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Abstract We propose a class of preconditioners for large positive definite linear sys-
tems, arising in nonlinear optimization frameworks. These preconditioners can be
computed as by-product of Krylov-subspace solvers. Preconditioners in our class are
chosen by setting the values of some user-dependent parameters.We first provide some
basic spectral properties which motivate a theoretical interest for the proposed class of
preconditioners. Then, we report the results of a comparative numerical experience,
among some preconditioners in our class, the unpreconditioned case and the precondi-
tioner in Fasano and Roma (Comput Optim Appl 56:253–290, 2013). The experience
was carried on first considering some relevant linear systems proposed in the liter-
ature. Then, we embedded our preconditioners within a linesearch-based Truncated
Newton method, where sequences of linear systems (namely Newton’s equations), are
required to be solved. We performed an extensive numerical testing over the entire
medium-large scale convex unconstrained optimization test set of CUTEst collection
(Gould et al. Comput Optim Appl 60:545–557, 2015), confirming the efficiency of
our proposal and the improvement with respect to the preconditioner in Fasano and
Roma (Comput Optim Appl 56:253–290, 2013).
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1 Introduction

We study a class of preconditioners for the solution of the symmetric positive definite
linear system

Ax = b, A ∈ Rn×n,

where n is large and we do not assume any sparsity pattern for the system matrix A.
The solution of large linear systems is sought in a variety of real applications and in
different contexts. Moreover, the use of preconditioning is often an essential issue to
improve the efficiency of iterative solvers. Numerical Analysis and Optimization give
plenty of frameworks where the solution of large linear systems (or a sequence of
linear systems) is sought. Truncated Newton methods in unconstrained optimization,
KKT systems, interior pointmethods, and PDE-constrained optimization are just some
examples. Similarly, several real applications, ranging from power systems networks
to economic models and queuing systems, involve the solution of large linear systems.

Typically, up to one decade ago, the specialized literature was keen on privileging
the use of directmethodswhennwasmoderately small, in view to their reasonable cost,
whereas direct methods might be unaffordable for large n. However, more recently
an increasing blurred use of techniques is observed, in both sparse direct methods
and iterative algorithms, in order to efficiently solve linear systems (see e.g. [3,5]).
Observe that for linear systemswhere thematrix A is block-diagonal or banded, which
typically arise when solving discretized PDEs, specific solvers from the literature can
be used [24], which require to include effective preconditioning strategies, too.

In this paper we focus on the use of iterative methods for solving positive definite
linear systems: the iterative techniques are also used to provide sufficient information
on the systemmatrix, in order to generate the preconditioners.We propose a parameter
dependent class of preconditioners, which uses information collected by any Krylov-
subspacemethod (or possibly usingL-BFGSupdates), in order to capture the structural
properties of the positive definite system matrix.

Our proposal gives evidence to shift some eigenvalues of the preconditioned system
matrix to a specific value. The basic idea of our approach draws its inspiration from
Approximate Inverse Preconditioners, which have proved, to large extent, to be effi-
cient in practice [3,4]. These methods claim that in principle, an approximate inverse
of A should be computed and used as a preconditioner. However, observe that in prac-
tice it might be difficult to ensure that the approximate inverse summarizes enough
information about A, and is sparse.

In this paper we apply any Krylov-subspace method to build our preconditioners,
needing to store just a small tridiagonal matrix of order k � n, without requiring
any product of matrices. As we collect information from Krylov-subspace methods,
we assume that the entries of the system matrix are not stored and the necessary
information is gained by simply using a routine, which computes the product of the
systemmatrix times a vector. Note that, typically, the product of amatrix times a vector
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allows fast parallel computing, which is another possible advantage of our approach,
in large scale settings.

The preconditioners proposed in this paper depend on a couple of parameters, say
δ and a, whose effect is substantially that of exalting the information on the system
matrix collected by the Krylov-subspace method. Note that, for δ = 1 and a = 0 our
proposal reduces to the preconditioner [11], by the same authors.

We experience our class of preconditioners on test problems from both Numerical
Analysis and Convex Optimization. In particular, we first test them on significant
linear systems, from both the literature and real applications. Then, we focus on the
Newton-Krylov methods, also known as (Hessian-free) Truncated Newton methods
(see e.g. [18,20] for a survey on the importance of preconditioning in Truncated
Newton methods). For suitable values of δ �= 1 we show that our novel class of
preconditioners can outperform the proposal in [11].

We highlight that here, instead of following the idea early developed in [23], where
a full-memory quasi-Newton formula is adopted for the preconditioner, we show that
a few iterations of any Krylov-subspace method can be used, in order to provide
information for building our preconditioners.

The paper is organized as follows: Sect. 2 reports some preliminaries and Sect. 3
contains the definition and the main motivations of our class of preconditioners.
Section 4 studies some structural properties of our proposal, while in Sect. 5 some
additional properties are included. In Sect. 6 we report the results of a relevant numeri-
cal experience and Sect. 7 adds some conclusions. Finally, in the Appendix we include
the long and technical proofs of some theoretical results.

As regards the notations, for the n×n realmatrix Awedenote by�[A] the spectrum
of A. Ih is the identity matrix of order h. With C � 0 we indicate that the matrix C
is positive definite, while tr [C], rk[C] and det[C] are the trace, the rank and the
determinant ofC , respectively. Finally, ‖ ·‖ denotes the Euclidean norm, eh is the h-th
unit vector and

⊕
is used to denote the direct sum of subspaces or matrices.

2 Preliminaries

Let us consider the positive definite linear system

Ax = b, (2.1)

where A ∈ Rn×n is symmetric, n is large and b ∈ Rn . Some real contexts where the
latter system requires efficient solvers are detailed in Sect. 1. Suppose any Krylov-
subspace method is used for the solution of (2.1). Though the Conjugate Gradient
(CG) method [9,10,13,17] is the most popular choice, we can use any Krylov-based
method which provides a reduction of (2.1) to a tridiagonal system.

Now, suppose that h � n steps of the Krylov-subspace method adopted have been
performed when solving (2.1). At a generic step h of the Krylov-subspace method,
with h ≤ n − 1, the matrices Rh ∈ Rn×h , Th ∈ Rh×h and the vector uh+1 ∈ Rn are
generated [13], such that

ARh = RhTh + ρh+1uh+1e
T
h , ρh+1 ∈ R, (2.2)
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where

– Rh = (u1 · · · uh), uTi u j = 0, ‖ui‖ = 1, 1 ≤ i �= j ≤ h + 1,
– Th is tridiagonal, irreducible, nonsingular, with eigenvalues not all coincident.

Observe that multiplying (2.2) on the left by RT
h we have RT

h ARh = Th ; then, since
A � 0 we obtain Th � 0, too. Also observe that no specific factorization of Th
is required to build our preconditioners, though in particular the CG provides the
decomposition Th = LhDhLT

h , where Dh is diagonal and Lh is unit lower bidiagonal.
In [11] the latter decomposition was used in order to simplify the construction of the
preconditioner, which is generalized in this paper.

It is worth to highlight that also L-BFGS quasi-Newton scheme may provide
information in order to satisfy (2.2). Indeed, according with [16], and using the cor-
respondence between BFGS and CG when A is positive definite [21], in solving (2.1)
a set of h conjugate directions p1, . . . , ph (and the vectors Ap1, . . . , Aph) can easily
be computed after h iterations of L-BFGS. Now, following the guidelines in [25], it is
not difficult to see that after a brief computation, the vectors

r1 = p1, ri+1 = ri − pTi ri

pTi Api
Api , i = 1, . . . , h − 1

yield a set of orthogonal vectors, which can be used to provide Th and relation (2.2).
Thus, in practice many iterative methods commonly used for solving (2.1) may give,
as by product, the information necessary to obtain the reduction (2.2).

Observe also that from (2.2) the parameter ρh+1 may be possibly nonzero, i.e. the
subspace span{u1, . . . , uh} is possibly not an invariant subspace under the transfor-
mation by matrix A. Thus, in this paper we consider a more general case with respect
to [1].

3 Motivations for our class of preconditioners

On the basis of relation (2.2), we can now define our class of preconditioners and
show its properties. The contents of the following two sections draw their inspiration
from the theory in [11], where a preconditioner for indefinite linear systems was
proposed. In particular, the latter preconditioner proved to be effective on several
nonlinear large scale minimization test problems, within a Truncated Newton method.
However, on a few test problems, both convex and nonconvex, we still experienced
some severe inefficiencies of that proposal, when compared with an unpreconditioned
scheme. Moreover, we observed that different pathologies arose, depending on the
nature of the linear systems solved, say indefinite or positive definite. Thus, there was
the necessity to further analyze the effects of a reliable preconditioner, separately for
the indefinite and the positive definite case.

In order to overcome the latter drawbacks and gaps we have generalized here the
proposal of [11] for positive definite systems, by adding a couple of parameters to
the definition of the preconditioner, obtaining a novel class of Approximate Inverse
preconditioners.
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We introduce the following class of preconditioners

M�
h(a, δ)

def=
[
In − (Rh | uh+1) (Rh | uh+1)

T
]

+ (Rh | uh+1)

(
δ2Th aeh
aeTh 1

)−1

(Rh | uh+1)
T , h ≤ n − 1, (3.1)

M�
n(a, δ)

def= 1

δ2
RnT

−1
n RT

n , (3.2)

where δ, a ∈ R are user dependent parameters. Observe that the matrix
In − (Rh | uh+1) (Rh | uh+1)

T in (3.1) simply represents a projector onto the sub-
space orthogonal to (Rh | uh+1). In particular, when h = n then in (2.2) ρh+1 = 0,
and the matrix Rh is orthogonal, having T−1

n = RT
n A−1Rn . In addition, note that for

δ = 1 and a = 0 the preconditioners reduce to the proposal in [11]. The role played by
the two parameters δ and a in our class of preconditioners has been investigated where
A in (2.1) is positive definite, since in the indefinite case the spectral properties of the
resulting preconditioned matrix require a more sophisticated analysis. That is why in
this paper we preferred to detail both theoretical results and a numerical experience
just focusing on the solution of positive definite linear systems. In particular, the intro-
duction of δ and a in our preconditioners seems apparently a slight generalization of
the proposal in [11]. Instead, from both a theoretical and a numerical standpoint, in
the next sections we are going to show novel important conclusions. In summary, we
have the following novel distinguishing features:

• the analysis developed in [11], which is referred to general indefinite linear sys-
tems, may be hardly extended to the case of our class of preconditioners. Roughly
speaking, this is mainly due to the technical difficulties of explicitly calculating the
symbolic inverse of the matrix

(
δ2Th aeh
aeTh 1

)1/2

. (3.3)

Thus, the main conclusion in items (d1) and (d2) of Theorem 2.1 in [11] can
be hardly proved, and different technicalities seem to be necessary, in order to
obtain even weaker results. In particular, apart from the special case where a = 0
(see Theorem 4.2) we do not provide here results in terms of the eigenvalues
of the preconditioned matrix (see e.g. items (c) and (d) of Theorem 4.3). Con-
versely, with respect to [11] in the current paper we also weaken the request on the
Krylov-subspace method used in order to provide (2.2). Indeed, relation (2.3) in
the Assumption 2.1 of [11] is no more necessary here;

• numerical performance of our class of preconditioners seems to be strongly affected
by the choice of the parameter δ, at least in the positive definite case, on which we
focused in this paper. To highlight this conclusion, unlike in [11], here we have
first analyzed (in case a = 0) how tuning the parameter δ possibly modifies the
spectral properties of the preconditioned matrix. Then, we explicitly investigated
how relatively large values of δ tend to speed up the convergence of a Truncated
Newton method where we embedded our preconditioners.
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Finally, observe that given the matrix Th in (2.1), in [11] it was necessary to introduce
also the matrix |Th |, i.e. a suitable modification of Th in order to guarantee that the
proposed preconditioner was positive definite. Since in the present paper we analyze
only the case where A in (2.1) is positive definite, using the taxonomy adopted in [11]
we have |Th | ≡ Th .

4 Structural properties of our preconditioners

This section summarizes some basic structural properties of our class of precondition-
ers. In particular, we report a couple of results concerning the structural properties of
the preconditioners (3.1)–(3.2), which are strongly related to the pair of parameters a
and δ. The first one is straightforwardly obtained by Theorem 2.1 in [11]. It concerns
the eigenvalues of the preconditioned matrix in case a = 0. The second one considers
the general case a ∈ R, but provides results only in terms of singular values of the
preconditioned matrix. Even if the analysis on singular values does not yield direct
information of the convergence properties of a Krylov-subspace method, nonetheless
it spots some light on the behaviour of our preconditioners thanks to some known
results in literature. We refer to results connecting singular values and eigenvalues
(i.e. Weyl’s theorems) and, in particular, to those we report in the following proposi-
tion (see e.g., FACT 5.11.29 and FACT 5.11.28 in [6]) referred to the preconditioned
matrix M�

h(a, δ)A.

Proposition 4.1 Let us denote by 0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn the ordered
eigenvalues and by σ1 ≤ σ2 ≤ · · · ≤ σn−1 ≤ σn the ordered singular values of the
preconditioned matrix M�

h(a, δ)A. Then it results

(i) σ1 ≤ λ1 ≤ · · · ≤ λn ≤ σn,

(ii)
n∏

i=k

λi ≤
n∏

i=k

σi , k = 1, . . . , n,

(iii)
k∏

i=1

σi ≤
k∏

i=1

λi , k = 1, . . . , n.

On the basis of these results, we can argue that whenever some large singular values
of M�

h(a, δ)A are decreased, then at least some large eigenvalues of M�
h(a, δ)A tend

to decrease similarly (see (ii)). Conversely, whenever some small singular values of
M�

h(a, δ)A are increased, then at least some small eigenvalues of M�
h(a, δ)A tend to

increase (see (iii)). Therefore, information on singular values of the preconditioned
matrix can be exploited to possibly deduce convergence properties of a preconditioned
Krylov-subspace method, too. In Sect. 6 and [12] we refer to a more detailed analysis,
motivating the latter statement.

In the next theorem we report the first result concerning the eigenvalues of the
preconditioned matrix in case a = 0.

Theorem 4.2 Consider any Krylov-subspace method to solve the symmetric positive
definite linear system (2.1). Suppose that the Krylov-subspace method performs h ≤ n
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iterations, so that (2.2) holds. Then, setting a = 0 and δ ∈ R in (3.1)–(3.2), the
resulting preconditioner

M�
h(0, δ) =

[
In − (Rh | uh+1) (Rh | uh+1)

T
]

+ (Rh | uh+1)

(
δ2Th 0
0 1

)−1

(Rh | uh+1)
T (4.1)

M�
n(0, δ) = 1

δ2
RnT

−1
n RT

n , (4.2)

is such that

(a) the matrix M�
h(0, δ) is symmetric and nonsingular;

(b) the matrix M�
h(0, δ) is positive definite. Moreover, its spectrum �[M�

h(0, δ)] is
given by

�[M�
h(0, δ)] = 1

δ2
�
[
T−1
h

]
∪ �

[
In−h

] ;

(c) when h ≤ n − 1 the matrix M�
h(0, δ)A has at least (h − 1) eigenvalues equal to

+1/δ2;
(d) when h = n the eigenvalues of M�

h(0, δ)A are equal to +1/δ2.

Proof From (4.1), after a brief computation, we obtain

M�
h(0, δ) = (In − Rh R

T
h ) + 1

δ2
RhT

−1
h RT

h ,

which coincides with the proposal in [11], in the positive definite case, as long as
δ = 1. Thus, the result is directly obtained following the guidelines of the proof of
Theorem 2.1 in [11], considering that possibly δ �= 1. 
�

In the next theorem we analyze the more general case where the parameter a is
possibly nonzero. The results are reported in terms of singular values of the precon-
ditioned matrix. For the sake of readability of the paper, we moved the long proof to
the Appendix.

Theorem 4.3 Consider any Krylov-subspace method to solve the symmetric linear
system (2.1), where A is positive definite. Suppose that the Krylov-subspace method
performs h ≤ n iterations and provides relation (2.2). Let a ∈ R and δ �= 0. Then,
for the class of preconditioners (3.1)–(3.2) we have the following properties:

(a) the matrix M�
h(a, δ) is symmetric. Furthermore,

– when h ≤ n−1, for anya ∈ R\
{
±δ(eTh T

−1
h eh)−1/2

}
, M�

h(a, δ) is nonsingular.

In addition

det
(
M�

h(a, δ)
)

= δ−2h det(T−1
h )

(

1 − a2

δ2
eTh T

−1
h eh

)−1

;
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– when h = n the matrix M�
h(a, δ) is nonsingular. In addition

det
(
M�

n(a, δ)
) = det(T−1

h );

(b) for |a| < |δ|(eTh T−1
h eh)−1/2 the matrix M�

h(a, δ) is positive definite. Moreover,

the spectrum �[M�
h(a, δ)] is given by

�[M�
h(a, δ)] = �

[(
δ2Th aeh
aeTh 1

)−1
]

∪ �
[
In−(h+1)

] ;

(c) when h ≤ n − 1 then
– M�

h(a, δ)A has at least (h − 3) singular values equal to +1/δ2;

– if a = 0 then the matrix M�
h(0, δ)A has at least (h − 2) singular values equal

to +1/δ2;
(d) when h = n, then each of the n eigenvalues of the preconditioned matrix

M�
h(a, δ)A is equal to +1/δ2.

Proof The proof is reported in the Appendix. 
�

5 Some additional features

We report in this section some properties concerning both invariance and scalability of
our class of preconditioners (3.1)–(3.2).Moreover,weprovide possible generalizations
in order to build our preconditioners.

Proposition 5.1 Suppose (2.2) holds, with A � 0. Let P ∈ Rh×h, with P orthogonal.
Then, the preconditioners M�

h(0, δ) are invariant under the transformation Rh =
Qh P, Qh = (q1 · · · qh), qTi q j = 0 and ‖qi‖ = 1, for 1 ≤ i �= j ≤ h, and
QT

h uh+1 = 0. Moreover, considering the scaled system (εA)x = (εb), ε > 0, in
place of (2.1), then the preconditioners (3.1)–(3.2) become

M�
h(a, δ) =

[
In − (Rh | uh+1) (Rh | uh+1)

T
]

+ (Rh | uh+1)

(
δ2εTh aeh
aeTh 1

)−1

(Rh | uh+1)
T , h ≤ n − 1, (5.1)

M�
n(a, δ) = 1

ε
RnT

−1
n RT

n , h = n.

Proof From (2.2) and condition Rh = Qh P we have

Th = PT QT
h AQh P = PT T̃h P,

where T̃h ∈ Rh×h is possibly not tridiagonal. Moreover, we have for h ≤ n − 1
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M�
h(0, δ)=

[
In−(Rh | uh+1) (Rh | uh+1)

T
]

+ (Rh | uh+1)

(
δ2PT QT

h AQh P 0 · eh
0 · eTh 1

)−1

(Rh | uh+1)
T

=
[
In − (Qh | uh+1) (Qh | uh+1)

T
]

+ 1

δ2
Qh P

(
PT QT

h AQh P
)−1

PT QT
h + uh+1u

T
h+1

=
[
In − QhQ

T
h

]
+ 1

δ2
Qh PPT

(
QT

h AQh

)−1
PPT QT

h

=
[
In− (Qh | uh+1) (Qh | uh+1)

T
]
+ (Qh | uh+1)

(
δ2T̃h 0
0 1

)−1

(Qh |uh+1)
T,

which coincides with (3.1), setting a = 0, replacing Rh with Qh and considering
that T−1

h and T̃−1
h are likely both dense, regardless of the sparsity of Th and T̃h . The

previous result holds also for h = n, after a trivial computation.
Furthermore, observe that the matrix Rh in (3.1)–(3.2) is invariant under the scale

factor ε in (εA)x = (εb), and replacing A with εA, by (2.2) the tridiagonal matrix Th
becomes εRT

h ARh = εTh . Thus, (5.1) trivially holds. 
�

Broadly speaking, as for other preconditioners for large positive definite linear
systems in the literature (see e.g. the Limited Memory Preconditioners in [16]), the
preconditioners (3.1)–(3.2) cannot be independent of the scale parameter ε. Indeed,
as we can soon realize, when h = n and A � 0, the matrix M�

n(a, δ) is the inverse of
the system matrix εA, so that

M�
n(a, δ) · (εA) =

[
1

ε
RnT

−1
n RT

n

] [
εRnTn R

T
n

]
= In .

As regards the construction of our class of preconditioners, suppose the Krylov-
subspace method has performed m iterations. Then, several strategies can be adopted
by selecting 	 vectors among {u1, . . . , um}, with 	 ≤ m (see also [19]), where
u1, . . . , um are the vectors generated by the Krylov-subspace method. However, the
reader is warned that depending on the resulting strategy adopted, the properties in
Theorem 4.3 should be suitably restated. On this guideline, now we want to ana-
lyze the strategies corresponding to choose either the first 	 vectors {u1, . . . , u	}, or
the last m − 	 vectors {u	+1, . . . , um}. To this purpose, considering (2.1) suppose a
Krylov-subspace method was adopted to generate the recurrence

ARm = RmTm + ρm+1um+1e
T
m, m ≤ n. (5.2)

Since Rm = (R	 | Rm,	+1), where Rm,	+1 = (u	+1 | · · · | um), setting for the
tridiagonal matrix Tm the decomposition (where also Tm,	+1 is tridiagonal)
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Tm =

⎛

⎜
⎜
⎝

T	
0

σeT1
σeT	
0

Tm,	+1

⎞

⎟
⎟
⎠ , for some σ ∈ R,

from (5.2) we have

ARm = A(R	 | Rm,	+1) = (R	 | Rm,	+1)Tm + ρm+1um+1e
T
m

=
(
R	T	 + σu	+1e

T
	 | σu	e

T
1 + Rm,	+1Tm,	+1

)
+ ρm+1um+1e

T
m,

which is equivalent to the following pair of conditions

AR	 = R	T	 + σu	+1e
T
	 (5.3)

ARm,	+1 = Rm,	+1Tm,	+1 + σu	e
T
1 + ρm+1um+1e

T
m . (5.4)

Thus, if only the first 	 vectors u1, . . . , u	 are used to build our preconditioners, then
relation (5.3) must be adopted in place of (2.2). On the other hand, if the last m − 	

vectors u	+1, . . . , um are used, relation (2.2) must be replaced by (5.4). However,
in the latter case the statement of Theorem 4.3 should be slightly modified, accord-
ingly. Of course, other possible strategies to select vectors among {u1, . . . , um} can
be considered, which may require a more consistent reformulation of the statement of
Theorem 4.3.

Remark 5.1 The effective choice of the parameters δ and a in (3.1) might be in our
experience strongly problem dependent; nevertheless, general guidelines for their
choice are given in Sect. 6. Moreover, we provide in the next section a numer-
ical experience where several values of these parameters are selected. We recall
that from a theoretical standpoint, values of δ and a may be set considering items
(b) and (c) of Theorem 4.3. The latter may be used in order to impose conditions
like the following, which tend to force the clustering of the eigenvalues of matrix
H(h+1)×(h+1) or Hh×h defined in (7.13)–(7.14), near +1 (see also the comments in
Sect. 6):

tr
[
Hh×h

] = h,

tr
[
H(h+1)×(h+1)

] = h + 1.

Observe that clustering the eigenvalues of H(h+1)×(h+1) or Hh×h induces a clustering

of some singular values of M�
h(a, δ)A, and by Proposition 4.1 the latter fact possibly

forces also a clustering of some eigenvalues of M�
h(a, δ)A. Finally, observe that there

may be real values of the parameters δ and a such that the expressions (7.14)–(7.15)
are further simplified. In the next section we detail more specific motivations for the
choice of δ and a, in our numerical experience.
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6 Numerical experiments

In order to preliminarily test our proposal in different frameworks, where no informa-
tion is known about the sparsity pattern of the matrix A, we experimented with our
class of preconditioners M�

h(a, δ), setting for simplicity a = 0. We preferred in our
numerical experience to keep one of the two parameters unchanged (say a = 0), and
vary only the other parameter (i.e. δ), for the following three reasons:

• according with Lemma 4.4 in [12], when a = 0 we can suitably bound the con-
dition number of M�

h(a, δ)A (so that a bound on the spectral condition number of

M�
h(a, δ)A is also available);

• the interaction between a and δ, in order to obtain an effective final preconditioner,
is itself dependent on the problem in hand, even in case (2.1) is positive definite;

• based on our experience, the overall efficiency of our preconditioners appears to
be more sensible to modifications of δ than to modifications of a. This may be
easily deduced by inspection of formula (3.1) and recalling the Cauchy Interlacing
properties for the eigenvalues of symmetric matrices. Indeed, observe that the
choice of δ performs a scaling of the eigenvalues of the entire matrix Th , which
means, by (7.4), that at least h − 1 eigenvalues of M�

h(a, δ) are directly affected
by δ. On the other hand, for a given δ, the parameter a directly affects at most two
eigenvalues.

As concerns the Krylov-subspace method used for these numerical experiences, we
choose the CG method. As expected, in our numerical experience we obtained results
which match the theory in Theorem 4.3. In particular, in the following sections, in
order to test the class of preconditioners (3.1)–(3.2), we used different sets of test
problems. In Sects. 6.1–6.2 we first checked the results in Theorem 4.3 on positive
definite linear systems suggested by the literature. Here, since the spectral properties
of the matrices were known in advance, we could set δ so that the value 1/δ2 (see
item (c) of Theorem 4.3) is nearby the middle of the spectrum of the system matrix. In
Sect. 6.3 we considered a large test set from convex optimization, which is the main
focus of this paper, where we solved Newton’s equation within a Truncated Newton
method. Here, we had no information about the spectrum of the Hessian matrix, so
that we performed a more accurate investigation using several values of δ.

We are going to prove that to a large extent our proposal is efficient and effective
with respect to both the unpreconditioned case and the preconditioner in [11], showing
its robustness on convex problems.

The Matlab routine eigs() is used to compute the eigenvalues for both A and
M�

h(a, δ)A. Furthermore, the values of the condition number κ reported, for both A

and M�
h(a, δ)A are computed as

κ = maxi |λi |
mini |λi | , (6.1)

(i.e. the spectral condition number) being λi the respective eigenvalues of thematrices.
As remarked also in Sect. 4 of [12], in the case of M�

h(a, δ)A, the computation of (6.1)
provides only a lower bound of the actual condition number.
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6.1 Test set 1

In a very preliminary experiment we generated the positive definite matrix A in (2.1)
such that

A = HDH, (6.2)

where H ∈ Rn×n , n = 1000, is an Householder transformation given by H =
In − 2vvT , with v ∈ Rn a unit vector, randomly chosen. The matrix D ∈ Rn×n is
diagonal (so that its entries are also eigenvalues of A, while each column of H is also
an eigenvector of A) and its entries are randomly chosen in the uniform distribution
U (0, 100]. ThematrixD is such that itsperc·n eigenvalues are larger (about one order
of magnitude) than the remaining (1 − perc) · n eigenvalues (we set without loss of
generality perc = 0.3). Finally, we computed the preconditioners M�

h(0, δ) in (3.1),
setting the starting point x0 so that the initial residual b−Ax0 was a linear combination
(with coefficients −1 and +1 randomly chosen) of all the n eigenvectors of A. We
strongly highlight that the latter choice of x0 is expected to be not favorable when
applying theCG, to build the preconditioners. In the latter case theCGmethod is indeed
expected to perform exactly n iterations before stopping (see also [22,24]), so that the
matrix (6.2) may be significant to test the effectiveness of our preconditioners, in case
of small values of h (roughly speaking, here h small implies that the preconditioners
contain correspondingly little information on the inverse matrix A−1). We compared
the spectra �[A] and �[M�

h(0, δ)A], setting δ = 1/7, in order to verify both

• how the preconditioners are possibly able to cluster the eigenvalues of A;
• how the preconditioners alter the condition number of the preconditioned matrix.

The choice of δ = 1/7 was motivated by item (c) of Theorem 4.3. Indeed, since the
eigenvalues of A in (6.2) are in the range (0, 100], the choice δ = 1/7 is expected
to yield a shifting of some singular values of M�

h(0, δ)A nearby 49 (which is almost

in the middle of the interval (0, 100]). Similarly, some eigenvalues of M�
h(0, δ)A are

also expected to shift accordingly. Following the choice in [19], in order to test our
proposal on a range of values for the parameter h, we set h ∈ {4, 8, 12, 16, 20, 40}.

The results are given in Fig. 1 (spectral condition numbers) and Figs. 2, 3, and 4
(eigenvalues distribution). In Fig. 2 we include all the 1000 eigenvalues (left) and a
detail of the eigenvalues (right) from the 780th to the 850th, for the unpreconditioned

Fig. 1 The spectral condition
number of matrix A (continuous
line independent of h) along
with the spectral condition

number of matrix M�
h(0, δ)A

(dashed line), when
h ∈ {4, 8, 12, 16, 20, 40} and
δ = 1/7. On the vertical axis the
natural logarithm of κ
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Fig. 2 Comparison between the full (left) and detailed (right) spectra �[A] (continuous line) and

�[M�
h(0, δ)A] (dashed line), with A given by (6.2) (eigenvalues are sorted), setting h = 40 and δ = 1/7
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Fig. 3 Comparison between the full (left) and detailed (right) spectra �[A] (continuous line) and

�[M�
h(0, δ)A] (dashed line), with A given by (6.2) (eigenvalues are sorted), setting h = 40 and δ = 1
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Fig. 4 Comparison between the full (left) and detailed (right) spectra �[A] (continuous line) and

�[M�
h(0, δ)A] (dashed line), with A given by (6.2) (eigenvalues are sorted), setting h = 40 and δ = 1/9

matrix (continuous line) and the preconditioned matrix (dashed line). In the latter
picture we used h = 40 in order to appreciate more evident results (though similar
results are definitely obtained for any value of h). A ‘flatter’ piecewise-line of the
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eigenvalues in �[M�
h(0, δ)A] indicates that the eigenvalues tend to cluster around

1/δ2. For a more complete analysis, in Figs. 3 and 4 we also plotted the eigenvalues
in �[M�

h(0, δ)A] for δ ∈ {1, 1/9}, obtaining again a clustering nearby 1/δ2.

Observe that the preconditioners M�
h(0, δ) are definitely able to shift some eigen-

values of A. In addition, since the eigenvalues of a matrix are a continuous function
of its entries, also the remaining eigenvalues are evidently affected by the value of
δ. As expected, the clustering of the eigenvalues is enhanced when the parameter
h increases; moreover, the spectral condition number of the preconditioned matrix
slightly improves.

6.2 Test set 2

We used another test set, obtained by considering a couple of positive definite small
linear systems as (2.1), recommended in [19] and references therein, which come
up from finite element problems. We addressed the latter linear systems as A0x =
b0 (“from one-dimensional model, consisting of a line of two-node elements with
support conditions at both ends, and a linearly varying body force”) and A1x = b1
(where A1 is the “stiffness matrix from a two-dimensional finite element model of a
cantilever beam”) respectively. The spectral properties of both the matrices A0 and A1
are extensively described in [19]. In particular A0 ∈ R50×50 is positive definite with
condition number κ(A0) = 0.2 · 1010 and with a suitable pattern of the eigenvalues in
the range [100, 109]; similarly, A1 ∈ R170×170 is also positive definite, with condition
number κ(A1) = 0.13 × 109 and a different pattern of eigenvalues in the range
[100, 1010]. In addition, we have bT0 = (0 200/49 300/49 · · · 4900/49 0), and

b1 = 0, but b1(34) = b1(68) = b1(102) = b1(136) = b1(170) = −8000.

The CG is again used to compute the vectors necessary to build the preconditioners
M�

h(0, δ), adopting both the starting points x0 = 0 and x0 = 100e, where e =
(1 · · · 1)T , as indicated in [19]. The results of the numerical experience for the linear
system A0x = b0 are summarized in Fig. 5. For simplicity the eigenvalues of the
matrices are sorted, we set h = 40 (but other values of h yielded similar results) and
the value δ = 10−4 is used to computeM�

h(0, δ). Again, δ was set so that the value 1/δ
2

was nearby the middle of the spectrum of the system matrix. Several eigenvalues of
M�

h(0, δ)A0 tend to cluster around+1/δ2. Furthermore, also the remaining eigenvalues
tend to be affected by the value of δ.

As regards the performance of M�
h(0, δ) on the linear system A1x = b1, we first

recall that now n = 170. The numerical experience again considered the case δ = 10−4

and h = 40. Similar results are obtained with respect to the linear system A0x = b0
(with a just slight increase of the spectral condition number of the preconditioned
matrix) and are summarized in Fig. 6.

We remark that similarly to the results plotted in Figs. 2, 3 and 4, modifying δ we
can observe a clustering of some eigenvalues in �[M�

h(0, δ)A] nearby the value 1/δ2
(for the sake of brevity the corresponding plots are omitted).
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Fig. 5 Comparison between the spectral condition numbers (left) and the spectra (right) of A0 (continuous

line) and M�
h(0, δ)A0 (dashed line), setting x0 = 0 (top) or x0 = 100e (bottom), and δ = 10−4. The

pictures on the right refer to h = 40

6.3 Experiments on convex optimization

After the preliminary numerical tests in Sects. 6.1–6.2 we can now apply our proposal
on the sequence of linear systems arising in a well known optimization framework,
namely Truncated Newton methods. The fruitful use of preconditioning techniques
within Truncated Newton methods is clearly pointed out in several papers (see e.g.
[18,20] for a survey). We usually have no information about the Hessian matrix (e.g.
no knowledge on the eigenvalues distribution) so that we tested our class of precon-
ditioners for several values of the parameter δ, being δ ∈ {0.1, 1, 10, 100}. Then, we
compared the results with an unpreconditioned version of the algorithm (observe
that for δ = 1 we obtain on convex problems the results in [11]). In particular,
as test set we considered medium-large scale unconstrained optimization problems,
which were solved using the standard linesearch-based Truncated Newton method
in Table 1, where the solution of the symmetric linear system (Newton’s equation)
∇2 f (zk)d = −∇ f (zk) is required, at each outer iteration k.

As test problemswe considered all themedium-large scale unconstrained optimiza-
tion problems from CUTEst [15] collection, with n ∈ [1000, 10000]. At the outset
of the outer iteration k we computed the preconditioner M�

h(0, δ), using the informa-
tion collected by the CG, after h = 7 (inner) iterations, when solving the equation
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Fig. 6 Comparison between the spectral condition numbers (left) and the spectra (right) of A1 (continuous

line) and M�
h(0, δ)A1 (dashed line), setting x0 = 0 (top) or x0 = 100e (bottom), and δ = 10−4. The

pictures on the right refer to h = 40

Table 1 The standard linesearch-based Truncated Newton method we adopted

∇2 f (zk)d = −∇ f (zk) (for the choice h = 7 see [11,19]). Then, from the 8-th (inner)
iteration we adopted M�

h(0, δ) as a preconditioner, for the solution of the linear system
∇2 f (zk)d = −∇ f (zk). All the parameters used within the preconditioning strategy,
the truncated scheme and the linesearch adopted were exactly those chosen in [11].
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All the test problems where the CG did not detect any negative curvature direction,
for the objective function, were considered as convex problems and included in the
comparison, so that the test set reduced to 78 convex problems.

We report the results in terms of number of iterations (outer-it), number of func-
tion evaluations (f-eval), number of inner CG-iterations (CG-it) and CPU time (time)
in seconds. The optimal objective function value is also included (opt-val). We first
report the complete results for the preconditioned Truncated Newton method obtained
with δ = 1 (see Table 2), i.e. the same results reported in [11]. Then, for sake of
brevity, we do not report the complete results obtained using all the other values of δ

tested (i.e. δ ∈ {0.1, 10, 100}), but only those corresponding to the “most successful”
value δ = 100 (see Table 3). We also show in Fig. 7 (full picture) and in Fig. 8 (detail
picture) the performance profiles (see [8]) where the comparison between precondi-
tioned and unpreconditioned schemes is summarized, in terms of inner iterations (as
also suggested in [19]). We highlight that profiles in terms of CPU time are possibly
misleading, due to very similar times of computation on most test problems, along
with the presence of other simultaneous processes.

As we can see, when δ ∈ {0.1, 1, 10, 100} the use of the preconditioner M�
h(0, δ)

yields on average better results than the unpreconditioned algorithm. In particular, for
δ ∈ {10, 100} our proposal definitely outperforms the results obtained by the same
authors in [11] (i.e. a = 0 and δ = 1). The latter behaviour was investigated, and
some conclusions can be drawn considering also the analysis in [2,12,14].

Indeed, it is a matter of fact that regardless of the value of δ �= 1 in our class, by item
(c) of Theorem 4.3 some singular values of M�

h(a, δ)∇2 f (zk) tend to be clustered. In
addition, we have the following motivations to clarify why the Krylov-based method
adopted to solve the (preconditioned) Newton’s equation is expected to perform better:

• since (see Figs. 2, 5, 6) smaller eigenvalues are dragged upwards (towards 1/δ2),
while larger eigenvalues tend to be decreased (again towards 1/δ2), then the overall
condition number of the preconditioned matrix is beneficed;

• by (ii) of Proposition 4.1, when some large singular values of M�
h(a, δ)∇2 f (zk)

are decreased, then at least some large eigenvalues of M�
h(a, δ)∇2 f (zk) tend to

decrease similarly. On the other hand, reasoning as in Sect. 5 of [14] and as in
[2], we can obtain that larger values of δ tend to decrease some large singular
values of M�

h(a, δ)∇2 f (zk). In fact, when δ increases, the eigenvalues of Hh×h in

(7.14) decrease, so that the trace of the matrix M�
h(a, δ)[∇2 f (zk)]2M�

h(a, δ) tends
to decrease. As a consequence, some large singular values of the preconditioned
matrix M�

h(a, δ)∇2 f (zk) tend to decrease, too. Thus, we can loosely argue that
increasing the value of δ (on average) tends to control at least some large singular
values of the preconditioned matrix, thus affecting some large eigenvalues. This
partially explains why the best performance for our preconditioners is obtained for
δ = 100;

• by (iii) of Proposition 4.1, when some small singular values of M�
h(a, δ)∇2 f (zk)

are increased, then at least some small eigenvalues of M�
h(a, δ)∇2 f (zk) tend to

increase;
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Table 2 Results for the preconditioned Truncated Newton method with δ = 1

PROBLEM n outer-it f-eval CG-it opt-val time

ARWHEAD 1000 34 364 37 0.000000D+00 0.02

ARWHEAD 10,000 10 102 11 1.332134D−11 0.05

BDQRTIC 1000 46 293 84 3.983818D+03 0.05

BDQRTIC 10,000 121 1217 204 4.003431D+04 0.89

BRYBND 1000 20 64 26 6.709348D−12 0.02

BRYBND 10,000 20 64 26 6.226697D−12 0.11

CRAGGLVY 1000 49 216 94 3.364231D+02 0.06

CRAGGLVY 10,000 116 776 173 3.377956D+03 0.89

CURLY10 1000 11,227 11,514 37,918 −1.003163D+05 14.35

CURLY10 10,000 59,999 61,159 203,494 −1.003163D+06 640.95

DIXMAANA 1500 8 13 9 1.000000D+00 0.01

DIXMAANA 3000 8 14 8 1.000000D+00 0.01

DIXMAANB 1500 5 10 6 1.000000D+00 0.01

DIXMAANB 3000 5 10 6 1.000000D+00 0.00

DIXMAANC 1500 5 11 6 1.000000D+00 0.01

DIXMAANC 3000 5 11 6 1.000000D+00 0.00

DIXMAAND 1500 5 8 5 1.000000D+00 0.01

DIXMAAND 3000 5 8 5 1.000000D+00 0.01

DIXMAANE 1500 76 79 168 1.000000D+00 0.09

DIXMAANE 3000 114 117 258 1.000000D+00 0.25

DIXMAANF 1500 52 57 136 1.000000D+00 0.09

DIXMAANF 3000 54 59 143 1.000000D+00 0.19

DIXMAANH 1500 54 56 134 1.000000D+00 0.11

DIXMAANH 3000 74 76 209 1.000000D+00 0.27

DIXMAANI 1500 215 218 693 1.000001D+00 0.39

DIXMAANI 3000 235 238 714 1.000003D+00 0.76

DIXMAANK 1500 60 74 173 1.000000D+00 0.15

DIXMAANK 3000 62 75 199 1.000000D+00 0.21

DIXMAANL 1500 53 55 130 1.000001D+00 0.09

DIXMAANL 3000 55 57 149 1.000000D+00 0.19

DQDRTIC 1000 33 274 34 7.461713D−26 0.03

DQDRTIC 10,000 102 868 103 2.426640D−27 0.44

DQRTIC 1000 22 81 40 2.784985D−02 0.02

DQRTIC 10,000 31 111 60 4.932478D−01 0.06

EDENSCH 1000 21 89 27 6.003285D+03 0.02

EDENSCH 10,000 18 85 23 6.000328D+04 0.09

ENGVAL1 1000 11 34 16 1.108195D+03 0.01

ENGVAL1 10,000 12 36 19 1.109926D+04 0.05

FLETCBV2 1000 1 1 0 −5.013384D−01 0.00
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Table 2 continued

PROBLEM n outer-it f-eval CG-it opt-val time

FLETCBV2 10,000 1 1 0 −5.001341D−01 0.00

FLETCHCR 1000 52 344 87 6.453457D−07 0.04

FLETCHCR 10,000 117 1085 143 2.745120D−06 0.54

FMINSURF 1024 93 207 288 1.000000D+00 0.17

FMINSURF 5625 235 710 680 1.000000D+00 2.65

FREUROTH 1000 38 300 50 1.214697D+05 0.04

FREUROTH 10,000 107 1052 119 1.216521D+06 0.63

LIARWHD 1000 42 251 61 8.352643D−19 0.03

LIARWHD 10,000 112 1107 133 1.455368D−20 0.55

MOREBV 1000 8 8 28 2.148161D−08 0.02

MOREBV 10,000 2 2 7 2.428066D−09 0.01

NONDIA 1000 22 256 27 6.680969D−21 0.04

NONDQUAR 1000 45 111 111 1.425631D−04 0.04

NONDQUAR 10,000 46 175 98 3.744353D−04 0.18

PENALTY1 10,000 54 81 121 9.900151D−02 0.20

POWELLSG 1000 46 257 86 1.992056D−08 0.05

POWELLSG 10,000 114 783 151 7.735314D−08 0.25

POWER 1000 65 189 142 5.912729D−09 0.08

POWER 10,000 233 891 559 9.025072D−09 1.08

QUARTC 1000 22 81 40 2.784985D−02 0.02

QUARTC 10,000 31 111 60 4.932478D−01 0.07

SCHMVETT 1000 14 35 37 −2.994000D+03 0.03

SCHMVETT 10,000 19 69 38 −2.999400D+04 0.20

SINQUAD 1000 37 310 49 −2.942505D+05 0.04

SINQUAD 10,000 104 1517 111 −2.642315D+07 1.01

SPARSQUR 1000 22 66 34 6.266490D−09 0.02

SPARSQUR 10,000 22 67 39 1.069594D−08 0.18

SROSENBR 1000 35 309 40 2.842418D−22 0.02

SROSENBR 10,000 104 920 108 9.421397D−12 0.24

TESTQUAD 1000 12,401 12,950 42,766 1.636783D−05 12.76

TOINTGSS 1000 2 3 1 1.001002D+01 0.00

TOINTGSS 10,000 2 3 1 1.000100D+01 0.00

TQUARTIC 10,000 14 144 18 1.145916D−11 0.05

TRIDIA 1000 244 635 738 7.979032D−06 0.27

TRIDIA 10,000 1764 3391 5764 6.817977D−06 10.49

VARDIM 1000 37 37 72 1.058565D−20 0.03

VARDIM 10,000 54 298 99 4.475275D−18 0.17

VAREIGVL 1000 24 49 74 2.351034D−08 0.04

VAREIGVL 10,000 21 179 22 3.924839D−16 0.15
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Table 3 Results for the preconditioned Truncated Newton method with δ = 100

PROBLEM n outer-it f-eval CG-it opt-val time

ARWHEAD 1000 34 364 37 0.000000D+00 0.03

ARWHEAD 10,000 10 102 11 1.332134D−11 0.07

BDQRTIC 1000 46 293 84 3.983818D+03 0.08

BDQRTIC 10,000 121 1217 204 4.003431D+04 1.19

BRYBND 1000 20 64 26 6.709348D−12 0.02

BRYBND 10,000 20 64 26 6.226697D−12 0.15

CRAGGLVY 1000 49 216 94 3.364231D+02 0.10

CRAGGLVY 10,000 116 776 173 3.377956D+03 1.23

CURLY10 1000 759 1046 2771 −1.003163D+05 3.47

CURLY10 10,000 2246 3406 8576 −1.003163D+06 43.37

DIXMAANA 1500 8 13 9 1.000000D+00 0.00

DIXMAANA 3000 8 14 8 1.000000D+00 0.01

DIXMAANB 1500 5 10 6 1.000000D+00 0.00

DIXMAANB 3000 5 10 6 1.000000D+00 0.01

DIXMAANC 1500 5 11 6 1.000000D+00 0.00

DIXMAANC 3000 5 11 6 1.000000D+00 0.01

DIXMAAND 1500 5 8 5 1.000000D+00 0.00

DIXMAAND 3000 5 8 5 1.000000D+00 0.00

DIXMAANE 1500 72 75 161 1.000000D+00 0.16

DIXMAANE 3000 107 110 242 1.000000D+00 0.38

DIXMAANF 1500 49 54 130 1.000000D+00 0.14

DIXMAANF 3000 55 60 148 1.000000D+00 0.31

DIXMAANH 1500 50 52 124 1.000000D+00 0.14

DIXMAANH 3000 53 55 148 1.000000D+00 0.30

DIXMAANI 1500 222 225 715 1.000001D+00 0.93

DIXMAANI 3000 261 264 844 1.000002D+00 1.65

DIXMAANK 1500 56 70 169 1.000000D+00 0.24

DIXMAANK 3000 50 63 169 1.000000D+00 0.32

DIXMAANL 1500 46 48 115 1.000001D+00 0.17

DIXMAANL 3000 59 61 170 1.000000D+00 0.35

DQDRTIC 1000 33 274 34 7.461713D−26 0.02

DQDRTIC 10,000 102 868 103 2.426640D−27 0.66

DQRTIC 1000 22 81 40 2.784985D−02 0.02

DQRTIC 10,000 31 111 60 4.932478D−01 0.12

EDENSCH 1000 21 89 27 6.003285D+03 0.02

EDENSCH 10,000 18 85 23 6.000328D+04 0.12

ENGVAL1 1000 11 34 16 1.108195D+03 0.01

ENGVAL1 10,000 12 36 19 1.109926D+04 0.07

FLETCBV2 1000 1 1 0 −5.013384D−01 0.00
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Table 3 continued

PROBLEM n outer it f-eval CG-it opt-val time

FLETCBV2 10,000 1 1 0 −5.001341D−01 0.00

FLETCHCR 1000 47 339 77 7.006731D−06 0.06

FLETCHCR 10,000 113 1080 134 1.006835D−05 0.77

FMINSURF 1024 78 185 236 1.000000D+00 0.55

FMINSURF 5625 216 615 719 1.000000D+00 6.03

FREUROTH 1000 38 300 50 1.214697D+05 0.05

FREUROTH 10,000 107 1052 119 1.216521D+06 0.88

LIARWHD 1000 42 251 61 8.352643D−19 0.05

LIARWHD 10,000 112 1107 133 1.455368D−20 0.76

MOREBV 1000 8 8 28 2.148161D−08 0.03

MOREBV 10,000 2 2 7 2.428066D−09 0.02

NONDIA 1000 22 256 27 6.680969D−21 0.02

NONDQUAR 1000 60 126 143 7.704317D−05 0.14

NONDQUAR 10,000 52 182 111 2.460212D−04 0.39

PENALTY1 10,000 54 81 121 9.900151D−02 0.30

POWELLSG 1000 46 257 86 1.992056D−08 0.04

POWELLSG 10,000 114 783 151 7.735314D−08 0.40

POWER 1000 65 189 142 5.912729D−09 0.12

POWER 10,000 196 854 455 2.103254D−08 1.36

QUARTC 1000 22 81 40 2.784985D−02 0.02

QUARTC 10,000 31 111 60 4.932478D−01 0.12

SCHMVETT 1000 14 35 37 −2.994000D+03 0.04

SCHMVETT 10,000 19 69 38 −2.999400D+04 0.39

SINQUAD 1000 37 310 49 −2.942505D+05 0.06

SINQUAD 10,000 104 1517 111 −2.642315D+07 1.27

SPARSQUR 1000 22 66 34 6.266490D−09 0.03

SPARSQUR 10,000 22 67 39 1.069594D−08 0.24

SROSENBR 1000 35 309 40 2.842418D−22 0.03

SROSENBR 10,000 104 920 108 9.421397D−12 0.40

TESTQUAD 1000 1346 1895 4853 5.716667D−06 4.34

TOINTGSS 1000 2 3 1 1.001002D+01 0.00

TOINTGSS 10,000 2 3 1 1.000100D+01 0.01

TQUARTIC 10,000 14 144 18 1.145916D−11 0.08

TRIDIA 1000 124 515 334 6.644750D−07 0.32

TRIDIA 10,000 386 2013 1179 9.438427D−07 4.21

VARDIM 1000 37 37 72 1.058565D−20 0.04

VARDIM 10,000 54 298 99 4.475275D−18 0.32

VAREIGVL 1000 24 49 74 2.351034D−08 0.09

VAREIGVL 10,000 21 179 22 3.924839D−16 0.20
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Fig. 7 Performance (full) profile for a comparison in terms of number of inner iterations, on 78 medium-
large scale convex unconstrained CUTEst problems, using the Truncated Newton scheme in Table 1. Here

M�
h(0, δ) with different values of δ ∈ {0.1, 1, 10, 100} and no preconditioner (Unprec) are adopted to solve

Newton’s equation
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Prec_CG−it_δ=100

Fig. 8 Performance (detail) profile for a comparison in terms of number of inner iterations, on 78 medium-
large scale convex unconstrained CUTEst problems, using the Truncated Newton scheme in Table 1. Here

M�
h(0, δ) with different values of δ ∈ {0.1, 1, 10, 100} and no preconditioner (Unprec) are adopted to solve

Newton’s equation

• for δ = 0.1, due to the clustering of the singular values of M�
h(a, δ)∇2 f (zk), in

accordance with the considerations in the previous items, we first observe a similar
clustering of the eigenvalues of M�

h(a, δ)∇2 f (zk). In addition, by the analysis in
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Proposition 4.2 of [12], the following bound on the condition number (and conse-
quently on the spectral condition number) of M�

h(a, δ)∇2 f (zk) is obtained

κ(M�
h(a, δ)∇2 f (zk)) ≤ ξh · κ

(
∇2 f (zk)

)
, ξh > 0.

Then, typically for small values of δ the quantity ξh (see (4.7) in [12] for the
expression of ξh) outreaches its minimum and the bound becomes tighter. However,
for completeness we report that in our experience small values of δ tend to be non-
competitive with larger ones, since they might also yield correspondingly small
eigenvalues for δ2Th in (3.1).

7 Conclusions

Wehave given theoretical and numerical results for a new class of preconditioners. The
latter can be built by using any Krylov-subspace method for the positive definite linear
system (2.1), as well as L-BFGS updates, provided that the general condition (2.2) is
satisfied. We gave evidence that on several test problems and real applications, a few
iterations of the Krylov-subspace method adopted may suffice to compute effective
preconditioners. In particular, in many problems using a relatively small value of the
index h, a significant information on the system matrix A can be captured.

On this guideline our proposal might possibly be promising also for those cases
where a sequence of linear systems of the form

Akx = bk, k = 1, 2, . . . (7.1)

requires a solution (e.g., see also [7,19] for details), where Ak “slightly changes”
with the index k. In the latter case, the preconditioners M�

h(a, δ) in (3.1)–(3.2) can be
computed applying the Krylov-subspace method to the first linear system A1x = b1.
Then, the resulting preconditioners can be used to efficiently solve (7.1) for k =
2, 3, . . .

A full investigation was also included, where our proposal was compared with the
preconditioner in [11], showing that the new proposal outperforms that in [11]. In
particular we think that a further exhaustive analysis is required to extend the class
(3.1)–(3.2) to indefinite linear systems, so that a fully general proposal might be
available. In the latter case, both a new theoretical approach and a completely novel
numerical experience are sought, in order to show the possible robustness of our class
of preconditioners.
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contents in this paperwere at their early beginning.G. Fasanowishes to thank theNationalResearchCouncil-
Marine TechnologyResearch Institute (CNR-INSEAN), for the indirect support in project RITMARE2012-
2016. The authors are also indebted to an anonymous referee for the helpful suggestions and comments
which led to improve the analysis in the paper.
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Appendix

The next lemma is used to prove the results of Theorem 4.3.

Lemma 7.1 Given the symmetric matrices H ∈ Rh×h, P ∈ R(n−h)×(n−h) and the
matrix � ∈ Rh×(n−h), suppose

�T H =

⎡

⎢
⎢
⎢
⎣

zT1
...

zTm
0[n−(h+m)],h

⎤

⎥
⎥
⎥
⎦

, z1, . . . , zm ∈ Rh, (7.2)

with H = λ[Ih + u1wT
1 + · · ·+ u pw

T
p ], p ≤ h, 0 ≤ m ≤ h − p, λ ∈ R, ui , wi ∈ Rh,

i = 1, . . . , p. Then, the symmetric matrix

(
H H�

�T H P

)

(7.3)

has the eigenvalueλwithmultiplicity at least equal to h−rk[w1 w2 · · ·wp z1 z2 · · · zm].
Proof Observe that H has the eigenvalue λ with a multiplicity at least h − p, since
Hs = λs for any s ⊥ span{w1, . . . , wp}. Moreover, imposing the condition (with
x1, x2 not simultaneously zero vectors)

(
H H�

�T H P

)(
x1
x2

)

= λ

(
x1
x2

)

is equivalent to impose the conditions

⎧
⎨

⎩

H(x1 + �x2) = λx1

�T Hx1 + Px2 = λx2.

By (7.2), choosing x2 = 0 and x1 any h-real vector such that x1 ⊥ span{w1, . . . , wp,

z1, . . . , zm}, then λ is eigenvalue of (7.3) withmultiplicity given by hminus the largest
number of linearly independent vectors in the set {w1, . . . , wp, z1, . . . , zm}. 
�
Proof of Theorem 4.3 Let N = [

Rh | uh+1 | Rn,h+1
]
, where Rn,h+1

= (uh+2 | · · · | un) ∈ Rn×(n−h−1), being u j , j = h + 2, . . . , n, orthonormal vectors
and (Rh | uh+1)

T Rn,h+1 = 0. Hence, N is orthogonal. Observe that for h ≤ n − 1
the preconditioners M�

h(a, δ) may be rewritten as

M�
h(a, δ) = N

⎡

⎣

(
δ2Th aeh
aeTh 1

)−1

0

0 In−(h+1)

⎤

⎦ NT , h ≤ n − 1. (7.4)
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The property a) follows from the symmetry of Th . In addition, observe that
RT
n,h+1Rn,h+1 = In−(h+1). Thus, from (7.4) the matrix M�

h(a, δ) is nonsingular if
and only if the matrix (

δ2Th aeh
aeTh 1

)

(7.5)

is invertible. Furthermore, by a direct computation we observe that for h ≤ n − 1 the
following identity holds (we recall that since A � 0 then by (2.2) Th � 0, too)

(
δ2Th aeh
aeTh 1

)

=
(

Ih 0
a
δ2
eTh T

−1
h 1

)(
δ2Th 0

0 1 − a2

δ2
eTh T

−1
h eh

)(
Ih

a
δ2
T−1
h eh

0 1

)

. (7.6)

Thus, since Th is nonsingular and δ �= 0, for h ≤ n − 1 the determinant of matrix
(7.5) is nonzero if and only if a �= ±δ(eTh T

−1
h eh)−1/2. Finally, for h = n the matrix

M�
h(a, δ) is nonsingular, since Rn and Tn are nonsingular in (3.2).

As regards (b), observe that from (7.4) the matrix M�
h(a, δ) is positive definite as

long as the matrix (7.5) is positive definite. Thus, from (7.6) and relation Th � 0 we
immediately infer thatM�

h(a, δ) is positive definite as long as |a| < |δ|(eTh T−1
h eh)−1/2.

Moreover, we recall that N is orthogonal.
Item (c) may be proved considering the eigenvalues of the matrix

[
M�

h(a, δ)A
] [

M�
h(a, δ)A

]T = M�
h(a, δ)A2M�

h(a, δ),

i.e., the singular values of M�
h(a, δ)A. On this purpose, for h ≤ n − 1 we have for

M�
h(a, δ)A2M�

h(a, δ) the expression (see (7.4))

M�
h(a, δ)A2M�

h(a, δ)

= N

⎡

⎣

(
δ2Th aeh
aeTh 1

)−1

0

0 In−(h+1)

⎤

⎦C

⎡

⎣

(
δ2Th aeh
aeTh 1

)−1

0

0 In−(h+1)

⎤

⎦ NT (7.7)

where C ∈ Rn×n , with

C = NT A2N =
⎡

⎣
RT
h A2Rh RT

h A2uh+1 RT
h A2Rn,h+1

uTh+1A
2Rh uTh+1A

2uh+1 uTh+1A
2Rn,h+1

RT
n,h+1A

2Rh RT
n,h+1A

2uh+1 RT
n,h+1A

2Rn,h+1

⎤

⎦ .

From (2.2) and the symmetry of Th we obtain

RT
h A2Rh = (ARh)

T (ARh) = (RhTh + ρh+1uh+1e
T
h )T (RhTh + ρh+1uh+1e

T
h )

= T 2
h + ρ2

h+1ehe
T
h (7.8)

RT
h A2uh+1 = (ARh)

T Auh+1 = v1 ∈ Rh, (7.9)

123



424 G. Fasano, M. Roma

and considering relation (2.2) we obtain

ARh+1 = A(Rh | uh+1) = Rh+1Th+1 + ρh+2uh+2e
T
h+1

= (Rh | uh+1)

(
Th ρh+1eh

ρh+1eTh th+1,h+1

)

+ ρh+2uh+2e
T
h+1

i.e.

ARh = RhTh + ρh+1uh+1e
T
h

Auh+1 = ρh+1uh + th+1,h+1uh+1 + ρh+2uh+2, (7.10)

so that

A2Rh = (ARh)Th + ρh+1Auh+1e
T
h

= (RhTh + ρh+1uh+1e
T
h )Th + ρh+1(ρh+1uh + th+1,h+1uh+1 + ρh+2uh+2)e

T
h .

As a consequence, from (7.10) we also have that Auh+2 = span{uh+1, uh+2, uh+3}
and

RT
h A2Rn,h+1 = (A2Rh)

T Rn,h+1 = ρh+1(ρh+2uh+2e
T
h )T Rn,h+1

= ρh+1ρh+2

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
...

...
...

...

0 0 · · · 0
1 0 · · · 0

⎞

⎟
⎟
⎟
⎠

= ρh+1ρh+2Eh,1 ∈ Rh×[n−(h+1)],

uTh+1A
2uh+1 = c > 0

uTh+1A
2Rn,h+1 = [A(ρh+1uh+th+1,h+1uh+1+ρh+2uh+2)

]T
Rn,h+1

= [A(th+1,h+1uh+1+ρh+2uh+2)
]T

Rn,h+1=(α β 0 · · · 0) ∈ Rn−(h+1)

with α, β ∈ R and

RT
n,h+1A

2Rn,h+1 = V2 ∈ R[n−(h+1)]×[n−(h+1)],

where Ei, j has all zero entries but +1 at position (i, j). Thus,

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T 2
h + ρ2

h+1ehe
T
h v1 ρh+1ρh+2Eh,1

vT1 c α β 0 · · · 0

ρh+1ρh+2E1,h

α

β

0
...

0

V2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Moreover, from (7.6) we can readily infer that

[
δ2Th aeh
aeTh 1

]−1

=
(
Ih − a

δ2
T−1
h eh

0 1

)
⎛

⎝
1
δ2
T−1
h 0

0 1

1− a2

δ2
eTh T

−1
h eh

⎞

⎠
(

Ih 0
− a

δ2
eTh T

−1
h 1

)

=
(

1
δ2
T−1
h − a

δ4
ωT−1

h eheTh T
−1
h

ω
δ2
T−1
h eh

ω
δ2
eTh T

−1
h −ω

a

)

, (7.11)

with
ω = − a

1 − a2

δ2
eTh T

−1
h eh

. (7.12)

Now, recalling that N = [Rh | uh+1 | Rn,h+1
]
, for any h ≤ n−1 we obtain from (7.7)

M�
h(a, δ)A2M�

h(a, δ)

= N

⎡

⎢
⎢
⎢
⎣

[
δ2Th aeh
aeTh 1

]−1 [
T 2
h +ρ2

h+1ehe
T
h v1

vT1 c

] [
δ2Th aeh
aeTh 1

]−1 (
δ2Th aeh
aeTh 1

)−1 (
ρh+1ρh+2Eh,1

α β 0 · · · 0
)

(
ρh+1ρh+2Eh,1

α β 0 · · · 0
)T (

δ2Th aeh
aeTh 1

)−1

V2

⎤

⎥
⎥
⎥
⎦
NT,

with

(
δ2Th aeh
aeTh 1

)−1 (
ρh+1ρh+2Eh,1

α β 0 · · · 0
)

=
⎛

⎜
⎝

∗
...

∗

∗
...

∗
0h+1,[n−(h+3)]

⎞

⎟
⎠ ∈ R(h+1)×[n−(h+1)],

where the ‘∗’ indicates entries whose computation is not relevant to our purposes.
Now, considering the second last relation, we focus on computing the submatrix

Hh×h corresponding to the first h rows and h columns of the matrix

[
δ2Th aeh
aeTh 1

]−1 [
T 2
h + ρ2

h+1ehe
T
h v1

vT1 c

] [
δ2Th aeh
aeTh 1

]−1

. (7.13)

After a brief computation, from (7.11) and (7.13) we obtain for the submatrix Hh×h

Hh×h =
[(

1

δ2
T−1
h − a

δ4
ωT−1

h ehe
T
h T

−1
h

)(
T 2
h + ρ2

h+1ehe
T
h

)

+ ω

δ2
T−1
h ehv

T
1

]

·
[
1

δ2
T−1
h − a

δ4
ωT−1

h ehe
T
h T

−1
h

]

+
[(

1

δ2
T−1
h − a

δ4
ωT−1

h ehe
T
h T

−1
h

)

v1 + ω

δ2
cT−1

h eh

]

· ω

δ2
eTh T

−1
h ,
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so that

Hh×h =
[
1

δ2
Th + ρ2

h+1

δ2
T−1
h ehe

T
h − a

δ4
ωT−1

h ehe
T
h Th

− a

δ4
ωρ2

h+1(e
T
h T

−1
h eh)T

−1
h ehe

T
h + ω

δ2
T−1
h ehv

T
1

]

×
[
1

δ2
T−1
h − a

δ4
ωT−1

h ehe
T
h T

−1
h

]

+ ω

δ2

[
1

δ2
T−1
h v1 − a

δ4
ω(eTh T

−1
h v1)T

−1
h eh + ω

δ2
cT−1

h eh

]

eTh T
−1
h .

From the last relation we finally have for Hh×h the expression

Hh×h = 1

δ4

{
Ih +

[
ηT−1

h eh − aω

δ2
eh + ωT−1

h v1

]
eTh T

−1
h

+ ωT−1
h eh

[
vT1 T

−1
h − a

δ2
eTh

]}
, (7.14)

where

η = ρ2
h+1 − 2

a

δ2
ωρ2

h+1

(
eTh T

−1
h eh

)+ a2ω2

δ4

+ a2

δ4
ω2ρ2

h+1

(
eTh T

−1
h eh

)2 − 2
a

δ2
ω2(eTh T

−1
h v1

)+ ω2c; (7.15)

moreover, since M�
h(a, δ)A2M�

h(a, δ) � 0 then also Hh×h is positive definite.
Let us now define the subspace (see the vectors which define the dyads in relation

(7.14))

T2 = span
{
T−1
h eh , ω

[
T−1
h v1 − a

δ2
eh
]}

. (7.16)

Observe that, by (7.9) and (7.10), after some computation v1 = ρh+1
[
Th

+ th+1,h+1 Ih
]
eh . Thus, from (7.16) the subspace T2 has dimension 2, unless

(i) Th is proportional to Ih ,
(ii) a = 0 (which, from (7.12), also implies ω = 0).

We analyze separately the two cases. The condition (i) cannot hold since (2.2) would
imply that the vector Aui is proportional to ui , i = 1, . . . , h − 1, i.e. the Krylov-
subspace method had to stop at the very first iteration, since the Krylov-subspace
generated at the first iteration did not change. As a consequence, considering any
subspaceSh−2 ⊆ Rn , such thatSh−2

⊕
T2 = Rh , we can select any orthonormal basis

{s1, . . . , sh−2} of the subspaceSh−2 so that (see (7.14)) the h−2 vectors {s1, . . . , sh−2}
can be thought as (the first) h − 2 eigenvectors of the matrix Hh×h , corresponding to
the eigenvalue +1/δ4.
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Now, from the formula after (7.12) the eigenvalues ofM�
h(a, δ)A2M�

h(a, δ) coincide

with the eigenvalues of (we recall that sinceM�
h(a, δ)A2M�

h(a, δ) � 0 then Hh×h � 0)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Hh×h Hh×h�

�T Hh×h

∗ ∗ · · · · · · · · · ∗
∗
...

∗
V2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, �=H−1
h×h

(
z1 z2 z3 0h×[n−(h+3)]

)
, z1, z2, z3 ∈ Rh,

(7.17)
which becomes, after setting

P =

⎛

⎜
⎜
⎜
⎝

∗ ∗ · · · · · · · · · ∗
∗
...

∗
V2

⎞

⎟
⎟
⎟
⎠

,

of the form

[
Hh×h Hh×h�

�T Hh×h P

]

.

Thus, using Lemma 7.1 with w1 = T−1
h eh , w2 = ω

[
T−1
h v1 − a/δ2eh

]
and m = 3,

recalling that Th � 0, and observing that we have by (7.11)

[
z1
∗
]

=
[

δ2Th aeh
aeTh 1

]−1 [
T 2
h + ρ2

h+1ehe
T
h v1

vT1 c

] [
δ2Th aeh
aeTh 1

]−1

eh+1

=
[

1
δ2
T−1
h − a

δ4
ωT−1

h eheTh T
−1
h

ω
δ2
T−1
h eh

ω
δ2
eTh T

−1
h −ω

a

]

×
(

ω
δ2
T 2
h T

−1
h eh + ρ2

h+1
ω
δ2

(eTh T
−1
h eh)eh − ω

a v1
ω
δ2

(vT1 T
−1
h eh) − cω

a

)

so that z1 ∈ span
{
ωeh , ωT−1

h eh , T−1
h v1

}
,

[
z2
∗
]

=
[

δ2Th aeh
aeTh 1

]−1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
ρh+1ρh+2

α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
[ ρh+1ρh+2

δ2
T−1
h eh − ρh+1ρh+2

aω
δ4

(eTh T
−1
h eh)T

−1
h eh + αω

δ2
T−1
h eh

∗
]
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so that z2 ∈ span{T−1
h eh}, and

[
z3
∗
]

=
[

δ2Th aeh
aeTh 1

]−1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
0
β

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
[

βω

δ2
T−1
h eh
∗

]

so that z3 ∈ span{ωT−1
h eh}, we conclude that considering the expression of Hh×h ,

at least h − 3 eigenvalues of M�
h(a, δ)A2M�

h(a, δ) coincide with +1/δ4. As a conse-

quence, the matrix M�
h(a, δ)A has at least h−3 singular values equal to+1/δ2, which

proves the first statement of (c).
As regards the case (ii) with a = 0, observe that by the definition (7.12) ofω, a = 0

implies ω = 0. Moreover, recalling that Th � 0, from relations (7.14)–(7.15) we have
Hh×h = 1/δ4[Ih + ρ2

h+1T
−1
h eheTh T

−1
h ]. Thus, the subspace T2 in (7.16) reduces to

T1 = span{T−1
h eh}. Now, reasoning as in the case (i), we conclude that the matrix

M�
h(a, δ)A has at least (h − 2) singular values equal to +1/δ2.
As regards item (d), observe that for h = n the matrix Rn is orthogonal, so that by

(2.2) and (3.2) we have

M�
n(a, δ)A = 1

δ2
RnT

−1
n RT

n RnTn R
T
n = 1

δ2
Rn In R

T
n , (7.18)

which proves that M�
n(a, δ)A has all the n eigenvalues equal to +1/δ2. 
�
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