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A large scale unconstrained optimization problem can
be formulated as the problem of finding a local mini-
mizer of a real valued function f : Rn!R over the space
Rn, namely to solve the problem

min
x2Rn

f (x); (1)

where the dimension n is large. The notion of ‘large
scale’ is machine dependent and hence it could be
difficult to state a priori when a problem is of large
size. However, today an unconstrained problem with
more than one thousand variables is usually considered
a large scale problem.
Besides its own theoretical importance, the growing

interest in the last years in solving problems of large size
derives from the fact that problems with a larger and
larger number of variables are arising very frequently

from real world as a result of modeling systems with
a very complex structure.
The main difficulty in dealing with large scale prob-

lems is the fact that effective algorithms for small scale
problems do not necessarily translate into efficient algo-
rithms when applied to solve large problems. Therefore
in most cases it is improper to tackle a problem with
a large number of variables by using one of the many
existing algorithms for the small scale case relying on
the growing powerful of the modern computers (see,
e. g., [11,13,34] for a review on the existing methods for
small scale unconstrained optimization).
A basic feature of an algorithm for large scale prob-

lems is a low storage overhead needed to make practi-
cable its implementation. Moreover, whenever a large
scale problem has some structure it should be exploited
to define reliable algorithms; in fact, often the structure
of a problem reflects in the sparsity of the Hessian ma-
trix of the function f which can be efficiently exploited.
Methods for unconstrained optimization differ ac-

cording to how much information on the function f is
available. In the framework of large scale unconstrained
optimization it is usually required that the user pro-
vides at least subroutines which evaluate the objective
function and its gradient for any point x. More effec-
tive methods can be obtained if second order deriva-
tives are known. When the derivatives are not available
they can be obtained by finite difference or by using
automatic differentiation. Throughout we assume that
the function f is twice continuously differentiable, i. e.
that the gradient g(x) = r f (x) and the Hessian matrix
H(x) = r2 f (x) of the function f exist and are contin-
uous. Moreover, we denote by kvk the Euclidean norm
of a vector v 2 Rn.
As in the small scale case, most of the large scale

unconstrained algorithms are iterative methods which
generate a sequence of points according to the scheme

xkC1 D xk C ˛kdk (2)

where dk 2 Rn is a search direction and ˛k 2 R is
a steplength obtained by means of a one-dimensional
search. Obviously, also in large scale optimization it is
important that an algorithm presents both the global
convergence (i. e. convergence of the sequence {xk} to-
wards a stationary point from any starting point) and
a good convergence rate.
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A basic method for solving large scale uncon-
strained optimization problems can be considered the
steepest descent method obtained by setting dk =� g(xk)
in (2). This method is based on the linear approxima-
tion of the objective function f and hence only first or-
der information are need. Due to its very limited stor-
age required by a standard implementation, steepest de-
scent method could be considered very attractive in the
large scale setting; moreover the global convergence can
also be ensured. However, its convergence rate is only
linear and therefore it is too slow to be used. A partic-
ular rule for computing the stepsize ˛k has been pro-
posed [39] and this led to a significant improvement of
the efficiency of the steepest descent method.
One of the most effective methods for solving un-

constrained problems is the Newton method (cf.�Un-
constrained nonlinear optimization: Newton–Cauchy
framework). It is based on the quadratic approximation
of f (xk + w) given by

�k(w) D f (xk)C g(xk)>w C 1
2w

>H(xk)w (3)

and it is defined by iterations of the form

xkC1 D xk C sk (4)

where the search direction sk is obtained by minimiz-
ing the quadratic model of the objective function (3)
over Rn. On the one hand, Newton method presents
quadratic convergence rate and it is scale invariant, but,
on the other hand, in its pure form it is not globally
convergent. Globally convergent modifications of the
Newton method has been defined following the line
search approach and the trust region approach (see,
e. g. [11,12,27]; cf. also � Large scale trust region prob-
lems), but the main difficulty, in dealing with large scale
problems, is represented by the possibility to efficiently
solve, at each iteration, linear systems which arise in
computing the search direction sk. In fact, the problem
dimension could be too large for any explicit use of the
Hessian matrix and iterative methods must be used to
solve systems of linear equations instead of factoriza-
tions of the matrices involved. Indeed, whereas in the
small scale setting the Newton direction sk is usually de-
termined by using direct methods for solving the linear
system

H(xk)s D �g(xk); (5)

when n is large, it is impossible to store or factor the full
n × nHessian matrix unless it is a sparse matrix. More-
over the exact solution, at each iteration, of the system
(5) could be too burdensome and not justified when xk

is far from a solution. In fact, since the benefits of us-
ing the Newton direction are mainly local (i. e. in the
neighborhood of a solution), it should not be necessary
a great computational effort to get an accurate solution
of system (5) when g(xk) is large.
On the basis of these remarks, in [8] the inexact

Newton methods were proposed. They represent the ba-
sic approach underlying most of the Newton-type large
scale unconstrained algorithms. The main idea is to ap-
proximately solve the system (5) still ensuring a good
convergence rate of the method by using a particular
trade-off rule between the computational burden re-
quired to solve the system (5) and the accuracy with
which it is solved. The measure of this accuracy is the
relative residual

krkk
kg(xk)k ; where rk D H(xk)sk C g(xk) (6)

and sk is an approximate solution of (5). The analysis
given in [8] shows that if the sequence {xk} generated
by (4) converges to a point x? and if

lim
k!1

krkk
kg(xk)k D 0; (7)

then {xk} converges superlinearly to x?. This result is
at the basis of the truncated Newton methods which
represent one of the most effective approach for solv-
ing large scale problems. This class of methods was in-
troduced in [9] within the line search based Newton-
type methods. They are based on the fact that when-
ever the Hessian matrix H(xk) is positive definite, to
solve the Newton equation (5) is equivalent to deter-
mine the minimizer of the quadratic model (3). There-
fore, in these methods, a Newton-type direction, i. e.
an approximate solution of (5), is computed by apply-
ing the (linear) conjugate gradient (CG) method (cf.
� Conjugate-gradient methods) [23] to approximately
minimize the quadratic function (3). A scheme of a line
search based truncated Newton algorithm is the follow-
ing:
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Line search based truncated Newton algorithm

OUTER iterations
For k = 0; 1; : : :

Compute g(xk)
Test for convergence

INNER iterations
(Computation of the direction sk)
Iterate CG algorithm until
a termination criterion is satisfied
Compute a stepsize ˛k by a line search procedure
Set xk+1 = xk + ˛k sk

A scheme for a truncated Newton algorithm

Given a starting point x0, at each iteration k,
a Newton-type direction sk is computed by truncating
the CG iterates – the inner iterations – whenever a re-
quired accuracy is obtained. The definition of an effec-
tive truncation criterion represents a key aspect of any
truncated Newton method and a natural choice is rep-
resented by monitoring when the relative residual (6)
is sufficiently small. Moreover, by requiring that krkk /
kg(xk)k � �k with limk!1 �k! 0, the condition given
by (7) is satisfied and hence the superlinear conver-
gence is guaranteed [9]. In particular �k can be chosen
to ensure that, as a critical point is approached, more
accuracy is required. Other truncation criteria based on
the reduction of the quadratic model can be defined
[31]. Numerical experiences showed that a relatively
small number of CG iterations is needed, in most cases,
for obtaining a good approximation of the Newton di-
rection and this is one the main advantage of the trun-
cated Newton methods since a considerable computa-
tional savings can be obtained still ensuring a good con-
vergence rate. The performance of the CG algorithm
used in the inner iterations can be improved by using
a preconditioning strategy based either on the informa-
tion gained during the outer iterations or on some scal-
ing of the variables. Several different preconditioning
schemes have been proposed and tested [29,40]. Trun-
cated Newton methods can be modified to enable their
use whenever the Hessian matrix is not available; in
fact, the CGmethod only needs the product of the Hes-
sian matrix with a displacement vector, and this prod-
uct can be approximated by finite difference [35]. The
resulting method is called discrete truncated Newton
method. In [41] a Fortran package (TNPACK) imple-

menting a line search based (discrete) truncated New-
ton algorithm which uses a preconditioned conjugate
gradient is proposed. However, additional safeguard is
needed within truncated Newton algorithms since the
Hessian matrix could be not positive definite. In fact,
the CG inner iterations may break down before satis-
fying the termination criterion when the Hessian ma-
trix is indefinite. To handle this case, whenever a di-
rection of negative curvature (i. e. a direction dk such
that d>k H(xk) dk < 0) is encountered, the inner itera-
tions are usually terminated and a descent direction (i. e.
a direction dk such that g(xk)| dk < 0) is computed [9].
More sophisticated strategies can be applied for itera-
tively solving the system (5) when it is indefinite [6,15,
36,43]. In particular, the equivalent characterization of
the linear conjugate gradient algorithm via the Lanczos
method can be exploited to define a truncated Newton
algorithm which can be used to solve problems with in-
definite Hessian matrices [28]. In fact, the Lanczos algo-
rithm does not requires the Hessian matrix to be posi-
tive definite and hence it enables to obtain an effective
Newton-type direction.
A truncated Newton method which uses a non-

monotone line search (i. e. which does not enforce the
monotone decrease of the objective function values)
was proposed in [20] and the effectiveness of this ap-
proach was shown especially in the solution of ill-
conditioned problems. Moreover in the CG-truncated
scheme proposed in [20] an efficient strategy to handle
the indefinite case is also proposed.
A new class of truncated Newton algorithms for

solving large scale unconstrained problems has been
defined in [25]. In particular, a nonmonotone stabiliza-
tion framework is proposed based on a curvilinear line
search, i. e. a line search along the curvilinear path

x(˛) D xk C ˛2sk C ˛dk ;

where sk is a Newton-type direction and dk is a particu-
lar negative curvature direction which has some resem-
blance to an eigenvector of the Hessian matrix corre-
sponding to the minimum eigenvalue. The use of the
combination of these two directions enables, also in the
large scale case, to define a class of line search based al-
gorithms which are globally convergent towards points
which satisfy second order necessary optimality condi-
tions, i. e. stationary points where the Hessian matrix is
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positive semidefinite. Besides satisfying this important
theoretical property, this class of algorithms was also
shown to be very efficient in solving large scale uncon-
strained problems [25,26]. This is also due to the fact
that a Lanczos based iterative scheme is used to com-
pute both the directions without terminating the inner
iterations when indefiniteness is detected and, as result,
more information about the curvature of the objective
function are conveyed.
Truncated Newton methods have been also defined

within the trust region based methods. These methods
are characterized by iterations of the form (4) where, at
each iteration k, the search direction sk is determined
by minimizing the quadratic model of the objective
function (3) in a neighborhood of the current iterate,
namely by solving the problem

min
ksk��

�k(s); (8)

where � is the trust region radius. Also in this frame-
work most of the existing algorithms require the solu-
tion of systems of linear equations. Some approaches
are the dogleg methods [10,38] which aim to solve prob-
lem (8) over a one-dimensional arc and the method
proposed in [5] which solves problem (8) over a two-
dimensional subspace. However, whenever the prob-
lem dimension is large, it is impossible to rely on ma-
trix factorizations, and iterative methods must be used.
If the quadratic model (3) is positive definite and the
trust region radius is sufficiently large that the trust re-
gion constraint is inactive at the unconstrained mini-
mizer of the model, problem (8) can be solved by using
the preconditioned conjugate gradient method [42,44].
Of course, a suitable strategy is needed whenever the
unconstrained minimizer of the quadratic model is no
longer lying within the trust region and the desired so-
lution belongs to the trust region boundary. A simple
strategy to handle this case was proposed in [42] and
[44] and it considers the piecewise linear path connect-
ing the CG iterates, stopping at the point where this
path leaves the trust region. If the quadratic model (3)
is indefinite, the solution must also lie on the trust re-
gion boundary and the piecewise linear path can be
again followed until either it leaves the trust region, or
a negative curvature direction is found. In this latter
case, two possibilities have been considered: in [42] the
path is continued along this direction until the bound-

ary is reached; in [44] the minimizer of the quadratic
model within the trust region along the steepest de-
scent direction (the Cauchy point) is considered. This
class of algorithms represents a trust region version
of truncated Newton methods and an efficient imple-
mentation is carried out within the LANCELOT pack-
age [7]. These methods have become very important in
large scale optimization, due to both their strong the-
oretical convergence properties and good efficiency in
practice, but they are known to possess some draw-
backs. Indeed, they are essentially unconcerned with
the trust region until they blunder into its bound-
ary and stop. Moreover, numerical experiences showed
that very frequently this untimely stop happens during
the first inner iterations when a negative curvature is
present and this could deteriorate the efficiency of the
method. In order to overcome this drawback an alter-
native strategy is proposed in [16] where ways of con-
tinuing the process once the boundary of the trust re-
gion is reached are investigated. The key point of this
approach is the use of the Lanczos method and the fact
that preconditioned conjugate gradient and Lanczos
methods generate different bases for the same Krylov
space. Several other large scale trust region methods (cf.
� Large scale trust region problems) have been pro-
posed.
Another class of methods which can be successfully

applied to solve large scale unconstrained optimiza-
tion problems is the wide class of the nonlinear con-
jugate gradient methods [14,23]. They are extensions
to the general (nonquadratic) case of the already men-
tioned linear conjugate gradient method. They repre-
sent a compromise between steepest descent method
and Newtonmethod and they are particularly suited for
large scale problems since there is never a need to store
a full Hessian matrix. They are defined by the iteration
scheme (2) where the search direction is of the form

dk D �g(xk)C ˇkdk�1 (9)

with d0 = � g(x0) and where ˇk is a scalar such that
the algorithm reduces to the linear conjugate gradient
method if the objective function f is a strictly convex
quadratic function and ˛k in (2) is obtained by means
of an exact line search (i. e., ˛k is the one-dimensional
minimizer of f (xk + ˛ dk) with respect to ˛). The most
widely used formulas for ˇk are Fletcher–Reeves (FR)
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and Polak–Ribière (PR) formulas given by

ˇFRk D kg(xk)k2
kg(xk�1)k2

;

ˇPRk D g(xk)>
�
g(xk) � g(xk�1)

�

kg(xk�1)k2
:

Many efforts have been devoted to investigate the global
convergence for nonlinear conjugate gradient methods.
A widespread technique to enforce the global conver-
gence is the use of a regular restart along the steepest
descent direction every n iterations obtained by setting
ˇk = 0. However, computational experiences showed
that this restart can have a negative effect on the effi-
ciency of the method; on the other hand, in the large
scale setting, restarting does not play a significant role
since n is large and very few restarts can be performed.
Global convergence results have been obtained for the
Fletcher–Reeves method without restart both in the case
of exact line search [46] and when ˛k is computed by
means of an inexact line search [1]; then, the global
convergence was extended to methods with |ˇk| � ˇFR

k
[14]. As regards the global convergence of the Polak–
Ribière method, for many years it was proved with ex-
act line search only under strong convexity assump-
tions [37]. Global convergence both for exact and in-
exact line search can also be enforced by modifying
the Polak–Ribière method by setting ˇk = max{ˇPR

k , 0}
[14]; this strategy correspond to restart the iterations
along the steepest descent direction whenever a nega-
tive value of ˇk occurs. However, an inexact line search
which ensures global convergence of the Polak–Ribière
method for nonconvex function has been obtained in
[21]. As regards the numerical performance of these
two methods, extensive numerical experiences showed
that, in general, Polak–Ribière method is usually more
efficient than the Fletcher–Reeves method. An efficient
implementation of the Polak–Ribière method (with
restarts) is available as routine VA14 within the Har-
well subroutine library [22]. See, e. g., [34] for a de-
tailed survey on the nonlinear conjugate gradient meth-
ods.
Another effective approach to large scale uncon-

strained optimization is represented by the limited-
memory BFGS method (L-BFGS) proposed in [32]
and then studied in [24,30]. This method resembles

the BFGS quasi-Newton method, but it is particularly
suited for large scale (unstructured) problems because
the storage of matrices is avoided. It is defined by the
iterative scheme (2) with the search direction given by

dk D �Hk g(xk)

and where Hk is the approximation to the inverse Hes-
sian matrix of the function f at the kth iteration. In
the BFGS method the approximation Hk is updated by
means of the BFGS correction given by

HkC1 D V>k HkVk C �k sk s>k

where Vk = I � �k yk s>k , sk = xk + 1 � xk, yk = g(xk + 1)
� g(xk), and �k = 1/y>k sk. In the L-BFGS method, in-
stead of storing the matrices Hk, a prefixed number
(say m) of vectors pairs {sk, yk} that define them im-
plicitly are stored. Therefore, during the first m iter-
ations the L-BFGS and the BFGS methods are iden-
tical, but when k > m only information from the m
previous iterations are used to obtain Hk. The num-
ber m of BFGS corrections that must be kept can be
specified by the user. Moreover, in the L-BFGS the
product Hk g(xk) which represents the search direc-
tion is obtained by means of a recursive formula in-
volving g(xk) and the most recent vectors pairs {sk,
yk}. An implementation of L-BFGS method is avail-
able as VA15 routine within the Harwell subroutine li-
brary [22]. An interesting numerical study of L-BFGS
method and a comparison of its numerical perfor-
mance with the discrete truncated Newton method
and the Polak–Ribière conjugate gradient method are
reported in [30]. The results of a numerical experi-
ence with limited-memory quasi-Newton and trun-
cated Newton methods on standard library test prob-
lems and on two real life large scale unconstrained op-
timization applications can be found in [45]. A method
which combines the discrete Newton method and the
L-BFGS method is proposed in [4] to produce an ef-
ficient algorithm able to handle also ill-conditioned
problems.
Limited memory quasi-Newton methods represent

an adaptation of the quasi-Newton methods to large
scale unstructured optimization. However, the quasi-
Newton approach can be successfully applied to large
scale problems with a particular structure. In fact, fre-
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quently, an optimization problem has some structure
which may be reflected in the sparsity of the Hessian
matrix. In this framework, the most effective method
is the partitioned quasi-Newton method proposed in
[18,19]. It is based on the fact that a function f with
a sparse Hessian is a partially separable function, i. e. it
can be written in the form

f (x) D
neX

iD1
fi(x)

where the element functions f i depends only on a few
variables. Many practical problems can be formulated
(or recasted) in this form showing a wide range of ap-
plicability of this approach. The basic idea of the par-
titioned quasi-Newton method is to decompose the
Hessian matrix into a sum of Hessians of the element
functions f i. Each approximation to the Hessian of f i
is then updated by using dense updating techniques.
These small matrices are assembled to define an ap-
proximation to the Hessian matrix of f used to com-
pute the search direction. However, the element Hes-
sian matrices may not be positive definite and hence
BFGS formula cannot be used, and in this case a sym-
metric rank one formula is used. Global convergence
results have been obtained under convexity assumption
of the function f i [17]. An implementation of the parti-
tioned quasi-Newton method is available as VE08 rou-
tine of the Harwell subroutine library [22]. A compari-
son of the performance of partitioned quasi-Newton, L-
BFGS, CG Polak–Ribière and truncated discrete New-
ton methods is reported in [33].
Another class of methods which has been extended

to large sparse unconstrained optimization are tensor
methods [3]. Tensor methods are based on fourth or-
der model of the objective function and are particu-
larly suited for problems where the Hessian matrix has
a small rank deficiency.
To conclude, it is worthy to outline that in deal-

ing with large scale unconstrained problems with a very
large number of variables (more than 104) high per-
formance computer architectures must be considered.
See e. g. [2] for the solution of large scale optimization
problems on vector and parallel architectures.
The reader can find the details of the methods men-

tioned in this brief survey in the specific cited refer-
ences.
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In the field of nonlinear programming (in continuous
variables), convex analysis [20,21] plays a pivotal role
both in theory and in practice. An analogous theory
for discrete optimization (nonlinear integer program-
ming), called ‘discrete convex analysis’ [15,16], is devel-
oped for L-convex andM-convex functions by adapting
the ideas in convex analysis and generalizing the results
in matroid theory. The L- and M-convex functions are
introduced in [15] and [12,18], respectively.

Definitions of L- andM-Convexity

Let V be a nonempty finite set and Z be the set of inte-
gers. For any function g: ZV ! Z [{+1} define dom g

= {p 2 ZV : g(p) < +1}, called the effective domain of g.
A function g: ZV ! Z [ {+1} with dom g 6D ; is

called L-convex if

g(p)C g(q) � g(p _ q)C g(p ^ q) (p; q 2 ZV );

9r 2 Z : g(pC 1) D g(p)C r (p 2 ZV );

where p _ q = (max(p(v), q(v)) |v 2 V) 2 ZV , p ^ q =
(minp(v), q(v))|v 2 V) 2 ZV , and 1 is the vector in ZV

with all components being equal to 1.
A set D� ZV is said to be an L-convex set if its indi-

cator function ıD (defined by ıD(p) = 0 if p 2 D, and =
+1 otherwise) is an L-convex function, i. e., if
i) D 6D ;;
ii) p, q 2 D) p _ q, p ^ q 2 D; and
iii) p 2 D) p˙ 1 2 D.
A function f : ZV ! Z [ {+1} with dom f 6D ; is

calledM-convex if it satisfies
� M-EXC) For x, y 2 dom f and u 2 supp+(x� y),
there exists v 2 supp�(x � y) such that

f (x)C f (y) � f (x � �u C �v )

C f (yC �u � �v );

where, for any u 2 V , �u is the characteristic vector
of u (defined by�u(v) = 1 if v = u, and = 0 otherwise),
and

suppC(z) D fv 2 V : z(v) > 0g (z 2 ZV );

supp�(z) D fv 2 V : z(v) < 0g (z 2 ZV ):

A set B � ZV is said to be anM-convex set if its in-
dicator function is an M-convex function, i. e., if B sat-
isfies
� B-EXC) For x, y 2 B and for u 2 supp+(x � y), there
exists v 2 supp�(x � y) such that x � �u + �v 2 B
and y + �u � �v 2 B.

This means that an M-convex set is the same as the set
of integer points of the base polyhedron of an integral
submodular system (see [8] for submodular systems).
L-convexity and M-convexity are conjugate to each

other under the integral Fenchel–Legendre transforma-
tion f 7�! f � defined by

f �(p) D sup ˚hp; xi � f (x) : x 2 ZV�
; p 2 ZV ;

where hp, xi = P
v 2 V p(v) x(v). That is, for L-convex

function g and M-convex function f , it holds [15] that
g� is M-convex, f � is L-convex, g�� = g, and f �� = f .
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