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Abstract In this paper, we deal with matrix-free preconditioners for nonlinear
conjugate gradient (NCG) methods. In particular, we review proposals based on
quasi-Newton updates, and either satisfying the secant equation or a secant-like
equation at some of the previous iterates. Conditions are given proving that, in some
sense, the proposed preconditioners also approximate the inverse of the Hessian
matrix. In particular, the structure of the preconditioners depends both on low-rank
updates along with some specific parameters. The low-rank updates are obtained
as by-product of NCG iterations. Moreover, we consider the possibility to embed
damped techniqueswithin a class of preconditioners based on quasi-Newton updates.
Damped methods have proved to be effective to enhance the performance of quasi-
Newton updates, in those cases where the Wolfe linesearch conditions are hardly
fulfilled. The purpose is to extend the idea behind damped methods also to improve
NCG schemes, following a novel line of research in the literature. The results, which
summarize an extended numerical experience using large-scale CUTEst problems, is
reported, showing that these approaches can considerably improve the performance
of NCG methods.
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1 Introduction

Several iterative methods were proposed in the literature, for the solution of the
large-scale unconstrained optimization problem minx∈Rn f (x), where f : R

n → R

(see, e.g., [1–6]). Among them, the nonlinear conjugate gradient (NCG) along with
quasi-Newton methods is undoubtedly the most commonly used. Indeed, they both
prove to be actually effective in practice and are endowed with a mature theory,
including strong convergence properties.

On this purpose, let us first consider a general iterative preconditioned nonlinear
conjugate gradient (PNCG) method, which generates a sequence of iterates {xk}.
Essentially, three choices at current step k strongly affect both the effectiveness and
the efficiency of the overall method. The first choice refers to the adopted linesearch
procedure, along with the selected steplength αk > 0 used to give the next iterate
xk+1, being

xk+1 = xk + αk pk,

where pk is the search direction. The second choice refers to the selection of the
parameter βk , which is responsible for the computation of the next search direction,
being

pk+1 = −gk+1 + βk pk,

where p1 = −g1 and gk denotes∇ f (xk). In the case where the function f (x) is non-
quadratic, different expressions for the parameter βk in the latter formula may yield
significantly different (preconditioned) NCG schemes. In particular, among the first
classic choices in the literature for the parameter β, we have the proposals by Fletcher
and Reeves (FR) [7], Polak and Ribière (PR) [8], Hestenes and Stiefel (HS) [9].More
modern and efficient schemes have also been studied. In particular, we urge to men-
tion the proposals in the seminal papers [10] and [3, 4], since they raised novel ideas
whichhaveinspiredseveraladvancesinthelastdecade.Recently,Neculai (see[11]and
therein references) reported an efficient version of the NCGmethod, which promises
to outperform the proposal in [4]. This gives room to further improvements in the lat-
est literature (see also [5]), where some appealing properties of L-BFGS update are
exploited in the context of NCG, with the purpose of improving efficiency. The latter
research area has also partially inspired the results reported in the current paper.

The third proper choice for the symmetric positive definite preconditionerMk+1 ∈
R

n×n often plays a keynote role for the computation of pk+1, being

pk+1 = −Mk+1gk+1 + βk pk,

where βk may depend on Mk and Mk+1 and p1 = −M1g1. Of course, the latter three
choices are not independent. Indeed, an inaccurate linesearch procedure turns to
be harmful and may require a large number of function and gradient evaluations.
Similarly, a careless choice of the preconditioner risks to possibly destroy both con-
vergence properties and numerical performance of the PNCG. These observations
impose a specific attention before selecting a preconditioner.
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In the first part of this paper, we review some preconditioners for NCG, which are
based on the satisfaction of a secant-based equation (see [12–14] for details). Our
main purpose here is to show that imposing the satisfaction of the secant condition
surely represents an important guideline to gain second-order information about the
objective function.However, on highly nonlinear functions,when the distance among
the last iterates increases, the satisfaction of the secant equation at any iterate might
represent a tight request, which does not necessarily enhance the information on
second-order information. On the contrary, in [12] the approximation of an average
Hessian matrix is built by using an initial guess suggested by the quadratic case.
Then, the initial guess is refined imposing some secant-like conditions, which are
used to set accordingly some parameters.

We remark that the preconditioners are iteratively constructed and based on satis-
fying either the secant or amodified secant equation and partially recover the structure
of quasi-Newton updates. On the overall, our proposals for preconditioners comply
with the next specifications:

• do not rely on the structure of the minimization problem in hand;
• are matrix-free, and hence, they are naturally conceived for large-scale problems;
• are built drawing inspiration from quasi-Newton schemes;
• convey information from previous iterations of the PNCG method.

We urge to recall that the idea of using a quasi-Newton update as a possible precon-
ditioner, within the NCG algorithms, is not new; examples of such an approach can
be found for instance in [15, 16] or in the more recent proposal [17]. In particular,
the efficient framework in [17] explicitly exploits the relation between the conjugate
gradient method and BFGS quasi-Newton approach, in the quadratic case.

In the second part of the paper, we show how to combine damped techniques
with preconditioning strategies, as introduced in [18]. Taking inspiration from [19–
21], two different damping strategies are proposed. In particular, we focus on the
Polak–Ribière (PR) (recently, Polak–Ribière–Polyak (PRP)) method, showing that,
under reasonable assumptions, the damped and preconditioned version of thismethod
(denoted by D-PR-PNCG), can be able to efficiently tackle also difficult problems.
This is confirmed by the results of an extensive numerical testing reported (see [18]
for details).

Under mild assumptions, the proposals in this paper preserve convergence prop-
erties for the PNCG method.

As regards the notations, we denote for an n-real vector x , the Euclidean norm by
‖x‖. Moreover, for a symmetric matrix A, A � 0 indicates that A is positive definite.

1.1 Preconditioned Nonlinear Conjugate Gradient (PNCG)
Method

Here, we first recall a general scheme of PNCG algorithm. In the following scheme,
Mk ∈ R

n×n denotes a possible positive definite preconditioner at the iteration k.
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Preconditioned Nonlinear Conjugate Gradient (PNCG) Scheme

Step 1: Data x1 ∈ R
n and M1 � 0. Set p1 = −M1g1 and k = 1.

Step 2: Use a linesearch procedure to compute the steplength αk , which satisfies
theWolfe conditions, and set the next iterate as

xk+1 = xk + αk pk .

Step 3: If a stopping criterion is satisfied then stop, else compute the coefficient
βk along with the preconditioner Mk+1 � 0. Compute a search direction
by

pk+1 = −Mk+1gk+1 + βk pk . (1)

Set k = k + 1 and go to Step 2.

Of course, in caseMk = I for all k, the PNCGscheme reduces to theNCGmethod.
Also, observe that as an alternative, in order to possibly improve the efficiencyofNCG
by introducing preconditioning strategies, the Step 3 of PNCG might be replaced by
the next one.

Step 3: If a stopping criterion is satisfied then stop, else compute the coefficient
βk along with the preconditioner Mk+1. If Mk+1 � 0 or Mk+1gk+1 = 0
then set Mk+1 = I . Compute the search direction

pk+1 = −Mk+1gk+1 + βk pk .

Set k = k + 1 and go to Step 2.

The steplength αk and the parameter βk can be chosen in a variety of ways. In
particular, in order to prove global convergence properties, a Wolfe-type linesearch
procedure seems mandatory, while to improve the overall efficiency, several values
for βk have appeared in the literature (see also Sect. 1). Here, we neither intend
to propose a novel choice of βk , nor we want to consider any specific linesearch
procedure to computeαk for the PNCGalgorithm. In this regard, theWolfe conditions
are well-suited for our purposes, inasmuch as under mild assumptions they guarantee
the fulfillment of the usual curvature condition

sTk yk > 0,

being sk = xk+1 − xk and yk = gk+1 − gk . On the other hand, we strongly remark the
importance of the positive definiteness for preconditioners, in order to prove global
convergence results.
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2 Quasi-Newton Updates for Preconditioning

In this section, we suitably exploit some quasi-Newton updates in order to build
preconditioners. As well known (see, e.g., [1]), when using quasi-Newton methods
in place of (1), at iteration k, we generate a search direction of the form

pk = −Hkgk,

where Hk represents an approximation of the inverse Hessian matrix [∇2 f (xk)]−1.
Then, as in Step 2 of PNCG, the new iterate xk+1 can be obtained according to xk+1 =
xk + αk pk , where αk as above is a steplength computed by a Wolfe-type procedure.
In particular, instead of computing Hk from scratch at each iteration k, quasi-Newton
methods update Hk in a simple manner by means of adding a small number of rank
one matrices, in order to obtain the new approximation Hk+1 to be used in the next
iteration. Moreover, instead of storing full dense n × n approximations, they only
save a few vectors of length n, which allow to represent the approximations {Hk}
implicitly.

Among the quasi-Newton schemes, the L-BFGS method is definitely considered
one of the most efficient methods, and the amount of storage it requires can be
controlled by the user throughout setting the limited memory parameter. This method
is based on the construction of the approximation of the inverse Hessian matrix,
by exploiting curvature information gained only from the most recent iterations.
Specifically, Hk−1 is updated by BFGS at the kth iteration as

Hk = V T
k−1Hk−1Vk−1 + ρk−1sk−1s

T
k−1, (2)

where

ρk−1 = 1

sTk−1yk−1
, Vk−1 = I − ρk−1yk−1s

T
k−1.

In case f (x) is quadratic, i.e., f (x) = 1
2 x

T Ax + bT x , A ∈ R
n×n , b ∈ R

n , then we
have explicitly Vk−1 = I − Ask−1sTk−1/s

T
k−1Ask−1 and the following lemma holds.

Lemma 1 Let us consider the quadratic function f (x) = 1
2 x

T Ax + bT x with A �
0. Suppose the steplengthαk inStep 2 of PNCG is computed using an exact linesearch
procedure. Given the expression of Hk in (2), along with Hk � 0 and the positions

ρi = 1

sTi yi
, sTi yi �= 0, i = 1, . . . , k,

Vi = I − ρi yi sTi , i = 1, . . . , k,

then we have
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Hk = V T
k−1V

T
k−2 · · · V T

1 H 1
k V1 · · · Vk−2Vk−1 +

k−1∑

i=1

si sTi
sTi Asi

, (3)

where H 1
k � 0 is given (usually, a multiple of the unit matrix).

Proof First observe that since f (x) is quadratic, then yi = Asi , i = 1, . . . , k, and the
vectors s1, . . . , sk are mutually conjugate, i.e., sTi As j = 0, for any 1 ≤ i �= j ≤ k.
We prove (3) by complete induction.
When k = 2, by (2), we explicitly obtain

H2 = V T
1 H 1

k V1 + ρ1s1s
T
1 = V T

1 H 1
k V1 + s1sT1

sT1 As1
.

Now, assume (3) holds for some k − 1, and we prove (3) for the index k as follows.
Recalling the conjugacy among vectors {si } yields

V T
k−1si =

(
I − sk−1yTk−1

sTk−1Ask−1

)
si = si , i = 1, . . . , k − 2,

by (2), we immediately have after some computations

Hk = V T
k−1Hk−1Vk−1 + sk−1sTk−1

sTk−1Ask−1

= V T
k−1V

T
k−2 · · · V T

1 H 1
k V1 · · · Vk−2Vk−1 +

k−1∑

i=1

si sTi
sTi Asi

.

�

Note that Formula (3) for the quadratic case can suggest iterative updates to
generate preconditioners for PNCG. Indeed, drawing inspiration from (3) and [22],
in case f (x) is quadratic (i.e., NCG coincides with the conjugate gradient method),
we have

A−1 =
n∑

j=1

s j sTj
sTj As j

. (4)

In view of (4), the rightmost contribution in (3)may represent an approximate inverse
of theHessianmatrix A up to the kth iteration.As an extension,we can borrow the last
idea also in case f (x) is a general nonlinear function, in order to generate possible
preconditioners which approximate the rightmost matrix in (3). In particular, in this
regard, we will have to assess a couple of issues:

(a) We have to set a finite number of NCG iterations m ≤ n, which are necessary
to build the approximation of the rightmost matrix in (3).
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(b) We have to explicitly indicate how to approximately compute the quantities
sTi Asi , for i ≥ 1, in (3); indeed, unlike in the quadratic case, when f (x) is a
general nonlinear function, the quantity sTi Asi is unavailable at iteration i .

3 Preconditioners Based on the BFGS Update: First
Proposal

In this section, we review the preconditioners for PNCG proposed in [12], which
exploits the contents of Sect. 2. We now report the general expression of this class
of preconditioners.

Mk+1 = τkCk + γkvkv
T
k + ωk

k∑

j=k−m

s j sTj
yTj s j

, (5)

where Ck ∈ R
n×n , vk ∈ R

n , τk, γk, ωk ∈ R and m is positive integer. Here, we con-
sider

Ck = sTk yk
‖yk‖2 I, τk = ωk, γk = 2

sTk yk
,

vk = sk − τkCk yk − ωk

k∑

j=k−m

sTj yk

yTj s j
s j ,

ωk =
1

2
sTk yk

yTk Ck yk +
k∑

j=k−m

(sTj yk)
2

sTj y j

, γk = 2

sTk yk

andm 
 n, 0 ≤ m ≤ k − 1. For further motivations along with the rationale behind
this proposal, we refer to [12]. In the sequel, we report the main theoretical results
and a summary of the numerical experience.

Observe that the right-hand side of (5) includes three contributions. More specif-
ically, the rightmost matrix represents an approximate inverse Hessian, as in the
guidelines of the conclusions of Sect. 2. In particular, exploiting the mean value
theorem, we can write

y j = g j+1 − g j =
∫ 1

0
∇2 f (x j + ts j )

T s j dt, j ≥ 1,

so that assuming ∇2 f (z) = A j constant for z ∈ [x j , x j+1], we have
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yTj s j =
∫ 1

0
sTj ∇2 f (x j + ts j )

T s j dt ≈ sTj A j s j , j ≥ 1,

showing that the issue (b), at the end of Sect. 2, can be easily treated. Moreover,
the integer m in (5) represents a memory and guarantees that complying with (a),
information from only the lattermost m iterations is collected.

A few comments need also be added, with respect to the role played by the matrix
Ck and the parameter τk in (5). Ck is chosen similar to the matrix H 1

k = λk I , where
λk is the solution of the subproblem

min
λ

‖(λI )yk − sk‖2.

In other words, λk = yTk sk/‖yk‖2 is a value of the parameter λwhich aims at approxi-
mately solving the initial secant equation (λI )yk = sk . As usual, the use of theWolfe
conditions ensures that λk > 0.
On the other hand, the exact role played by the parameter τk in (5) is a bit more
technical and is in particular related to eigenvalue clustering for the preconditioner
Mk+1, as highlighted in the next Theorem (see also Proposition 3 in [12]).

Theorem 1 Let f (x) = 1/2xT Ax + bT x, with A � 0, and assume that

• k ≥ 2 iterations of the NCG algorithm are performed.
• an exact linesearch procedure is adopted.
• Mk+1 is defined as in (5) with m ≤ n − 2.

Then, at least n − (m + 2) eigenvalues of Mk+1 coincide with τk .

As detailed in [12], the next proposition can be proved for the update (5), showing
its well-posedness and the satisfaction of some secant-like conditions.

Proposition 1 Let f be twice continuously differentiable. Suppose that k iterations
of NCG are performed, using the strong Wolfe linesearch procedure. Let Mk+1 be
defined as in (5), with 0 ≤ m ≤ k − 1, τk > 0 and γk, ωk ≥ 0.

(i) Let Ck ∈ R
n×n be symmetric positive definite, then there exist values of τk, γk, ωk

such that Mk+1 � 0 and the secant equation Mk+1yk = sk is satisfied.
(ii) Let f (x) = 1/2xT Ax + bT x, with A � 0. Suppose k ≥ 2 iterations of the NCG

algorithm are performed, using an exact linesearch. Then, there exist values of
τk , γk , ωk , and a positive semidefinite matrix Ck, such that Mk+1 � 0. Moreover,
Mk+1yk = sk and the modified secant conditions

Mk+1yi = ωksi , i = k − m, . . . , k − 1,

are satisfied.

Before reporting other proposals for possible preconditioners in PNCG, we highlight
the role played by the vector vk in (5). In particular, the value of vk is set in such
a way that Mk+1 satisfies the secant equation Mk+1yk = sk (at iteration k). In this
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regard, the computation of vector vk follows a similar guideline with respect to the
idea adopted by SR1 quasi-Newton update (see also [1] for details).

As a preliminary numerical experience which reveals the performance of the
proposal Mk+1 in (5), the preconditioner Mk+1 has been embedded in PNCG, with
m = min{4, k − 1} and βk computed as in the Polak–Ribière (PR) (recently, Polak–
Ribière–Polyak (PRP)) formula

βk =
[
gk+1 − gk

]T
Mk+1gk+1

gTk Mkgk
.

In [12], the resulting PR-PNCG has been experienced over a set of 112 large-scale
problems ofCUTEst collection [23]. This proposal (5) (namely OUR PREC_PR) is
compared with the L-BFGS update (setting the memory parameter m = 4) (namely
PREC-LBFGS_PR), used as a preconditioner, and with the unpreconditioned NCG
scheme (namely UNPREC_PR). Results are reported in Figs. 1 and 2, in terms of
# iterations and # of function evaluations. Note that the steplength αk is computed
such that the strong Wolfe conditions

fk+1 ≤ fk + c1αkg
T
k pk,

and
|gTk+1 pk | ≤ c2|gTk pk |,

where 0 < c1 < 0.5 and c1 < c2 < 1, hold (we used as for the code CG+, c1 =
0.0001 and c2 = 0.9). We also remark that in Fig. 1, the original stopping criterion
of the codeCG+ (see [24]), i.e., ‖gk‖∞ ≤ 10−5(1 + | fk |), is adopted, while in Fig. 2,
the more common criterion from the literature

‖gk‖ ≤ 10−5 max{1, ‖xk‖} (6)

is used, showing the effectiveness and efficiency of our first proposal (5).

4 Preconditioners Based on the BFGS Update: Second
Proposal

As second proposal for a possible preconditioning strategy, which again exploits
the contents in Sect. 2, we have the following update for Mk+1 in PNCG scheme as
proposed in [14].

Mk+1 = δkMk + γkvkv
T
k + ωk

pk pTk
yTk pk

, δk > 0, (7)
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Fig. 1 Performance profiles using the original stopping criterion ‖gk‖∞ ≤ 10−5(1 + | fk |) in the
code CG+ [24], adopting PR and with respect to # i terations (up) and # f unction evaluations
(down)

with γk, ωk ∈ R \ {0}, and where, given Mk and the vector pk generated by NCG,
we have for vk the expression

vk = σk (sk − δkMk yk − ωk pk) , σk ∈ {−1,+1}.

The proposal in (7) follows a different strategy with respect to (5), inasmuch as it
more closely attempts to emulate quasi-Newton updates. Indeed, similar to (5) also in
(7) Mk+1 includes three contributions, being the rightmost term ωk pk pTk /yTk pk built
using information collected at iteration k of the NCG method, and the leftmost term
δkMk being representative of the preconditioner at the previous iteration. Finally, the
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Fig. 2 Profiles using the novel stopping criterion (6), adopting PR and with respect to # i terations
(up) and # f unction evaluations (down)

term γkvkvTk in (7) is introduced so thatMk+1 can explicitly satisfy the secant equation
Mk+1yk = sk . The latter considerations confirm that, similar to BFGS update, the
dyad ωk pk pTk /yTk pk aims at adding the most recent information from NCG to our
current preconditioner.

The next couple of theoretical results can also be proved for the proposal (7),
confirming to what extent (7) closely resembles quasi-Newton approaches (see [14]
for details).

Proposition 2 Let f (x) = 1
2 x

T Ax − bT x, where A is a symmetric matrix. Suppose
k steps of the NCG method are performed, adopting an exact linesearch procedure
(which imposes ∇ f (x j+1)

T p j = 0, j = 1, . . . , k), in order to detect the stationary
point (if any) of the function f . Then, the matrix Mk+1 in (7) satisfies the modified
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secant equations

⎧
⎨

⎩

Mk+1y j = δ j s j , δ j > 0, j = 1, . . . , k − 1,

Mk+1yk = sk,
(8)

provided that the nonzero coefficients γ j , ω j , j = 1, . . . , k are chosen such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ j = 1

sTj y j − δ j yTj M j y j − ω j pTj y j
, j = 1, . . . , k,

ω j �= sTj y j − δ j yTj M j y j

pTj y j
, j = 1, . . . , k.

(9)

Proposition 2 reveals to what extent the matrix Mk+1 substantially summarizes some
second-order information on the objective function f (x). In particular, by (8), the
secant equation at the current iterate xk is fulfilled, while a weaker condition holds
at the previous iterates, being possibly δ j �= 1, for j = 1, . . . , k − 1. Also, note that
the choice of the parameters {δ j }, {γ j } and {ω j } in Proposition 2 does not ensure
in general the positive definiteness of Mk+1. Indeed, pre-multiplying the second
relation in (8) by yk , we obtain yTk Mk+1yk = yTk sk , where the right-hand side might
be possibly negative, inasmuch as noWolfe conditions were adopted in Proposition 2
when applying the NCG. On this guideline, the next result helps recover the positive
definiteness of the preconditioner Mk+1 (see [14]).

Proposition 3 Let f be a continuously differentiable function. Suppose that the
NCG method is used to minimize the function f . Suppose that sTk yk > 0, Mk � 0,
εk ∈ (0, 1) and

0 < δk = (1 − εk)
sTk yk

yTk Mk yk
,

0 < ωk < εkαk,

0 < γk = 1

(εkαk − ωk)pTk yk
.

Then conditions (8)–(9) hold and Mk+1 � 0 in (7).

By Proposition 3, a suitable interval of values for δk , γk , and ωk always exists such
that (8)–(9) hold and Mk+1 � 0, even though an inexact linesearch procedure is
adopted (but not necessary theWolfe linesearch procedure).Moreover, the hypothesis
Mk � 0 might be too restrictive to our purposes, and we can easily prove that
what really matters is the weaker condition yTk Mk yk > 0 along with the inequality
yTk sk > 0.
By Proposition 2, we have also a remarkable result in case the objective function
f (x) is quadratic. Indeed, after n steps, the matrix Mn+1 retains information on the
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inertia of the Hessian matrix, as in the next corollary (see [14]), where λm(·) and
λM(·) represent, respectively, the smallest and the largest eigenvalue.

Corollary 1 Let f (x) = 1
2 x

T Ax − bT x, where A is symmetric and nonsingular.
Suppose that n steps of the CG are performed, in order to detect the stationary point
of the function f , and that the vectors p1, . . . , pn are generated.

(i) If (8)–(9) hold, we have

Mn+1A = (s1 · · · sn)D(s1 · · · sn)−1,

with
D = diag{δ1, δ2, . . . , δn−1, 1}.

(ii) It results

λm(Mn+1A) = λm(D), λM(Mn+1A) = λM(D). (10)

Several interesting conclusions arise considering the two proposals in Sects. 3
and 4 for Mk+1; we urge to carry out the following observations, which are also the
result of a deeper investigation not reported here:

• Both the proposals for the preconditionerMk+1 are based on the attempt to emulate
the BFGS update, in order to possibly benefit from some of its well-known features
(i.e., the satisfaction of the secant equation and BFGS attitude to approximate the
inverse Hessian in the quadratic case).

• while the scheme in (5) details an update based on m + 1 pairs (s j , y j ), j =
k − m, . . . , k, provided by the NCG method, the scheme in (7) simply relies on
the pair (pk, yk) generated at step k of the NCG method.

• the proposal in (7) seems to be endowed with stronger theoretical properties with
respect to (5). As also shown in the next sections, the latter fact is also reflected in
an appreciable enhancement of numerical performance, over a significant large-
scale test set. Indeed, comparing the proposals in Sects. 3 and 4, over the same test
set specified in Sect. 3, we obtain the performance profiles in Fig. 3, using (6) for
termination which is the same as that used for obtaining Fig. 2.

5 Damped Strategies for NCG Preconditioning

Damped techniques were introduced in the framework of quasi-Newton methods,
and their rationale can be summarized as follows. As is well known (see, e.g., [1]),
when dealing with the BFGS update, a crucial issue in order to guarantee the positive
definiteness of the updated Hessian approximation is the satisfaction of the curvature
condition

sTk yk > 0. (11)
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Fig. 3 Comparison between the proposal of preconditioner in (5) (namely M, dash line) and the
proposal in (7) (namely M_mod, solid line), using the stopping criterion (6). Profiles with respect
to # iterations (up) and # function evaluations (down)

In case f is strongly convex, then (11) holds for any pair of points xk and xk+1 (see,
e.g. [25]). In case of nonconvex functions, imposing the satisfaction of condition (11)
requires a proper choice of the stepsize αk , from the linesearch procedure adopted.
Indeed, in principle, the satisfaction of (11) can always be obtained by a suitable
linesearch procedure, provided that the objective function is bounded below. To this
aim, as mentioned above, the Wolfe conditions (in practice, the strong Wolfe condi-
tions) are usually adopted, which ensure the fulfillment of condition (11). However,
for sufficiently large value of c2, the value of sTk yk may not be sufficiently positive. In
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addition, if only the backtracking linesearch framework is employed, the curvature
condition (11) may not hold.

A possible successful strategy to cope with the last issue is to adopt the damped
technique proposed by Powell in [19], in the context of SQP Lagrangian BFGS
methods for constrained optimization and applied for the first time by Al-Baali [26]
to unconstrained optimization. In [19], the author proposes to modify the difference
of the gradients vector yk in (11), before performing the BFGS update. Namely, if Bk

denotes the current BFGS positive definite Hessian approximation at kth iteration,
the following modified (damped) vector is used in place of yk :

ŷk = ϕk yk + (1 − ϕk)Bksk, (12)

where ϕk is chosen in (0, 1] such that sTk ŷk is “sufficiently positive.” The latter
fact guarantees that the use of the damped vector ŷk is in principle preferable with
respect to yk . In particular, given σ ∈ (0, 1], the value of the parameter ϕk is often
set according with the rule:

ϕk =

⎧
⎪⎪⎨

⎪⎪⎩

σ sTk Bksk
sTk Bksk − sTk yk

, if sTk yk < (1 − σ)sTk Bksk,

1, otherwise,

(13)

which for σ = 0.8 yields that in Sect. 18.3 in [1]. There are several reasons which
motivate (13), including the fact that by this choice we have

sTk ŷk = (1 − σ)sTk Bksk, (14)

i.e., the quantity sTk ŷk is sufficiently positive, inasmuch as Bk is positive definite. Al-
Baali suggests using the modified damped vector (12) with (13) for unconstrained
optimization and extended it to

ϕk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1sTk Bksk
sTk Bksk − sTk yk

, if sTk yk < (1 − σ1)sTk Bksk,

σ2sTk Bksk
sTk Bksk − sTk yk

, if sTk yk > (1 + σ2)sTk Bksk,

1, otherwise,

(15)

where σ1 ∈ (0, 1] and σ2 ≥ 2. Note that the value σ2 = ∞ reduces choice (15) to
(13).

In [18], in order to extend the definition of the damped vector ŷk in (12), a novel
vector ŷk is defined as a combination of the original vector yk and an appropriate
vector zk , namely
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ŷk = ϕk yk + (1 − ϕk)zk, (16)

(see also [27]). The vector zk plays a noteworthy role to ensure that sTk ŷk is sufficiently
positive, for suitable values of ϕk ∈ (0, 1]. Of course, a key point of this approach is
an appropriate choice of zk . Two choices for zk have been proposed in [18].

The first proposal corresponds to set zk = ηksk , where ηk > 0, based on approx-
imating Bk by ηk I . This choice originates from the idea of using zk = Ak+1yk in
(16), where Ak+1 is a positive definitive approximation of the inverse Hessian. In
particular, Bk ≈ ηk I satisfies the modified secant equation

Ak+1yk = ηksk .

Hence, by using the latter equation, we can set

ŷ(a)

k = ϕk yk + (1 − ϕk)ηksk . (17)

Interesting properties of (17) are that it does not require the explicit knowledge of
the approximate inverse Hessian matrix Ak+1 and that

sTk ŷ
(a)

k = (1 − σ1)ηk‖sk‖2 > 0, (18)

for appropriate choice of the parameter in (16). This condition may be of great
interest if we consider a geometric interpretation of the curvature condition (11).
Indeed, since for the vector ŷ(a)

k condition (18) is satisfied, it means that sTk ŷ
(a)

k is
always sufficiently positive. Moreover, it can be easily proved that for proper choices
of the parameters ηk and σ , we obtain (as long as (11) holds)

sTk ŷ
(a)

k ≥ sTk ŷk . (19)

Furthermore, also in case (11) does not hold, by relation (18), we immediately infer
that again (19) holds.

The second proposal corresponds to set in (16) zk = −αkgk , so that the novel
damped vector becomes

ŷ(b)

k = ϕk yk − (1 − ϕk)αkgk . (20)

This choice of zk comes from the following observation: If Bk � 0 is an approxi-
mation of the Hessian and we consider −B−1

k gk as search direction, it immediately
follows that

sk = xk+1 − xk = −αk B
−1
k gk,

which implies
Bksk = −αkgk .
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This formula allows to compute the original damped vector (12) without explicitly
using the matrix Bk . Indeed, it suffices to replace Bksk with−αkgk in (12), according
with (20).
Similar to the choice ŷ(a)

k , also for ŷ(b)

k in (20), we can guarantee that sTk ŷ
(b)

k is suffi-
ciently positive. In fact, we immediately have from (14)

sTk ŷ
(b)

k = −αk(1 − σ1)s
T
k gk = −α2

k (1 − σ1)p
T
k gk > 0,

where the last inequality holds because pk is a descent direction. Several theoretical
properties can be proved for the choices (17) and (20) (see also [18]). Some of them
are summarized here below, where we assume that the coefficient βk in PNCG is
replaced by the PR–type ‘damped coefficient’

β̂ PR
k =

(
ŷ(a)

k

)T
Mk+1gk+1

gTk Mkgk

(the resulting PNCG scheme, with ŷ(a)

k in place of yk will be addressed as D-PR-
PNCG).

Assumption 1 (see [18])

(a) Given the initial point x1 and the function f ∈ C1, the level set L1 =
{x : f (x) ≤ f1} is compact.

(b) There exists an open ball Br := {x : ‖x‖ < r} containing L1 where f (x) is
continuously differentiable and its gradient g(x) is Lipschitz continuous. In
particular, there exists L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖ for all x, y ∈ Br .

(c) There exist λ > 0 and� > 0 such that the preconditionerM(x), for any x ∈ Br ,
is positive definitewith the smallest [largest] eigenvalueλm (M(x)) [λM (M(x))]
satisfying

0 < λ ≤ λm (M(x)) ≤ λM (M(x)) < �.

Proposition 4 Let {xk} be an infinite sequence (with gk �= 0) generated by theD-PR-
PNCGmethod, where the steplength αk > 0 is determined by a linesearch procedure
such that, for all k, the following conditions hold:

(i) xk ∈ L1 for all k;

(ii) lim
k→+∞

|gTk pk |
‖pk‖ = 0;

(iii) lim
k→+∞ αk‖pk‖ = 0.
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If Assumption 1 holds, then

lim inf
k→+∞ ‖gk‖ = 0

and hence there exists at least a stationary limit point of {xk}.
Similar to the proposals in Sects. 3 and 4, we consider now a brief numerical

experience on the use of the damped vectors in (17) and (20). A complete study can
be found in [18]. Observe that in principle the use of damped techniques fully affects
the preconditioning strategies (where yk is replaced by ŷ(a)

k or ŷ(b)
k ), i.e., both the

value of βk along with the preconditioner, and not just the value of βk . However, our

Fig. 4 Comparison between the adoption of the two damped strategies in (17) and in (20). Profiles
with respect to # iterations (up) and # function and gradient evaluations (down)
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preliminary aim here is to report a numerical experience with PNCG (and not D-
PR-PNCG), i.e., embedding the damped techniques within the preconditioner used
in a PNCG scheme, where the standard Polak–Ribière (PR) formula for βk is used.
In particular, the same settings used in Sects. 3 and 4, along with the same test set
are considered. We also recall that a standard implementation of the PNCG method
in CG+ code was adopted (see [24]), where the preconditioner (5) is included, and
the linesearch technique is the same as that in [28]. Finally, the stopping criterion
adopted is the standard one in (6). We also recall that in the linesearch procedure
adopted in [28] the number of function and gradient evaluations coincide. In Fig. 4,
the two damped strategies in (17) (with ηk = 4 and ϕk chosen as in (13)) and in (20)

Fig. 5 Comparison between the use β̂PR
k (setting ŷk = ŷ(a)

k ) and βPR
k , in both preconditioned

and unpreconditioned cases. Profiles with respect to # iterations (up) and # function and gradient
evaluations (down)
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(with ϕk chosen as in (13)) are compared, with respect to both # iterations and #
function evaluations. The strategy (17) seems to be somehow preferable to (20).

To complete our analysis, we note that a full information from damped techniques
can be used, both affecting the computation of the coefficient βk and the precondi-
tioner Mk+1 in PNCG (see [18]). More explicitly, the performances of PNCG vs.
D-PR-PNCG (where β̂ PR

k is used in place of β PR
k ) in both the preconditioned and

unpreconditioned case are compared. The corresponding results are summarized in
Fig. 5 (names of the schemes are self-explanatory). As it can be observed from the
profiles, the use of β̂ PR

k does not yield a noteworthy improvement. Nevertheless, we
also observe that the D-PR-PNCG scheme, which also uses β̂ PR

k , reveals to outper-
form the standard NCG method.
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