where

∣Tℎ∣ satisfies Assumption 2.1. Let �1 ≤ ⋅ ⋅ ⋅ ≤ �ℎ be the (ordered) eigenvalues of ∣Tℎ∣, where
�1, . . . , �ℎ are not all coincident. Then, if

∣a∣ < ∣�∣(eTℎ ∣Tℎ∣
−1eℎ)

−1/2, � ∕= 0 (3.7)

we have
�(M ♯

ℎ(a, �,D)A) ≤ �ℎ ⋅ �(N)2 ⋅ �(A), (3.8)

with

�ℎ =
max

{

1,
ℎ+(2

ℎ−4�ℎ)
1/2

2

}

min
{

1,
ℎ−(2

ℎ−4�ℎ)1/2

2

} ≥ 1 (3.9)

and
ℎ = −�2(ℎ− 1)�1 + �2tr(∣Tℎ∣) + 1

�ℎ =
�2det(∣Tℎ∣)

[

1− a2

�2 e
T
ℎ ∣Tℎ∣

−1eℎ

]

(�ℎ)ℎ−1
.

In particular, when D = In in (2.4) then �(M ♯
ℎA) ≤ �ℎ ⋅ �(A).

Proof: Let �1 ≤ ⋅ ⋅ ⋅ ≤ �ℎ+1 be the (ordered) eigenvalues of the matrix

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)

, (3.10)

which is positive definite as long as condition (3.7) is fulfilled. Observe that by the identity

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)

=

(

Iℎ 0
a
�2
eTℎ ∣Tℎ∣

−1 1

)(

�2∣Tℎ∣ 0

0 1− a2

�2 e
T
ℎ ∣Tℎ∣

−1eℎ

)(

Iℎ
a
�2
∣Tℎ∣

−1eℎ
0 1

)

we have

det

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)

= �2ℎdet(∣Tℎ∣)

[

1−
a2

�2
eTℎ ∣Tℎ∣

−1eℎ

]

(3.11)

and �2∣Tℎ∣ is the ℎ×ℎ upper left diagonal block of matrix (3.10). Therefore, by the Cauchy
interlacing properties [4] between the sequences {�j}j=1,...,ℎ and {�i}i=1,...,ℎ+1 we have

�1 ≤ �2�1 ≤ �2 ≤ �2�2 ≤ ⋅ ⋅ ⋅ ≤ �ℎ ≤ �2�ℎ ≤ �ℎ+1. (3.12)

By (3.10), (3.11) and (3.12) we can immediately infer the following intermediate results:

1. �2�1 ≤ �i ≤ �2�ℎ, i = 2, . . . , ℎ

5



2.
ℎ+1
∑

i=1

�i = �2tr(∣Tℎ∣) + 1

3.
ℎ+1
∏

i=1

�i = �2ℎdet(∣Tℎ∣)

[

1−
a2

�2
eTℎ ∣Tℎ∣

−1eℎ

]

From 1. we deduce that

�2(ℎ− 1)�1 ≤
ℎ
∑

i=2

�i ≤ �2(ℎ− 1)�ℎ,

so that from 2., 3., (3.12) and recalling that the matrix (3.10) is positive definite, we have

max
{

0,−�2(ℎ− 1)�ℎ + �2tr(∣Tℎ∣) + 1
}

≤ �1 + �ℎ+1 ≤ −�2(ℎ− 1)�1 + �2tr(∣Tℎ∣) + 1

�2ℎdet(∣Tℎ∣)
[

1− a2

�2
eTℎ ∣Tℎ∣

−1eℎ

]

�2(ℎ−1)(�ℎ)ℎ−1
≤ �1 ⋅ �ℎ+1 ≤

�2ℎdet(∣Tℎ∣)
[

1− a2

�2
eTℎ ∣Tℎ∣

−1eℎ

]

�2(ℎ−1)(�1)ℎ−1
.

(3.13)
From (3.13) (see also points (A) and (B) in Figure 3.1), in order to compute bounds �1

λ
1

λ h+
1

λ
1
 + λ

h+1
 = − δ2 (h−1)µ

1
 + δ2 tr (|T

h
|) +1  

λ
1
 + λ

h+1
 = = − δ2 (h−1)µ

h
 + δ2 tr (|T

h
|) +1

.

.

λ
1
 ⋅ λ

h+1
 = δ2 det(|T

h
|) [ 1− a2/δ2 e

h
T|T

h
|−1e

h
 ]/(µ

h
)h−1  

λ
1
 ⋅ λ

h+1
 = δ2 det(|T

h
|) [ 1− a2/δ2 e

h
T|T

h
|−1e

h
 ]/(µ

1
)h−1  

(A)

(B)

Figure 3.1: Relation between the eigenvalues �1 and �ℎ+1 of matrix (3.10).

[�ℎ+1] for the smallest [largest] eigenvalue of matrix (3.10), we have to solve the linear
system (�ℎ and ℎ are defined in the statement of this proposition)

{

�̃1 + �̃ℎ+1 = ℎ
�̃1 ⋅ �̃ℎ+1 = �ℎ,
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which yields

�̃1 =
ℎ−(2

ℎ−4�ℎ)
1/2

2

�̃ℎ+1 =
ℎ+(2

ℎ−4�ℎ)
1/2

2 ,

(3.14)

provided that 2ℎ − 4�ℎ ≥ 0. However, the latter condition directly holds from Lemma 3.1.
Now, observe that from Theorem 2.1, setting N = [Rℎ ∣ Duℎ+1 ∣ DRn,ℎ+1] (where N is

nonsingular by hypothesis), for ℎ ≤ n− 1 the preconditioners M ♯
ℎ(a, �,D) may be rewritten

as

M ♯
ℎ(a, �,D) = N

⎡

⎣

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)−1

0

0 In−(ℎ+1)

⎤

⎦NT , ℎ ≤ n− 1. (3.15)

As a consequence, setting

Wℎ =

⎡

⎣

(

�2∣Tℎ∣ aeℎ
aeTℎ 1

)

0

0 In−(ℎ+1)

⎤

⎦ ,

we have for the smallest [largest] eigenvalue �m [�M ] of matrices Wℎ and W−1
ℎ the expres-

sions
⎧

⎨

⎩

�m(Wℎ) = min {1, �1}

�M (Wℎ) = max {1, �ℎ+1}
⎧



⎨



⎩

�m(W−1
ℎ ) = 1

max{1,�ℎ+1}

�M (W−1
ℎ ) = 1

min{1,�1}
.

Thus, if �m(A) [�m(A−1)] and �M (A) [�M (A−1)] are the smallest [largest] eigenvalue of
matrix A [A−1] respectively, from (3.15) we have

∥M ♯
ℎ(a, �,D)A∥ ≤ �M (A) ⋅ ∥N∥2 ⋅ �M (W−1

ℎ ) ≤ �M (A) ⋅ ∥N∥2 ⋅
1

min {1, �1}

and

∥(M ♯
ℎ(a, �,D)A)−1∥ = ∥A−1(M ♯

ℎ(a, �,D))−1∥ ≤ �M (A−1) ⋅ ∥N−1∥2 ⋅ �M (Wℎ)

≤
1

�m(A)
⋅ ∥N−1∥2 ⋅max {1, �ℎ+1} ,

so that from (3.14)

�
(

M ♯
ℎ(a, �,D)A

)

= ∥M ♯
ℎ(a, �,D)A∥ ⋅ ∥(M ♯

ℎ(a, �,D)A)−1∥ ≤
max

{

1, �̃ℎ+1

}

min
{

1, �̃1

} �(N)2�(A),

which is relation (3.8). Finally, when D = In in (2.4) then �(N) = 1.
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In order to better specify the bound (3.8) we can now prove the next lemma.

Lemma 3.3 Let us consider the hypotheses of Proposition 3.2 and the quantity �ℎ defined
in (3.9). Then, for any choice of ‘�’ and ‘a’ satisfying (3.7) we have

�ℎ =
ℎ + (2ℎ − 4�ℎ)

1/2

ℎ − (2ℎ − 4�ℎ)1/2
. (3.16)

Proof: The proof consists to analyze the following three cases:

1. ℎ < 2 (i.e. �2 < 1/[tr(∣Tℎ∣)− (ℎ− 1)�1])

2. ℎ = 2 (i.e. �2 = 1/[tr(∣Tℎ∣)− (ℎ− 1)�1])

3. ℎ > 2 (i.e. �2 > 1/[tr(∣Tℎ∣)− (ℎ− 1)�1])

In case 1. is satisfied, observe that the inequality

ℎ + (2ℎ − 4�ℎ)
1/2

2
< 1

cannot hold, since (consider that ℎ − 2 < 0 and see Lemma 3.1) it requires that

ℎ < 1 + �ℎ iff a2 <

[

1−
(ℎ − 1)�ℎ−1

ℎ

�2det(∣Tℎ∣)

]

�2

eTℎ ∣Tℎ∣−1eℎ

which can hold only if
(ℎ − 1)�ℎ−1

ℎ

�2det(∣Tℎ∣)
≤ 1

or equivalently

�2 ≥
(ℎ − 1)�ℎ−1

ℎ

det(∣Tℎ∣)
.

However, the last inequality cannot hold because it is equivalent to

1 ≥
[tr(∣Tℎ∣)− (ℎ− 1)�1]�

ℎ−1
ℎ

det(∣Tℎ∣)
,

which cannot be satisfied from Lemma 3.1. Moreover, in case 1., also

ℎ − (2ℎ − 4�ℎ)
1/2

2
> 1

cannot hold, since ℎ − 2 < 0. Therefore, when ℎ < 2 relation (3.16) holds.
The case 2. is pretty similar to the case 1., so that again (3.16) follows almost immedi-

ately.
In case 3., the inequality

ℎ + (2ℎ − 4�ℎ)
1/2

2
< 1
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cannot hold since it is equivalent to (2ℎ − 4�ℎ)
1/2 < 2 − ℎ < 0. Moreover, from Lemma

3.1 and considering that ℎ − 2 > 0, the condition

ℎ − (2ℎ − 4�ℎ)
1/2

2
> 1

can be satisfied if

ℎ < 1 + �ℎ iff a2 <

[

1−
(ℎ − 1)�ℎ−1

ℎ

�2det(∣Tℎ∣)

]

�2

eTℎ ∣Tℎ∣−1eℎ
,

which holds only if
(ℎ − 1)�ℎ−1

ℎ

�2det(∣Tℎ∣)
≤ 1

or equivalently

�2 ≥
(ℎ − 1)�ℎ−1

ℎ

det(∣Tℎ∣)
.

However, since ℎ − 1 = tr(∣Tℎ∣)− (ℎ− 1)�1, the last inequality is again equivalent to

1 ≥
[tr(∣Tℎ∣)− (ℎ− 1)�1]�

ℎ−1
ℎ

det(∣Tℎ∣)

which cannot hold from Lemma 3.1. Thus relation (3.16) holds.

Lemma 3.4 Consider the matrix M ♯
ℎ(a, �,D) in (2.4)-(2.5), with ℎ ≤ n. Let �1 ≤ ⋅ ⋅ ⋅ ≤ �ℎ

be the (ordered) eigenvalues of ∣Tℎ∣, with �1, ⋅ ⋅ ⋅ , �ℎ not all coincident, and let the parameters
‘a’ and ‘�’ satisfy condition (3.7). Then, for any choice of the matrix D in (2.4)

∙ the coefficient �ℎ in (3.9) increases when ∣a∣ → �, with � = ∣�∣(eTℎ ∣Tℎ∣
−1eℎ)

−1/2, and

lim
∣a∣→�

�ℎ = +∞

∙ the coefficient �ℎ in (3.9) attains its minimum when a = 0, and for a = 0 we have for
the coefficient �ℎ in (3.9) the expression

�ℎ =
ℎ +

(

2ℎ − 4 �2det(∣Tℎ∣)
(�ℎ)ℎ−1

)1/2

ℎ −
(

2ℎ − 4 �2det(∣Tℎ∣)
(�ℎ)ℎ−1

)1/2
. (3.17)

Proof: Observe that when ∣a∣ → � then in the expression (3.9) of �ℎ we have �ℎ → 0,
along with ℎ − (2ℎ − 4�ℎ)

1/2 → 0 and ℎ + (2ℎ − 4�ℎ)
1/2 → 2ℎ, with ℎ > 1. Thus,

since from Lemma 3.1 ℎ − 4�ℎ ≥ 0, Lemma 3.3 ensures that �ℎ satisfies (3.16), so that

9



�ℎ increases as ∣a∣ → �, with lim∣a∣→� �̄ℎ = +∞. Moreover, from (3.16) and since �ℎ is a
continuous function of the parameter ‘a’ (see (3.7)), we have

∂�ℎ
∂a

=
∂�ℎ
∂�ℎ

⋅
∂�ℎ
∂a

=
−2ℎ

[ℎ − (2ℎ + 4�ℎ)1/2]2(
2
ℎ − 4�ℎ)1/2

⋅
−2a ⋅ det(∣Tℎ∣)e

T
ℎ ∣Tℎ∣

−1eℎ
(�ℎ)ℎ−1

,

so that for ∣a∣ < � we have sgn{∂�ℎ/∂a} = sgn{a}, which implies that �ℎ attains its
minimum for a = 0.

Finally, by Lemma 3.1 2ℎ− 4�ℎ ≥ 0 for any choice of a satisfying (3.7), and when a = 0
it is �ℎ = �2det(∣Tℎ∣)/(�ℎ)

ℎ−1. Thus, from Lemma 3.3 the value of �ℎ when a = 0 is given
by

�ℎ =
ℎ +

(

2ℎ − 4 �2det(∣Tℎ∣)
(�ℎ)ℎ−1

)1/2

ℎ −
(

2ℎ − 4 �2det(∣Tℎ∣)
(�ℎ)ℎ−1

)1/2
,

so that (3.17) holds.

Remark 3.1 By (3.17) we observe that as expected, the parameter ‘�’ both affects the

distribution of the singular values of M ♯
ℎ(a, �,D)A (see item d) of Theorem 2.1), and also

its condition number �(M ♯
ℎ(a, �,D)A), when computed according with (3.1).

4 Preliminary numerical results

In order to preliminarily test our proposal on a general framework, where no information is
known about the sparsity pattern of the matrix A, we used our parameter dependent class
of preconditioners M ♯

ℎ(a, �,D), setting � = 1 and D = In.
In our numerical experience we obtain even better results w.r.t. the theory. Indeed, all

the results assessed in Theorem 2.1 for the singular values of the (possibly) unsymmetric

matrix M ♯
ℎ(a, �,D)A, seem to hold in practice also for the eigenvalues of M ♯

ℎ(a, �,D)A (we

recall that since M ♯
ℎ(a, �,D) ≻ 0 then Λ[M ♯

ℎ(a, �,D)A] ≡ Λ[M ♯
ℎ(a, �,D)1/2AM ♯

ℎ(a, �,D)1/2]),

so that M ♯
ℎ(a, �,D)A has only real eigenvalues. In order to test the class of preconditioners

(2.4)-(2.5), we used 4 different sets of test problems.

First, we considered a set of symmetric linear systems as in (2.1), where the number of
unknowns n is set as n = 1000, and the matrix A has also a moderate condition number.
We simply wanted to experience how our class of preconditioners modifies the condition
number of A. In particular (see also [7]), a possible choice for the latter class of matrices is
given by

A = {ai,j}, aij ∈ U [−10, 10], i, j = 1, . . . , n, (4.1)

where ai,j = aj,i are random entries in the uniform distribution U [−10, 10], between −10
and +10. Then, also the vector b in (2.1) is computed randomly with entries in the set
U [−10, 10]. We computed the preconditioners (2.4)-(2.5) by using the Conjugate Gradient

10
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Figure 4.1: The condition number of matrix A (Cond(A)) along with the condition number

of matrix M ♯
ℎ(0, 1, I)A (Cond(M−1A)), when ℎ ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}, and A is

randomly chosen with entries in the uniform distribution U [−10, 10].

(CG) method [16], which is one of the most popular Krylov subspace methods to solve (2.1)
[9]. We remark that the CG is often used also in case the matrix A is indefinite, though
it can prematurely stop. As an alternative choice, in order to satisfy Assumption 2.1 with
A indefinite, we can use the Lanczos process [11], MINRES methods [15] or Planar-CG
methods [5]. In (2.4) we set the parameter ℎ in the range

ℎ ∈ { 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 },

and we preliminarily chose a = 0 (though other choices of the parameter ‘a’ yield similar
results), which satisfied items a) and c) of Theorem 2.1. We plotted in Figure 4.1 the

condition number �(A) of A (Cond(A)), along with the condition number �(M ♯
ℎ(0, 1, I)A)

of M ♯
ℎ(0, 1, I)A (Cond(M−1A)): in both cases the condition number � is calculated by

preliminarily computing the eigenvalues �1, . . . , �n (using Matlab [1] routine eigs()) of A

and M ♯
ℎ(0, 1, I)A respectively, then obtaining the ratio

� =
maxi ∣�i∣

mini ∣�i∣
.

Evidently, numerical results confirm that the order of the condition number of A is pretty
similar to that of the condition number of M ♯

ℎ(0, 1, I)A. This indicates that if the precon-
ditioners (2.4) are used as a tool to solve (2.1), then most preconditioned iterative methods
which are sensible to the condition number (e.g. the Krylov subspace methods), on average
are not expected to perform worse with respect to the unpreconditioned case. However, it
is important to remark that the spectrum Λ[M ♯

ℎ(0, 1, I)A] tends to be shifted with respect

11
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Figure 4.2: Comparison between the full/detailed spectra (left/right figures) Λ[A] (Unpre-

cond) and Λ[M ♯
ℎ(0, 1, I)A] (Precond), with A randomly chosen (eigenvalues are sorted for

simplicity); without loss of generality we show the results for the values ℎ = ℎ5 = 20 and

ℎ = ℎ6 = 30. The intermediate eigenvalues in the spectrum Λ[M ♯
ℎ(0, 1, I)A], whose absolute

value is larger than 1, are in general smaller than the corresponding eigenvalues in Λ[A].

The eigenvalues in Λ[M ♯
ℎ(0, 1, I)A] are more clustered near +1 or −1 than those in Λ[A].

to Λ[A], inasmuch as the eigenvalues in Λ[A] whose absolute value is larger than +1 tend

to be scaled in Λ[M ♯
ℎ(0, 1, I)A] (see Figure 4.2). The latter property is an appealing result,

since the eigenvalues of M ♯
ℎ(0, 1, I)A will be ‘more clustered’. The latter phenomenon has

been better investigated by introducing other sets of test problems, described hereafter.

In a second experiment we generated the set of matrices A such that

A = HDH, (4.2)

where H ∈ IRn×n, n = 500, is an Householder transformation given by H = I − 2vvT , with
v ∈ IRn a unit vector, randomly chosen. The matrix D ∈ IRn×n is diagonal (so that its
non-zero entries are also eigenvalues of A, while each column of H is also an eigenvector
of A). The matrix D is such that its perc ⋅ n eigenvalues are larger (about one order of
magnitude) than the remaining (1− perc) ⋅ n eigenvalues (we set without loss of generality

12



perc = 0.3). Finally, again we computed the preconditioners (2.4)-(2.5) by using the CG,
setting the starting point x0 so that the initial residual b − Ax0 was a linear combination
(with coefficients −1 and +1 randomly chosen) of all the n eigenvectors of A. We strongly
highlight that the latter choice of x0 is expected to be not favorable when applying the
CG, to build our preconditioners. In the latter case the CG method is indeed expected to
perform exactly n iterations before stopping (see also [14, 16]), so that the matrices (4.2)
may be significant to test the effectiveness of our preconditioners, in case of small values of ℎ
(broadly speaking, ℎ small implies that the preconditioner contains correspondingly a little

information on the inverse matrix A−1). We compared the spectra Λ[A] and Λ[M ♯
ℎ(a, 1, I)A],

in order to verify again how the preconditioners (2.4) are able to cluster the eigenvalues of
A. Following exactly the choice in [12], in order to test our proposal also on a different
range of values for the parameter ℎ, we set

ℎ ∈ { 4 , 8 , 12 , 16 , 20 }.

The results are given in Figure 4.3 (full comparisons) which includes all the 500 eigenvalues,
and Figure 4.4 (details) which includes only the eigenvalues from the 410-th to the 450-th.
Observe that our preconditioners are able to shift the largest absolute eigenvalues of A
towards −1 or +1, so that the clustering of the eigenvalues is enhanced when the param-
eter ℎ increases. For any value of ℎ the matrix A is (randomly) recomputed from scratch,
according with relation (4.2). This explains while in the five plots of Figures 4.3-4.4 the
spectrum of A changes. Again, a behavior very similar to Figures 4.3-4.4 is obtained also
using different values for the parameter ‘a’.

We used another small set of test problems, obtained by considering a couple of linear
systems as (2.1), described in [12, 3] and therein references, which come up from finite ele-
ment problems. We addressed the latter linear systems as A0x = b0 (from one-dimensional
model, consisting of a line of two-node elements with support conditions at both ends, and
a linearly varying body force) and A1x = b1 (where A1 is the stiffness matrix from a two-
dimensional finite element model of a cantilever beam) respectively [12]. The spectral prop-
erties of both the matrices A0 and A1 are extensively described in [12]. In particular
A0 ∈ IR50×50 is positive definite with condition number �(A0) = 0.20E + 10 and with a
suitable pattern of clustering of the eigenvalues; similarly, A1 ∈ IR170×170 is also positive
definite, with condition number �(A1) = 0.13E + 9 and a different pattern of eigenvalues
clustering. In addition, we have

b0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
200/49
300/49

...
4900/49

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

b1 = 0, but b1(34) = b1(68) = b1(102) = b1(136) = b1(170) = −8000,
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Figure 4.3: Comparison between the full spectra Λ[A] (Unprecond) and Λ[M ♯
ℎ(0, 1, I)A]

(Precond), with A nonsingular and given by (4.2) (eigenvalues are sorted for simplicity); we
used different values of ℎ (ℎ1 = 4, ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20), setting n = 500. The

large eigenvalues in the spectrum Λ[M ♯
ℎ(0, 1, I)A] are in general smaller (in modulus) than

the corresponding large eigenvalues in Λ[A]. A ‘flatter’ piecewise-line of the eigenvalues in

Λ[M ♯
ℎ(0, 1, I)A] indicates that the eigenvalues tend to cluster around −1 and +1, according

with the theory.
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Figure 4.4: Comparison between a detail of the spectra Λ[A] (Unprecond) and

Λ[M ♯
ℎ(0, 1, I)A] (Precond), with A nonsingular and given by (4.2) (eigenvalues are sorted for

simplicity; we used different values of ℎ (ℎ1 = 4, ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20), setting

n = 500. The large eigenvalues in the spectrum Λ[M ♯
ℎ(0, 1, I)A] are in general smaller (in

modulus) than the corresponding large eigenvalues in Λ[A]. A ‘flatter’ piecewise-line of the

eigenvalues in Λ[M ♯
ℎ(0, 1, I)A] indicates that the eigenvalues tend to cluster around −1 and

+1, according with the theory.
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Figure 4.5: The condition number of matrix A0 (Cond(A)) along with the condition number

of matrix M ♯
ℎ(0, 1, I)A0 (Cond(M−1A)), when 4 ≤ ℎ ≤ 20. The condition number of A0 is

slightly larger than the condition number of M ♯
ℎ(0, 1, I)A0, for any value of the parameter

ℎ. The starting point of the CG is x0 = 0.

and the CG is again used to compute the preconditioner M ♯
ℎ(0, 1, I), adopting both the

starting points x0 = 0 and x0 = 100, e = (1 ⋅ ⋅ ⋅ 1)T , as indicated in [12].
We have computed our class of preconditioners for the linear systems A0x = b0 and
A1x = b1, with a = 1 and ℎ ∈ {4, 8, 12, 16, 20}. The effect of the preconditioner on
the condition number of matrix A0 is plotted in Figure 4.5 (Cond(A) / Cond(M−1A) with
x0 = 0) and Figure 4.6 (Cond(A) / Cond(M−1A) with x0 = 100e). Furthermore, the

comparison between the spectra Λ[A0] and Λ[M ♯
ℎ(0, 1, I)A0], for different values of ℎ, is

given in Figure 4.7 (x0 = 0) and Figure 4.8 (x0 = 100e). Similarly, the comparison between

the preconditioned/unpreconditioned matrix A1 using the preconditioner M ♯
ℎ(0, 1, I), with

ℎ ∈ {4, 8, 12, 16, 20} and a = 1, is plotted in Figures 4.9 - 4.12. Here, though the precondi-
tioner can slightly deteriorate the condition number �(A1) (the case x0 = 0), the effect of
clustering the eigenvalues is still evident, since the intermediate eigenvalues are uniformly
scaled.

To complete our numerical experience we tested our class of preconditioners in an opti-
mization framework. In particular, we considered an unconstrained optimization problem,
which was solved using the linesearch-based truncated Newton method in Table 4.1, where
the solution of the symmetric linear system (Newton’s equation) ∇2f(xk)d = −∇f(xk) is
required. We considered several smooth optimization problems from CUTEr [10] collection,
and for each problem we applied the truncated Newton method in Table 4.1. At the outer
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Figure 4.6: The condition number of matrix A0 (Cond(A)) along with the condition number

of matrix M ♯
ℎ(0, 1, I)A0 (Cond(M−1A)), when 4 ≤ ℎ ≤ 20. The condition number of A0 is

slightly larger than the condition number of M ♯
ℎ(0, 1, I)A0, for any value of the parameter

ℎ. The starting point of the CG is x0 = 100e.

Table 4.1: The linesearch-based truncated Newton method we adopted.

Set x0 ∈ IRn

Set �k ∈ [0, 1) for any k, with {�k} → 0
OUTER ITERATIONS

for k = 0, 1, . . .
Compute ∇f(xk); if ∥∇f(xk)∥ is small then STOP

INNER ITERATIONS

Compute dk which approximately solves ∇2f(xk)d = −∇f(xk)
and satisfies the truncation rule

∥∇2f(xk)dk +∇f(xk)∥ ≤ �k∥∇f(xk)∥
Compute the steplength �k by an Armijo-type linesearch scheme
Update xk+1 = xk + �kdk

endfor
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Figure 4.7: Comparison between the full spectra Λ[A0] (Unprecond) and Λ[M ♯
ℎ(0, 1, I)A0]

(Precond), with A0 nonsingular (eigenvalues are sorted for simplicity); we used different
values of ℎ (ℎ1 = 4, ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20). The eigenvalues in the spectrum

Λ[M ♯
ℎ(0, 1, I)A0 ] are in general smaller than the corresponding eigenvalues in Λ[A0]. The

eigenvalues in Λ[M ♯
ℎ(0, 1, I)A0] are also more clustered near +1. The starting point of the

CG is x0 = 0.
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Figure 4.8: Comparison between the full spectra Λ(A0) (Unprecond) and Λ[M ♯
ℎ(0, 1, I)A0]

(Precond), with A0 nonsingular (eigenvalues are sorted for simplicity); we used different
values of ℎ (ℎ1 = 4, ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20). The eigenvalues in the spectrum

Λ[M ♯
ℎ(0, 1, I)A0 ] are in general smaller than the corresponding eigenvalues in Λ[A0]. The

eigenvalues in Λ[M ♯
ℎ(0, 1, I)A0] are also more clustered near +1. The starting point of the

CG is x0 = 100e.
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Figure 4.9: The condition number of matrix A1 (Cond(A)) along with the condition number

of matrix M ♯
ℎ(0, 1, I)A1 (Cond(M−1A)), when 4 ≤ ℎ ≤ 20. The condition number of A1

is now slightly smaller than the condition number of M ♯
ℎ(0, 1, I)A1, for any value of the

parameter ℎ. The starting point of the CG is x0 = 0.

iteration k we computed the preconditioner M ♯
ℎ(a, 1, I), with ℎ ∈ {4, 8, 12, 16, 20}, by using

the CG to solve the equation ∇2f(xk)d = −∇f(xk). Then, we adopted M ♯
ℎ(0, 1, I) as a

preconditioner for the solution of Newton’s equation of the subsequent iteration

∇2f(xk+1)d = −∇f(xk+1).

The iteration index k was randomly chosen, in such a way that ∥xk+1 − xk∥ was small
(i.e. the entries of the Hessian matrices ∇2f(xk) and ∇2f(xk+1) are not expected to differ
significantly). For simplicity we just report the results on two test problems, using n = 1000,
in the set of all the optimization problems experienced. Very similar results were obtained
for almost all the test problems. In Figures 4.13-4.14 we consider the problem NONCVXUN;
without loss of generality we only show the numerical results for ℎ = 16. Observe that
since xk+1 is close to xk (i.e. we are eventually converging to a local minimum) the Hessian
matrix ∇2f(xk+1) is positive semidefinite. Furthermore, again the eigenvalues larger than

+1 in Λ[∇2f(xk+1)] are scaled in Λ[M ♯
ℎ(0, 1, I)∇

2f(xk+1)]. Similarly we show in Figures
4.15-4.16 the results for the test function NONDQUAR in CUTEr collection. The test problems in
this optimization framework, where the preconditioner M ♯

ℎ(0, 1, I) is computed at the outer
iteration k and used at the outer iteration k + 1, confirm that the properties of Theorem
2.1 may hold also when M ♯

ℎ(0, 1, I) is used on a sequence of linear systems Akx = bk, when
Ak changes slightly with k.
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Figure 4.10: The condition number of matrix A1 (Cond(A)) along with the condition num-

ber of matrix M ♯
ℎ(0, 1, I)A1 (Cond(M−1A)), when 4 ≤ ℎ ≤ 20. The condition number of

A1 is now slightly larger than the condition number of M ♯
ℎ(0, 1, I)A1, for any value of the

parameter ℎ. The starting point of the CG is x0 = 100e.

5 Conclusions

We have given theoretical and numerical results for a class of preconditioners, which are
parameter dependent. The preconditioners can be built by using any Krylov subspace
method for the symmetric linear system (2.1), provided that it is able to satisfy the general
conditions (2.2)-(2.3) in Assumption 2.1. The latter property may be appealing in several
real problems, where a few iterations of the Krylov subspace method adopted may suffice
to compute an effective preconditioner.
Our proposal seems tailored also for those cases where a sequence of linear systems of the
form

Akx = bk, k = 1, 2, . . .

requires a solution (e.g., see [12] for details), where Ak slightly changes with the index k.

In the latter case, the preconditioner M ♯
ℎ(a, �,D) in (2.4)-(2.5) can be computed applying

the Krylov subspace method to the first linear system A1x = b1. Then, M
♯
ℎ(a, �,D) can be

used to efficiently solve Akx = bk, with k = 2, 3, . . .
Finally, the class of preconditioners in this paper seems a promising tool also for the

solution of linear systems in financial frameworks. In particular, we want to focus on
symmetric linear systems arising when we impose KKT conditions in portfolio optimization
problems, with a large number of titles in the portfolio, along with linear equality constraints
[2].
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Figure 4.11: Comparison between the full spectra Λ[A1] (Unprecond) and Λ[M ♯
ℎ(0, 1, I)A1]

(Precond); the eigenvalues are sorted for simplicity). We used different values of ℎ (ℎ1 = 4,

ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20). Again, the eigenvalues in the spectrum Λ[M ♯
ℎ(0, 1, I)A1]

are in general smaller than the corresponding eigenvalues in Λ[A1]. The eigenvalues in

Λ[M ♯
ℎ(0, 1, I)A1 ] are more clustered near +1. The starting point of the CG is x0 = 0.
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Figure 4.12: Comparison between the full spectra Λ[A1] (Unprecond) and Λ[M ♯
ℎ(0, 1, I)A1]

(Precond); the eigenvalues are sorted for simplicity. We used different values of ℎ (ℎ1 = 4,

ℎ2 = 8, ℎ3 = 12, ℎ4 = 16, ℎ5 = 20). Again, the eigenvalues in the spectrum Λ[M ♯
ℎ(0, 1, I)A1]

are in general smaller than the corresponding eigenvalues in Λ[A1]. The eigenvalues in

Λ[M ♯
ℎ(0, 1, I)A1 ] are more clustered near +1. The starting point of the CG is x0 = 100e.
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Figure 4.13: The condition number of matrix ∇2f(xk+1) (Cond(A)) along with the condi-

tion number of matrix M ♯
ℎ(0, 1, I)∇

2f(xk+1) (Cond(M−1A)), for the optimization problem
NONCVXUN, when 1 ≤ ℎ ≤ 17. The condition number of ∇2f(xk+1) is nearby the condi-

tion number of M ♯
ℎ(0, 1, I)∇

2f(xk+1), for any value of the parameter ℎ. The value k = 175
was the first step such that ∥xk+1 − xk∥ ≤ 10−3∥xk∥ (i.e. xk+1 and xk are sufficiently
close) and �k ≥ 0.95 (i.e. we are likely close to the minimum point). In particular it was
∥x175 − x176∥ ≈ 0.083.
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Figure 4.14: Comparison between the full spectra/detailed spectra (left figure/right figure) of

∇2f(xk+1) (Unprecond) and M ♯
ℎ(0, 1, I)∇

2f(xk+1) (Precond), for the optimization problem

NONCVXUN, with ℎ = ℎ4 = 16. The eigenvalues in Λ[M ♯
ℎ(0, 1, I)∇

2f(xk+1)] larger than

+1 are evidently attenuated, so that Λ[M ♯
ℎ(0, 1, I)∇

2f(xk+1)] is more clustered.
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