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Abstract In this paper we study new preconditioners to be used within the nonlinear
conjugate gradient (NCG) method, for large scale unconstrained optimization. The
rationale behind our proposal draws inspiration from quasi-Newton updates, and its
aim is to possibly approximate in some sense the inverse of the Hessian matrix. In
particular, at the current iteration of the NCGwe consider some preconditioners based
on new low-rank quasi-Newton symmetric updating formulae, obtained as by-product
of the NCG method at the previous steps. The results of an extensive numerical expe-
rience are also reported, showing the effectiveness, the efficiency and the robustness
of this approach, which suggests promising guidelines for further studies.
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1 Introduction

We deal with the large scale unconstrained optimization problem

min
x∈IRn

f (x), (1.1)

where f : IRn −→ IR is a twice continuously differentiable function and n is large.
We assume that for a given x1 ∈ IRn the level set

�1 = {
x ∈ IRn | f (x) ≤ f (x1)

}

is compact, but no convexity assumption is considered for the function f (x). A con-
siderably large number of real world applications can be modeled (or reformulated
as) an optimization problem of the form (1.1), strongly motivating the interest for the
solution of such problems in several contexts.

Among the iterative methods for large scale unconstrained optimization, when the
Hessianmatrix is possibly dense, theNCGmethod andLimitedMemoryquasi-Newton
method (e.g. L-BFGS) are often the methods of choice. In their iterations they do not
include explicitly second order information; nevertheless, they both exploit the local
structure and curvatures of f (x) through the gradient at different iterates.

In this paper we focus on the NCG method and, in particular, on effective tech-
niques to improve it. We highlight that the main aim of the paper is not to define a
challenging algorithm for large scale unconstrained optimization, but rather introduc-
ing a preconditioning strategy and showing its effectiveness.

As well known (see any textbook, e.g. [23]) the NCGmethod is a natural extension,
to general nonconvex functions, of the linear conjugate gradient (CG) method for
quadratic functions. In particular, the NCG method generates the sequence of iterates
xk+1 = xk + αk pk , where pk is the search direction

pk = −∇ f (xk) + βk pk−1,

with βk a suitable scalar. The positive steplength αk is obtained by an appropriate line-
search. Different values of βk give rise to different algorithms (see [15] for a survey),
endowed with different convergence properties. Among them, the most common and
historically settled schemes are

– Fletcher and Reeves (FR) [9],
– Polak and Ribière (PR) [24],
– Hestenes and Stiefel (HS) [17].

However, more recently several other efficient proposals have been introduced in the
literature, among them we can find for instance

– Hager and Zhang (HZ) [14],
– Dai and Yuan (DY) [3].

The NCGmethods have been widely studied and are often very efficient when solving
large scale problems. A keynote issue for increasing their efficiency is the use of a
preconditioning strategy, especially when solving difficult ill-conditioned problems.
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Defining good preconditioners for NCG methods is currently still considered a
challenging research topic. On this guideline, this work is devoted to investigate the
use of quasi-Newton updates as preconditioners for NCG. In particular, we propose
iteratively constructed preconditioners, exploiting information on the inverse of the
Hessian matrix at the current iterate. Our proposal is based on quasi-Newton updates
of the inverse of the Hessian matrix, and collects also some information from a fixed
number of previous iterations. This represents an attempt to improve the efficiency
of the NCG method, by conveying information from previous iterates, similarly to a
limited memory quasi-Newton approach, so that a preconditioned nonlinear conjugate
gradient (PNCG) method can be applied. More in detail, we study new symmetric
low-rank updates for defining such preconditioners, where the information used is a
by-product of NCG iterates. In this regard it is worth to recall that there exists a close
connection between BFGS and NCG [21], and on the other hand, NCG algorithms
can be viewed as memoryless quasi-Newton methods (see e.g., [23,25,26]).

Observe that the idea of using a quasi-Newton update, as a preconditioner within
NCG algorithms, is not new. In [2], when storage is available, a preconditioner defined
by m quasi-Newton updates is used within an NCG algorithm. In [1] a scaled memo-
ryless BFGSmatrix is used as preconditioner in the framework of NCG. Moreover, an
automatic preconditioning strategy based on a limited memory quasi-Newton update
for the linear CG is proposed in [19], within Hessian–free Newton methods, and is
extended to the solution of a sequence of linear systems.

The paper is organized as follows: in Sect. 2 some preliminaries on PNCG and
quasi-Newton updates are reported. In Sect. 3 we include guidelines for designing our
novel preconditioners. Then, Sect. 4 contains our proposal, while Sect. 5 includes an
extensive numerical experience, highlighting the benefits from adopting our precon-
ditioners. A section of conclusions also completes the paper. As regards the notation,
with A � 0 [A � 0] we indicate that the matrix A is positive definite [semidefinite].

2 Preliminaries

In this section first we report the scheme of a general PNCG algorithm (see e.g. [25]),
where Mk � 0 denotes the preconditioner at the k-th iteration.

Preconditioned nonlinear conjugate gradient (PNCG) algorithm

Step 1: Set x1 ∈ IRn and M1. Set p1 = −M1∇ f (x1) and k = 1.
Step 2: Compute the steplength αk by using a linesearch procedure, which ensures
the strong Wolfe conditions, and set

xk+1 = xk + αk pk .

Step 3: If a stopping criterion is satisfied then stop,else compute βk+1 and

pk+1 = −Mk+1∇ f (xk+1) + βk+1 pk, (2.2)

set k = k + 1 and go to Step 2.
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By setting Mk = In for any k, the popular (unpreconditioned) NCG method is
trivially obtained. The parameter βk+1 can be chosen in a variety of ways. For PNCG
algorithm, among themost recurrent choices from the literature there are the following
ones:

βFR
k+1 = ∇ f (xk+1)

T Mk∇ f (xk+1)

∇ f (xk)T Mk∇ f (xk)
, (2.3)

βPR
k+1 =

[∇ f (xk+1) − ∇ f (xk)
]T

Mk∇ f (xk+1)

∇ f (xk)T Mk∇ f (xk)
, (2.4)

βHS
k+1 =

[∇ f (xk+1) − ∇ f (xk)
]T

Mk∇ f (xk+1)
[∇ f (xk+1) − ∇ f (xk)

]T
pk

, (2.5)

which require Mk � 0. We recall that to guarantee global convergence, an accurate
linesearch technique is required to determine the steplength αk in a PNCG algorithm.
The latter fact justifies the use of a linesearch procedure, ensuring the strong Wolfe
conditions (see e.g. [23]). This also guarantees that the condition

sTk yk > 0, for any k (2.6)

holds, being sk = xk+1 − xk and yk = ∇ f (xk+1) − ∇ f (xk). As we will see shortly,
(2.6) is a fundamental relation to our purposes.

As already said, preconditioning is applied for increasing the efficiency of the
NCG method. In this regard, we remark a noticeable difference between CG and
NCG. Whenever the CG is applied, the Hessian matrix does not change during the
iterations of the algorithm.On the contrary,whenNCG is applied to a general nonlinear
function, theHessianmatrix (possibly indefinite) changeswith the iterations. The latter
fact implies that the mutual conjugacy of the search directions, generated by the NCG,
may be hardly fulfilled. In this work our aim is to exploit possible conjugacy among
vectors within a quasi-Newton approach, to generate in some sense an approximate
inverse of the Hessian matrix. Namely, we want to use the latter approximation as
preconditioner within a PNCG framework.

In this regard, as well known (see e.g. [23]), when using quasi-Newton methods in
place of (2.2) we generate a search direction of the form

pk = −Hk∇ f (xk),

where Hk is an approximation of the inverse of theHessianmatrix∇2 f (xk). Then, as in
Step 2 of PNCG, the new iterate xk+1 can be obtained according to xk+1 = xk +αk pk ,
where αk is a steplength. In particular, instead of computing Hk from scratch at each
iteration k, these methods update Hk in a simple manner, in order to obtain the new
approximation Hk+1 to be used in the next iteration. Moreover, instead of storing full
dense n × n approximations, they only save a few vectors of length n, which allow to
represent the approximations {Hk} implicitly.

Among the quasi-Newton schemes, the L-BFGS method is usually considered one
of the most efficient [18,22]. It is well suited for large scale problems because the
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amount of storage it requires is limited and controlled by the user. This method is
based on the construction of the approximation of the inverse of the Hessianmatrix, by
exploiting curvature information gained only from the most recent iterations. Specif-
ically, the inverse of the Hessian matrix is updated by L-BFGS at the k-th iteration
as

Hk+1 = V T
k HkVk + ρksks

T
k , (2.7)

where

ρk = 1

yTk sk
, Vk = In − ρk yks

T
k ,

and
sk = xk+1 − xk = αk pk, yk = ∇ f (xk+1) − ∇ f (xk). (2.8)

Observe that rearranging the expression of Hk we can also iteratively obtain relation

Hk = (V T
k−1 · · · V T

k−m)H0
k (Vk−m · · · Vk−1)

+ ρk−m(V T
k−1 · · · V T

k−m+1)sk−ms
T
k−m(Vk−m+1 · · · Vk−1)

+ ρk−m+1(V
T
k−1 · · · V T

k−m+2)sk−m+1s
T
k−m+1(Vk−m+2 · · · Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1,

wherem is thememory of the method and H0
k is an initial approximation of the inverse

of the Hessian matrix (see [18,22,23]).
The well known reasons for the success of the L-BFGSmethod can be summarized

in the following two points: firstly, even when m is small, Hk+1 proves to be an
effective approximation of the inverse of the Hessian matrix. Secondly Hk+1 is the
unique (positive definite) matrix which solves the subproblem

min
H

‖H − Hk‖F
s.t. H = HT

Hyk = sk,

where ‖ · ‖F is the Frobenius norm. Namely, Hk+1 is the positive definite matrix
“closest” to the current approximation Hk , satisfying the secant equation

Hyk = sk . (2.9)

Relation (2.9) also reveals that when f (x) is quadratic, then [∇2 f (xk)]−1yk = Hk yk ,
meaning that Hk approximates the action of [∇2 f (xk)]−1 along the direction yk .
However, as well known L-BFGS method presents some drawbacks, including the
slow convergence on ill-conditioned problems, namely when the eigenvalues of the
Hessian matrix are very spread.

As already noted in the Introduction, the idea of using a quasi-Newton update as
a preconditioner within both PNCG algorithms and Hessian-free Newton methods is
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not new (see also [1,2,19]). Now, to introduce our proposal, let us consider the BFGS
updating formula: we want to better exploit the relation with the CG in case f (x) is
quadratic, i.e.

f (x) = 1

2
xT Ax + bT x, A ∈ IRn×n . (2.10)

The BFGS update (2.7) can be rewritten as

Hk =
(

In − yk−1sTk−1

yTk−1sk−1

)T

Hk−1

(

In − yk−1sTk−1

yTk−1sk−1

)

+ sk−1sTk−1

yTk−1sk−1
, (2.11)

so that explicitly using the expression of f (x) (see also [13]), which implies yk = Ask ,
we can set

Vk = In − AsksTk
sTk Ask

(2.12)

and write recursively

Hk = V T
k−1Hk−1Vk−1 + sk−1sTk−1

yTk−1sk−1

= V T
k−1(V

T
k−2Hk−2Vk−2)Vk−1 + V T

k−1

sk−2sTk−2

yTk−2sk−2
Vk−1 + sk−1sTk−1

yTk−1sk−1
. (2.13)

Now, since f (x) is quadratic, assuming the conjugacy of the vectors {p1, . . . , pk} in
(2.8), we have that

V T
k sk−1 =

(

In − AsksTk
sTk Ask

)T

sk−1 = sk−1 − sksTk Ask−1

sTk Ask
= sk−1,

which implies also that (2.13) becomes

Hk = V T
k−1Hk−1Vk−1 + sk−1sTk−1

yTk−1sk−1

= V T
k−1(V

T
k−2Hk−2Vk−2)Vk−1 + sk−2sTk−2

yTk−2sk−2
+ sk−1sTk−1

yTk−1sk−1

= V T
k−1V

T
k−2 · · · V T

1 H0
k V1 · · · Vk−2Vk−1 +

k−1∑

i=1

si sTi
sTi Asi

. (2.14)

Formula (2.14) can be used to potentially generate preconditioners for the PNCG,
by looking at the rightmost contribution

k−1∑

i=1

si sTi
sTi Asi

, (2.15)
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whose range is exactly span{s1, . . . , sk−1}. Indeed, we can draw our inspiration from
(2.14) and [7], where a new preconditioner for Newton–Krylov methods is described.
In particular, in [7] the set of directions generated by a Krylov subspace method is
used to provide an approximate inverse preconditioner, for the solution of Newton’s
systems. On this guideline, observe that for f (x) as in (2.10), with A positive definite,
the CG method may generate n conjugate directions {p j } (see e.g. [11]) such that

A−1 =
n∑

j=1

p j pTj
pTj Ap j

. (2.16)

This implies that the rightmost contribution in (2.14) might be viewed and used as an
approximate inverse of the Hessian matrix A. In the next sections we aim at extending
the latter idea, to the case where f (x) is nonlinear, following similar guidelines.

3 Guidelines for a new Symmetric Rank-2 update

In this section we consider a new quasi-Newton updating formula, by considering the
properties of a parameter dependent Symmetric Rank-2 (SR2) update of the inverse
of the Hessian matrix. Suppose that after k iterations of NCG the sequence of iterates
{x1, . . . , xk+1} is generated. Let us consider the quasi-Newton update H , satisfying
the secant equation at the iterates x1, . . . , xk , i.e.

Hyj = s j , j ≤ k. (3.17)

Observe that the latter appealing property of thematrix H is satisfied by all the updates
of the Broyden class, provided that the linesearch adopted is exact (see e.g. [23]). We
would like to recover the motivation underlying the latter class of updates, and by
using a novel rank-2 update we would like to define a preconditioner for PNCG.

On this guideline, let the matrix H in (3.17) depend on the three parameters {τ j },
{γ j } and {ω j }, and let us consider the update

H(τk+1, γk+1, ωk+1) = H(τk, γk, ωk) + 	k, 	k ∈ IRn×n, symmetric. (3.18)

Wewant (3.18) to represent, to some extent, our quasi-Newton updates of [∇2 f (x)]−1,
such that:

(0) H(τk+1, γk+1, ωk+1) is well-defined and nonsingular;
(1) H(τk+1, γk+1, ωk+1) can be iteratively updated;
(2) H(τk+1, γk+1, ωk+1) collects the information from the iterations k −m, k −m +

1, . . . , k of a NCG method, where m < k is a given positive integer (memory of
the preconditioner);

(3) H(τk+1, γk+1, ωk+1) satisfies the secant equation at least at iteration k;
(4) H(τk+1, γk+1, ωk+1) “tends to resemble” the inverse of∇2 f (xk+1), in case f (x)

is a general convexquadratic function and, by suitably setting the three parameters,
it canbeused as a preconditioner for PNCG, i.e.Mk+1=H(τk+1, γk+1, ωk+1)�0.
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Observe that the Symmetric Rank-1 (SR1) quasi-Newton update (see Section 6.2 in
[23]) satisfies properties (1)–(4) but not the property (0), i.e. it might be possibly
not well-defined for a general nonlinear function. The latter result follows from the
fact that SR1 update provides only a rank-1 quasi-Newton update, unlike BFGS and
DFP. On the other hand, while BFGS and DFP quasi-Newton formulae provide only
positive definite updates, the SR1 formula is able to recover the inertia of the Hessian
matrix, by generating possibly indefinite updates. Thus, now we want to study an SR2
quasi-Newton update, such that at iteration k

– it satisfies (0)–(4);
– at least one of the two newest dyads used for the update is provided using infor-
mation from iterations k − m, . . . , k of the NCG method.

4 A preconditioner using a BFGS-like quasi-Newton update

In this section we address the final remark of Sect. 3. Indeed, we introduce a new class
of preconditioners which are iteratively constructed by using information from NCG
iterations, and satisfy the properties (0)–(4). On this purpose, in order to comply with
properties (3) and (4), the preconditioners in our proposal satisfy two prerequisites.
First they are conceived around the rightmost term (2.15) in (2.14), in order to possibly
approximate the inverse Hessian matrix; then, they satisfy the secant equation at the
current iterate, and not necessarily at all the previous iterates. This is a weak theoretical
requirement, with respect to other quasi-Newton updates, however numerical results
in Sect. 5 yet confirm its efficiency and robustness.

Now, in order to introduce a class of preconditioners for the NCG, suppose we
have performed k iterations of the (unpreconditioned) NCG, so that the directions
p1, . . . , pk are generated. Let us consider the matrix Mk+1 defined by

Mk+1 = τkCk + γkvkv
T
k + ωk

k∑

j=k−m

p j pTj
pTj ∇2 f (x j )p j

, (4.19)

where 0 ≤ m ≤ k − 1, γk, ωk ≥ 0, τk > 0, Ck ∈ IRn×n is symmetric positive definite
and vk ∈ IRn . In order to use Mk+1 as a preconditioner in the PNCG, and to update its
expression iteratively, we can set τkCk = H(τk, γk, ωk) (with H(τ0, γ0, ω0) given)
and rewrite (4.19) in the form

H(τk+1, γk+1, ωk+1) = H(τk, γk, ωk) + γkvkv
T
k + ωk

k∑

j=k−m

p j pTj
pTj ∇2 f (x j )p j

.

(4.20)
H(τk+1, γk+1, ωk+1) in (4.20) may be treated as a symmetric quasi-Newton update
of the form (3.18). However, for simplicity, in the sequel we prefer to use the more
general form given by (4.19). Indeed, as will shortly be evident, relation (4.19) is easier
to handle, in order to impose the satisfaction of the secant equation at the current iterate
xk .
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Observe that in the expression of Mk+1 (see (4.19)), γkvkv
T
k represents a rank-1

matrix while in view of (2.14)–(2.16), the term

k∑

j=k−m

p j pTj
pTj ∇2 f (x j )p j

(4.21)

is aimed at building, in some sense, an approximate inverse of the Hessian matrix on
a specific subspace. The next proposition better justifies the last statement.

Proposition 1 Let f (x) = 1/2xT Ax + bT x , with A � 0. Let p1, . . . , pn ∈ IRn\{0},
with pTi Ap j = 0, 1 ≤ i 
= j ≤ n. Then, for any 0 ≤ m ≤ min{n − 1, k − 1},

⎡

⎣
k∑

j=k−m

p j pTj
pTj ∇2 f (x j )p j

⎤

⎦ Av = v, for all v ∈ span{pk−m, . . . , pk}.

Moreover, when m = n − 1 then
∑k

j=k−m
p j pTj

pTj ∇2 f (x j )p j
= A−1.

Proof Let v = ∑k
i=k−m μi pi , μi ∈ IR; then, since ∇2 f (x) = A, for any x ∈ IRn , we

have
⎡

⎣
k∑

j=k−m

p j pTj
pTj ∇2 f (x j )p j

⎤

⎦ Av =
⎡

⎣
k∑

j=k−m

p j pTj
pTj Ap j

⎤

⎦ Av

=
k∑

j=k−m

k∑

i=k−m

μi
p j pTj
pTj Ap j

Api =
k∑

i=k−m

μi pi = v.

In case m = n − 1, since the vectors {p j } are also linearly independent, we directly
obtain the inverse matrix A−1. ��
Thus, in case f (x) is quadratic, then (4.21) behaves as an inverse of the Hessianmatrix
on the subspace spanned by the linearly independent vectors pk−m, . . . , pk .

The integer m can be viewed as a “limited memory” parameter, similarly to the L-
BFGS method. Moreover, we can set the matrix Ck , the vector vk and the parameters
τk, γk, ωk such that the class of preconditioners {Mk} satisfies, for any k, the secant
equation at the current iterate

Mk+1yk = sk, (4.22)

along with a modified secant equation at some previous iterates, as described in the
next proposition.

Proposition 2 Let f : IRn → IR be twice continuously differentiable. Suppose that
k iterations of NCG are performed, using a strong Wolfe linesearch procedure. Let
Mk+1 ∈ IRn×n be defined as in (4.19), with 0 ≤ m ≤ k − 1, τk > 0, γk, ωk ≥ 0.

(i) Let Ck ∈ IRn×n be symmetric positive definite, then there exist values of
τk, γk, ωk such that Mk+1 � 0 and (4.22) holds.
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(ii) Let Ck ∈ IRn×n be symmetric positive definite and f (x) = 1/2xT Ax + bT x.
Then, Mk+1 � 0, (4.22) holds and Mk+1 reduces to

Mk+1 = τkCk + γkvkv
T
k + ωk

k∑

j=k−m

s j sTj
yTj s j

, (4.23)

with vk = σk(sk − τkCk yk − ωksk), σk ∈ {−1,+1}.
(iii) Let f (x) = 1/2xT Ax + bT x, with A � 0, and suppose k ≥ 2 iterations of

the NCG algorithm are performed, using an exact linesearch. Then, there exist
values of τk , γk , ωk , and a positive semidefinite matrix Ck, such that Mk+1 � 0,
(4.22) holds and the following modified secant conditions

Mk+1yi = ωksi , i = k − m, . . . , k − 1, (4.24)

are satisfied.

Proof From (4.19) imposing relation (4.22) we have

τkCk yk + γk(v
T
k yk)vk + ωk

k∑

j=k−m

pTj yk

pTj ∇2 f (x j )p j
p j = sk;

hence, assuming γk(v
T
k yk) 
= 0 (which may be straightforwardly guaranteed by a

suitable choice of τk , γk and ωk),

vk = σk

⎡

⎣sk − τkCk yk − ωk

k∑

j=k−m

pTj yk

pTj ∇2 f (x j )p j
p j

⎤

⎦ , (4.25)

for some σk ∈ IR. Replacing (4.25) in (4.22) we obtain the equation

γkσ
2
k

⎡

⎣sTk yk − τk y
T
k Ck yk − ωk

k∑

j=k−m

(pTj yk)
2

pTj ∇2 f (x j )p j

⎤

⎦

×
⎡

⎣sk − τkCk yk − ωk

k∑

j=k−m

pTj yk

pTj ∇2 f (x j )p j
p j

⎤

⎦

= sk − τkCk yk − ωk

k∑

j=k−m

pTj yk

pTj ∇2 f (x j )p j
p j .

Thus, the following relation among the parameters γk, σk, τk andωk has to be satisfied

γkσ
2
k = 1

sTk yk − τk yTk Ck yk − ωk

∑k

j=k−m

(pTj yk)
2

pTj ∇2 f (x j )p j

, (4.26)
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where, without loss of generality, we can set σk ∈ {−1,+1}. Then, we remark that the
condition (4.26) guarantees the matrix Mk+1 in (4.22) to satisfy the secant equation
only at the k-th iteration (even for quadratic functions), and possibly not at the previous
iterates. To complete the proof of item (i), observe that the Wolfe conditions used in
the linesearch procedure for computing the steplength αk ensure that (2.6) holds, i.e.
sTk yk > 0. Thus, for τk > 0 and ωk ≥ 0 sufficiently small in (4.26) we obtain that
γk > 0, and the matrix Mk+1 is positive definite. To prove item (ii), by theMean Value
Theorem we have

∫ 1

0
sTj ∇2 f [x j + ζ(x j+1 − x j )]s j dζ = sTj y j ,

and using relation s j = α j p j (see (2.8)), in case f (x) is the quadratic function in
(2.10), then we have

pTj Ap j = pTj ∇2 f (x j )p j =
∫ 1

0
pTj ∇2 f [x j+ζ(x j+1−x j )]p j dζ = pTj y j

α j
, (4.27)

which can be replaced in (4.19) to obtain (4.23). Since the Wolfe conditions are used
in the linesearch procedure, then (2.6) holds, still implying that

k∑

j=k−m

s j sTj
yTj s j

� 0.

In addition, since yk = Ask , now the expression of vk in (4.25) reduces to vk =
σk(sk − τkCk yk − ωksk).
Finally, as regards (iii), let us define

Ck = V T
k V T

k−1 · · · V T
k−mVk−m · · · Vk−1Vk . (4.28)

Even ifCk now is not positive definite, similarly to the proof of (i), we can obtain (4.25)
and (4.26). Now, since yk = Ask , we haveMk+1yk = sk , vk = σk(sk−τkCk yk−ωksk)
and

γkσ
2
k = 1

(1 − ωk)sTk yk − τk yTk Ck yk
. (4.29)

Weprove that thematrixMk+1 (which is now the sumof positive semidefinitematrices)
is positive definite. Indeed, let s1, . . . , sn be n conjugate (hence linearly independent)
directions with respect to matrix A � 0. Then, recalling that the exact linesearch along
with the conjugacy among {s j } yield ∇ f (x j+1) = ∇ f (x j ) + As j and

(Asi )
T (As j ) = 0, for all |i − j | > 1, (4.30)
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by (2.12) and for any τk 
= 0, ωk 
= 0 it results

⎡

⎣τkCk + ωk

k∑

j=k−m

s j sTj
yTj s j

⎤

⎦ Asi 
= 0, i = 1, . . . , n.

Indeed, the latter result trivially holds for any i 
= k−m−1;moreover, for i = k−m−1
it also holds, using the relation V T

k−m(Ask−m−1) = Ask−m−1 
= 0. This implies that

the matrix τkCk + ωk
∑k

j=k−m s j sTj /yTj s j (and consequently Mk+1) is nonsingular.
Moreover, since f (x) is quadratic, by (4.23) we obtain for i ∈ {k − m, . . . , k}

Mk+1yi =
⎡

⎣τkCk + γkvkv
T
k + ωk

k∑

j=k−m

s j sTj
yTj s j

⎤

⎦ yi

=
[
τkCk + γkvkv

T
k

]
Asi + ωksi .

Now, since vk = σk(sk − τkCk yk − ωksk), then we obtain for i ∈ {k −m, . . . , k − 1}
that vTk Asi = 0. Furthermore, by a direct computation we also have for i ∈ {k −
m, . . . , k − 1}

Ck Asi = V T
k V T

k−1 · · · V T
k−mVk−m · · · Vk−1Vk Asi = 0;

thus, we finally obtain

Mk+1yi = τkCk Asi + ωksi = ωksi , i ∈ {k − m, . . . , k − 1}.

��
In the next proposition we give some properties about the clustering of the eigenvalues
of the preconditioner Mk+1.

Proposition 3 Let f (x) = 1/2xT Ax+bT x,with A � 0, and suppose k ≥ 2 iterations
of the NCG algorithm are performed, using an exact linesearch. Consider the matrix
Ck in (4.28) and Mk+1 in (4.23). Then, Mk+1 has at least n − (m + 2) eigenvalues
equal to τk .

Proof We first recall that, after some computations, we obtain the relation
V T
k−m(Ask−m−1) = Ask−m−1, and by the hypotheses (see also (4.25)), it results

vk = σk(sk − τkCk yk − ωksk). Then, recalling (4.30), we have

Mk+1Asi = τk Asi , for i ≤ k − m − 1 and k + 2 ≤ i ≤ n,

so that [k −m − 1]+ [n − (k + 2)+ 1] = n − (m + 2) eigenvalues of Mk+1 are equal
to τk . ��
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Observe that the different choices for the parameters τk and ωk in (4.26) provide a
different scaling of the matrices Ck and

k∑

j=k−m

p j pTj
pTj ∇2 f (x j )p j

in the preconditioners.
As regards the specific choice of ωk , τk and Ck in (4.23), observe that by (4.24),

the choice ωk = 1 and Ck given by (4.28) seems appealing when f (x) is quadratic.
However, with ωk = 1 in (4.29) γk might not be well defined or possibly negative.
Also observe that

rk(Ck) = rk
[
V T
k V T

k−1 · · · V T
k−mVk−m · · · Vk−1Vk

]
≤ n − 1,

so that Ck is consequently singular, and when f (x) is non-quadratic the precondi-
tioner Mk+1 might be singular. To avoid the latter drawback, and possibly reduce the
computational burden, while preserving a certain level of efficiency, an obvious choice
could be ωk 
= 1 and

Ck = εk In, εk ∈ IR.

The parameter εk may be computed as the least squares solution of the equation
(ε In)yk − sk = 0, i.e. εk solves

min
ε

‖(ε In)yk − sk‖2 .

Hence,

εk = sTk yk
‖yk‖2

so that since sTk yk > 0 by the Wolfe conditions, the matrix

Ck = sTk yk
‖yk‖2 In (4.31)

is positive definite. It is not difficult to verify that the choice (4.31), forCk , also satisfies
the weak secant equation yTk Ck yk = yTk sk (see [4]), at current iterate xk .

For the sake of clarity we report here the overall resulting expression of our class
of preconditioners (4.19), including the choice (4.31) and σk = 1:

Mk+1 = τk
sTk yk
‖yk‖2 In + γkvkv

T
k + ωk

k∑

j=k−m

s j sTj
yTj s j

, (4.32)
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where

vk = sk − τk
sTk yk
‖yk‖2 yk − ωk

k∑

j=k−m

sTj yk

yTj s j
s j , (4.33)

γk = 1

(1 − τk)s
T
k yk − ωk

∑k

j=k−m

(sTj yk)
2

yTj s j

. (4.34)

The reader may conjecture that sinceMk+1 merely satisfies, in the convex quadratic
case, the interpolation (say secant) conditions (4.22) and (4.24), then its theoretical
properties with respect to BFGS are definitely poor. This seems indeed a partially
correct conclusion. However, since in practice L-BFGS often performs better than
BFGS, we warn the reader that on nonconvex problems the good performance of our
proposal in Sect. 5 might not be so surprising. In fact, likewise L-BFGS we retain
information from a limited number of previous iterates, mainly relying on the role of
the rightmost term in (4.32), as detailed in Proposition 1.

We conclude this section by highlighting that, interestingly enough, similarly to
(4.20) we can also construct a class of preconditioners based on DFP-like quasi-
Newton updates. Indeed, we can iteratively build the matrices

B(τk+1, γk+1, ωk+1),

approximating ∇2 f (x) instead of its inverse. Then, by the Sherman–Morrison–
Woodbury formula applied to B(τk+1, γk+1, ωk+1) we can compute a class of
preconditioners alternative to H(τk+1, γk+1, ωk+1) in (4.20). However, following the
current literature which privileges the use of BFGS in place of DFP [23], here we
have proposed the class described in (4.32)–(4.34), which performed successfully in
practice.

5 Numerical experience

In order to investigate the reliability of the class of preconditionerswe have introduced,
we performed a wide numerical testing using the preconditioners defined in (4.32). To
this purpose, we embedded the preconditioners (4.32) within the standard CG+ code
(see [10]), from the literature, available at J. Nocedal’s web page. For a fair comparison
we used the same stopping criterion

‖∇ f (xk)‖∞ ≤ 10−5(1 + | f (xk)|),

(namely original) and the same linesearch used by default in CG+ code. It is the
Moré–Thuente linesearch [20] with a slight modification (we refer the reader to [10]
for a complete description of the algorithm). Then, we also tested the robustness of
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our proposal using the following different stopping criterion

‖∇ f (xk)‖2 ≤ 10−5 max{1, ‖xk‖2},

(namely novel), which is also quite common in the literature.
In particular, we tested both the standard Fletcher and Reeves (FR) and Polak and

Ribiere (PR) versions of the PNCG method in Sect. 2. As regards the test problems,
we selected all the large scale unconstrained test problems in the CUTEst collection
[12]. The dimension of the test problems is between n = 1000 and n = 10,000 (we
considered 112 resulting problems). The parameters of the preconditioners (4.32) have
been chosen as follows:

m = 4, ωk =
1

2
sTk yk

yTk Ck yk + ∑k
j=k−m

(sTj yk )
2

sTj y j

, τk = ωk, γk = 2

sTk yk
,

whereCk is given by (4.31), for all k (this choice ensures that, byWolfe conditions, the
denominator of γk in (4.34) is positive). As preliminary investigation, we considered
the results in terms of the number of iterations and the number of function evaluations,
comparing three alternatives:

– Mk+1 in (4.32), namely OUR PREC;
– Mk+1 = I (unpreconditioned case), namely UNPREC;
– Mk+1 coincidentwith theL-BFGSupdate Hk+1 in (2.7), using amemory ofm = 4,
namely PREC-LBFGS.

The overall comparison is reported by using performance profiles [5]. For a fair com-
parison, we have excluded from each profile all the test problems where the three
alternatives do not converge to the same stationary point. Moreover, for k < 4 (i.e. in
the first three PNCG iterations) we have coherently set m = min{4, k}.

We strongly highlight that our proposal (4.32) is built using a dual standpoint with
respect to PREC-LBFGS. Indeed, our proposal starts by first considering the third
matrix in the right hand side of (4.32), in the light of approximating (in the quadratic
case) the inverse of the Hessian matrix, as in (2.16). Then, the other two matrices, on
the right hand side of (4.32), make our proposal Mk+1 nonsingular and consistent with
a current interpolation condition at iterate k. On the contrary, PREC-LBFGS update
starts from imposing multiple interpolation conditions at previous iterates (i.e. the
secant equations). Then, as by-product it also proves to yield in the quadratic case,
after n iterations, the inverse Hessian.

The choice m = 4 was in our experience the best compromise over the chosen test
set. This should not be surprising if compared with the results in [7,8,19], where the
best choice for the memory parameter is either m = 7 or m = 8. In fact, in the latter
papers the preconditioner is built using the CG (or L-BFGS for quadratics) in place
of the NCG, which allows to fully exploit the mutual conjugacy among the search
directions. On the contrary, in the present paper the NCG is unable to guarantee the
latter property, so that the information at iterations k −m − 1, k −m − 2, . . . for large
m risks to be unreliable.
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Fig. 1 Profiles using the original stopping criterion, adopting FR and with respect to #i terations (left)
and # f unction evaluations (right)
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Fig. 2 Profiles using the original stopping criterion, adopting PR and with respect to #i terations (left)
and # f unction evaluations (right)

As regards theFRversionof thePNCGalgorithm, inFig. 1we report the comparison
among the three algorithms. These profiles show that using the FR algorithm and
the original stopping criterion in CG+ code, our proposal definitely outperforms the
competitors, both in terms of number of iterations and number of function evaluations.
Now,we turn to the PRversion of the PNCGalgorithm, and in Fig. 2we report a similar
comparison, obtaining again that our proposal is definitely preferable.

On the other hand, the Figs. 3 and 4 report analogous profiles, where we used the
novel stopping criterion in place of the original one inCG+. Again our preconditioner
seems to be the winning strategy.

Finally, we guess that in place of (4.31), a more sophisticated choice of the matrix
Ck might be conceived, which possibly summarizes more information on the function
at the previous iterates.

As already claimed, the main focus of the paper is not to define a challenging
algorithm for large scale unconstrained optimization, but it aims at introducing a
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preconditioning strategy and showing its effectiveness. However, for the sake of
completeness, in order to have an idea of the overall efficiency of our proposal, we
would like to compare our results with those obtained by some benchmark algorithms.
For large scale unconstrained optimization, L-BFGS [18,22] and L-CG_DESCENT
[14,16] methods are currently considered the most efficient ones.

As regards L-BFGS, the original Fortran code is available in the J. Nocedal’s web
page. We used this code (denoted by LBFGS) in order to perform a comparison with
the unpreconditioned (UNPREC) and the preconditioned (OUR PREC) version of
PNCG algorithm. In particular, in our codes we use the FR version. Note that L-BFGS
adopts the original Moré–Thuente linesearch [20], without the slight modification
introduced inCG+. Therefore, for a fair comparison, we here used the original Moré–
Thuente linesearch also in our codesOURPREC andUNPREC. The profiles reporting
this comparison are in Fig. 5. We can see that our proposal using FR seems enough
competitive in termsof number of iterations.On theother hand, considering the number
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Fig. 5 Comparison between OUR PREC (FR) and L-BFGS. Profiles using the novel stopping criterion,
with respect to #i terations (left) and # f unction evaluations (right)

of function evaluations, we can observe that the search direction we compute does not
seem yet well scaled. This indicates that future refinements on our preconditioners are
possibly necessary.

As regards L-CG_DESCENT, the most recent version available in the W. Hager’s
web page is the L-CG_DESCENT 6.8 code. It is written inC , uses an hybrid version
ofβk coefficient and a different linesearch expressly designed by the authors (see [14]),
more efficient and accurate than theMoré–Thuente one.At present, this possiblymakes
unfair any comparison between our codes and L-CG_DESCENT.Anyway, embedding
our preconditioner inL-CG_DESCENT6.8would be an interesting further numerical
experiment.

6 Conclusions and future work

In this paper we have proposed a novel class of quasi-Newton updates, to be used as
possible preconditioners within PNCG method. In our proposal, namely the satisfac-
tion of the secant equation only at the current iteration is ensured, and the resulting
update is guaranteed to be positive definite. Furthermore, our class of preconditioners
also satisfies the theoretical properties in Sects. 3 and 4. We numerically tested the
latter approach versus both the unpreconditioned case and an L-BFGS based precon-
ditioning approach. The results obtained showed that the preconditioners we propose
are definitely much efficient and robust in optimization frameworks. At this stage of
the research we still urge to experience our preconditioners also on tough and signif-
icant real applications, where specific “pathologies” may be expected. Moreover, we
think that our proposal may be possibly exploited also for solving difficult nonconvex
problems where the fast iterative computation of negative curvatures for the function
is a fruitful ingredient (see e.g. [6]).
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