
Comput Optim Appl (2007) 38: 81–104
DOI 10.1007/s10589-007-9034-z

Iterative computation of negative curvature directions
in large scale optimization

Giovanni Fasano · Massimo Roma

Published online: 17 May 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper we deal with the iterative computation of negative curvature
directions of an objective function, within large scale optimization frameworks. In
particular, suitable directions of negative curvature of the objective function represent
an essential tool, to guarantee convergence to second order critical points. However,
an “adequate” negative curvature direction is often required to have a good resem-
blance to an eigenvector corresponding to the smallest eigenvalue of the Hessian
matrix. Thus, its computation may be a very difficult task on large scale problems.
Several strategies proposed in literature compute such a direction relying on matrix
factorizations, so that they may be inefficient or even impracticable in a large scale
setting. On the other hand, the iterative methods proposed either need to store a large
matrix, or they need to rerun the recurrence.

On this guideline, in this paper we propose the use of an iterative method, based
on a planar Conjugate Gradient scheme. Under mild assumptions, we provide theory
for using the latter method to compute adequate negative curvature directions, within
optimization frameworks. In our proposal any matrix storage is avoided, along with
any additional rerun.

Keywords Conjugate gradient method · Large scale optimization · Negative
curvature directions · Convergence to second order critical points

G. Fasano (�) · M. Roma
Dipartimento di Informatica e Sistemistica “A. Ruberti”, Università di Roma “La Sapienza”,
via Buonarroti, 12, Roma, Italy
e-mail: fasano@dis.uniroma1.it

M. Roma
e-mail: roma@dis.uniroma1.it

G. Fasano
Istituto Nazionale per Studi ed Esperienze di Architettura Navale INSEAN,
via di Vallerano, 139, Roma, Italy
e-mail: g.fasano@insean.it

82 G. Fasano, M. Roma

1 Introduction

In this paper we tackle a general problem which arises in the definition of many
minimization methods: the computation of suitable negative curvature directions of
the objective function, in large scale settings. Our interest is mainly motivated by the
possibility of using negative curvature directions, within linesearch based truncated
Newton methods, for large scale unconstrained optimization. However, the approach
we propose may be exploited in many different contexts of nonlinear programming.

We recall that, given a twice continuously differentiable real valued function f

and the point x ∈ R
n, the vector d ∈ R

n is a direction of negative curvature at x if
dT ∇2f (x)d < 0. The use of negative curvature directions in designing minimization
methods has a twofold importance: from the theoretical point of view, convergence
towards second order critical points, i.e. stationary points where the Hessian matrix
is positive semidefinite, may be guaranteed. From the computational point of view,
observe that negative curvature directions exploit the local nonconvexities of the ob-
jective function. Then, a descent negative curvature direction is such that the objec-
tive function and its directional derivative are (locally) decreasing along it. Therefore,
a step along a negative curvature direction, can hasten the search for a region where
the objective function is convex.

The use of negative curvature directions in unconstrained optimization goes back
up to [22] and the two landmark papers [21, 23], where linesearch based modified
Newton methods were proposed. Here, a curvilinear path obtained by combining
a Newton-type direction and a negative curvature direction was considered. Moreover
a “second order” Armjio-type rule was used, to ensure the convergence to a second
order critical point. The second order convergence can be ensured by exploiting the
local curvatures of the objective function, contained in the second order derivatives.
In particular, the negative curvature direction is required to resemble the eigenvector
corresponding to the smallest eigenvalue λmin(∇2f (x)) of the Hessian matrix. For-
mally, if xj denotes the current iterate of the algorithm in hand, the negative curvature
direction dj must be nonascent and such that

(dj)T ∇2f (xj)d
j → 0 implies min

[
0, λmin(∇2f (xj)

)] → 0. (1.1)

Note that convergence to second order critical points is guaranteed also for the trust
region methods in unconstrained optimization (see, e.g. [3, 24, 28]): the latter result
strongly motivates the interest for such methods.

The use of appropriate directions of negative curvature plays a key role also in
constrained optimization, when defining algorithms with convergence to points sat-
isfying the second order KKT necessary optimality conditions (see, e.g. [6] and the
references reported therein).

The computation of a nonascent direction of negative curvature dj , which sat-
isfies (1.1), is a very difficult task, and the difficulty increases with the dimension.
Indeed, in principle the computation of dj is equivalent to compute an eigenvector
corresponding to the smallest eigenvalue of the Hessian matrix. In [23] the Bunch
and Parlett factorization was proposed for determining a negative curvature direc-
tion which satisfies (1.1). It was proved that the Bunch and Parlett decomposition,
for a symmetric indefinite matrix, can be used for computing both a Newton-type

Iterative computation of negative curvature directions 83

direction and an adequate negative curvature direction. In [12] this approach was em-
bedded in a nonmonotone framework, showing how its potentiality may be further
exploited. In both cases, the computation of the negative curvature direction relies on
matrix factorizations, which are impracticable when dealing with large scale prob-
lems. On the basis of this observation, in [19] a new strategy based on an iterative
algorithm was proposed, within truncated Newton schemes. The computation was
based on the well known ability of the Lanczos algorithm, to efficiently determine
extreme eigenpairs of an indefinite matrix. In particular, the SYMMLQ algorithm
[26] was successfully used. However, here at step h ≤ n the negative curvature di-
rection dj in (1.1) is computed as dj = Vhwh, where the h columns of Vh are the
Lanczos vectors and wh ∈ R

h. Therefore, the storage of matrix Vh is required, and
in order to handle the large scale case, only a limited number of Lanczos vectors
are stored. Of course, this implies that dj is only approximately evaluated, and the
second order convergence is no longer guaranteed.

In [15] a new approach for managing negative curvature directions, in large scale
unconstrained optimization, was introduced. In particular, a truncated Newton ap-
proach was considered, where the alternate use of a Newton-type direction and
a negative curvature direction was proposed. Then, an appropriate linesearch was
performed on the chosen direction. To ensure condition (1.1) the strict connection
between the Conjugate Gradient (CG) and the Lanczos methods is exploited. Con-
vergence to second order points is proved under mild assumptions, in such a way that
the storage of any matrix is avoided. However, the price to pay is the necessity of
rerunning the recurrence, in order to regenerate the Lanczos vectors whenever they
are needed, similarly to the truncated Lanczos approach in [14].

A similar approach for iteratively computing a direction of negative curvature was
proposed in [2], where the authors discuss the possibility of using Lanczos, Cheby-
shev and two-step Lanczos algorithms. As alternative to the storage of all the Lanc-
zos vectors, they propose to store the two most recent vectors and to rerun the whole
Lanczos process whenever necessary.

These considerations indicate the need of iterative methods, which compute
nonascent negative curvature directions satisfying (1.1), without storing any matrix.
In this paper we focus on a variant of one of the most popular Krylov-based method,
the CG method. As well known, it plays a central role in many implementations of
truncated Newton methods, due to its efficiency in determining a Newton-type direc-
tion. Unfortunately the CG algorithm could untimely stop in the nonconvex case. To
overcome this drawback, the use of planar conjugate gradient algorithms has been
proposed [1, 5, 9, 10, 17, 18, 22]. Planar schemes are an extension of the linear CG
method to the indefinite case. They iteratively perform the search of critical points ei-
ther on mutually conjugate directions or planes, so that they are effective both in the
definite and in the indefinite case. Such methods can be naturally embedded within
large scale unconstrained optimization, however they represent an important tool also
within other nonlinear optimization frameworks.

In this paper we propose the use of the planar CG method FLR, described in [9], in
order to iteratively compute, at each iteration of a truncated Newton method, a nega-
tive curvature direction which satisfies condition (1.1), without requiring to store any
matrix and avoiding any rerun.

84 G. Fasano, M. Roma

In particular, given an n × n real indefinite matrix A, we use the FLR algorithm to
generate a tridiagonal decomposition of matrix A. We show that the tridiagonal ma-
trix obtained is similar to the tridiagonal matrix generated by the Lanczos algorithm.
Therefore, we prove a suitable relation between the eigenvalues of the tridiagonal
matrix given by the FLR algorithm and the matrix A. Finally, the tridiagonal form
is exploited for iteratively computing, under mild assumptions, a negative curvature
direction satisfying condition (1.1).

The paper is organized as follows: in Sect. 2, we report the planar CG algorithm
FLR for solving the indefinite linear system As = b. Then, we describe the reduction
of A to tridiagonal form, and the relation between the eigenvalues of the tridiagonal
matrix and the matrix A. In Sect. 3, we describe the details of the iterative compu-
tation of negative curvature directions for the matrix A, by means of the tridiagonal
decomposition previously obtained. In Sect. 4 we report the results of a preliminary
numerical testing. Finally, a section of concluding remarks completes the paper.

As regards the notations, given a vector v ∈ R
n we denote by ‖v‖ the 2-norm of

the vector v. Given a n × n symmetric matrix A, we denote by λmin(A) the smallest
eigenvalue of A and by λmin(A) and λmax(A), the smallest and the largest modu-
lus of an eigenvalue of A, respectively. Moreover, with Kk(A, r) we indicate the
k-dimensional Krylov subspace associated to the pair (A, r), i.e. the set spanned by
vectors {r,Ar, . . . ,Ak−1r}. With ek we indicate the unit vector with 1 in the kth entry,
and �x� is the lower integer part of the real value x. In the end, κ(B) indicates the
condition number of matrix B .

2 Tridiagonalizations and current representations

Let us consider the indefinite and nonsingular matrix A ∈ R
n×n, where n is large.

We are concerned with determining a matrix Rh ∈ R
n×h and a tridiagonal matrix

Th ∈ R
h×h, such that

ARh = RhTh, h ≤ n. (2.1)

To this aim, since n is large, direct methods are not appropriate and iterative methods
are usually used. In particular, let b ∈ R

n, then several methods based on the Krylov
subspace Kh(A,b) (see e.g., [13]) can be considered. After h ≤ n steps, some of
the latter methods provide h orthogonal vectors, say r1, . . . , rh, to be used to form
the columns of matrix Rh, i.e. Rh ≡ (r1/‖r1‖ . . . rh/‖rh‖). Assuming ri
= 0, i =
1, . . . , h, rh+1 = 0, the latter methods give (2.1), and since A is nonsingular, Th is
a tridiagonal irreducible matrix. If rh+1
= 0, in place of (2.1) the following relation
holds [13]:

ARh = RhTh + ρh+1rh+1e
T
h (2.2)

where ρh+1 ∈ R. In other words, (2.2) is obtained from (2.1), by adding the rank-one
update ρh+1rh+1e

T
h . Of course, since r1, . . . , rh+1 are orthogonal, (2.2) leads to

RT
h ARh = Th. (2.3)

Observe that if h = n, Rh is an orthogonal matrix, and (2.3) represents a tridiago-
nal decomposition of A (it is well known the importance of reducing the symmetric

Iterative computation of negative curvature directions 85

matrix A to the tridiagonal form Th). Relation (2.2) will be referred in the sequel as
current representation of the symmetric matrix A.

The CG and the Lanczos methods are among the most commonly used Krylov
subspace methods to give (2.3). In the case of the CG method, the vector ri , i ≤ n,
is the residual generated at iteration i − 1. The Lanczos method directly calculates
orthonormal vectors (the Lanczos vectors) which can be used as columns of the ma-
trix Rh. The two methods, along with their equivalence, have been deeply studied
(see, e.g., [3, Sect. 5.2], [4, 13, 29]). We only recall that if A is positive definite, then
Th is positive definite too, so that the tridiagonal matrix Th can be stably factorized
in the form

Th = LhDhL
T
h (2.4)

where Lh is a unit lower bidiagonal matrix and Dh is diagonal. Furthermore, the
entries of the matrix Lh and the diagonal elements of the matrix Dh can be easily
recovered from the quantities generated by the CG or the Lanczos algorithms (see,
e.g., [29]).

If A is indefinite, the factorization (2.4) may fail—in the sense that it may not exist
or may be very unstable—and a stable indefinite factorization must be alternatively
considered. Such a decomposition is based on factorizing the tridiagonal matrix Th

in the form

Th = LhBhL
T
h (2.5)

where Lh is a unit lower bidiagonal matrix, while Bh is a block diagonal—and no
longer a diagonal matrix. Each diagonal block of Bh is 1 × 1 or 2 × 2, hence the
procedure to obtain the decomposition (2.5) is definitely more cumbersome.

In this paper, in order to obtain relations (2.2) and (2.3), we propose the use of the
planar-CG algorithm FLR [9], which is a modification of the planar CG algorithm
proposed in [17]. It is an extension of the standard CG algorithm to the indefinite
case; moreover it enables to overcome the well known drawbacks due to possible
pivot breakdowns.

2.1 A planar-CG algorithm

In this section we briefly describe the planar CG algorithm FLR proposed in [9] and
reported in Table 1, which will be used to obtain relations (2.1–2.3). This scheme is
a modification of the algorithm proposed by Hestenes in [17]. An extensive descrip-
tion of the FLR algorithm can be found in [9, 10]; here we report some new related
results, which arise from the application of the FLR algorithm within optimization
frameworks. (We highlight that the role of the logical variable CR, introduced in Ta-
ble 1, will be clarified in Sect. 3.3.)

Firstly, suppose the matrix A is positive definite; as long as at Step k we have
εk ≤ λmin(A), the planar CG Step kB is never performed, therefore the algorithm re-
duces to the standard CG. On indefinite linear systems the FLR algorithm overcomes
the well known drawback of the standard CG, which may untimely stop. The lat-
ter result is accomplished by detecting the critical point of the associated quadratic
function f (x) = 1/2xT Ax − bT x on mutually conjugate directions or planes. This is
a common feature of all the planar CG methods (see [9] and the references reported

86 G. Fasano, M. Roma

Table 1 Algorithm FLR for solving the linear system As = b

Algorithm FLR

Step 1: k = 1, s1 = 0, r1 = b, CR = false. If r1 = 0 then CR = true and STOP,

else compute p1 = r1.

Step k: Compute σk = pT
k Apk .

If | σk |≥ εk‖pk‖2 then go to Step kA else go to Step kB

– Step kA (standard CG step):

Set sk+1 = sk + akpk , rk+1 = rk − akApk , where ak = rT
k pk

σk
.

If rk+1 = 0 then CR = true and STOP

else compute pk+1 = rk+1 + βkpk with βk = −pT
k Ark+1
σk

= ‖rk+1‖2

‖rk‖2 .
Set k = k + 1 and go to Step k.

– Step kB (planar CG step):
If k = 1 then compute the vector qk = Apk ,
else compute the vector

qk =

⎧
⎪⎪⎨

⎪⎪⎩

Apk + bk−1pk−1, if the previous step is Step (k − 1)A

Apk + b̂k−2
�k−2

(σk−2qk−2 − δk−2pk−2),

if the previous step is Step (k − 2)B

where bk−1 = −(Apk−1)
T Apk/σk−1 and b̂k−2 = −(Aqk−2)

T Apk .

Compute ck = rT
k pk , δk = pT

k Aqk , ek = qT
k Aqk , �k = σkek − δ2

k

and ĉk = (ckek − δkq
T
k rk)/�k , σ̂k = (σkq

T
k rk − δkck)/�k .

Set sk+2 = sk + ĉkpk + σ̂kqk , rk+2 = rk − ĉkApk − σ̂kAqk .

If rk+2 = 0 then CR = true and STOP

else compute pk+2 = rk+2 + β̂k

�k
(σkqk − δkpk) with β̂k = −qT

k Ark+2.

Set k = k + 2 and go to Step k.

therein). In particular, assuming that the matrix A is indefinite and nonsingular, by
applying the standard CG, pivot breakdown occurs at Step k if pT

k Apk = 0, so that
the iterates are terminated prematurely. On the contrary, planar CG methods generate
another direction at Step kB (denoted by qk). Then, instead of detecting the critical
point along the line xk + αpk , α ∈ R (which is carried on at Step kA), they perform
a search on the 2-dimensional linear manifold xk + span{pk, qk}. More specifically,
as concerns the FLR algorithm, it can be easily proved (see Lemma 2.2 in [9]) that, if
the matrix A is nonsingular and at Step k we have rk
= 0, the FLR algorithm can al-
ways perform either Step kA or Step kB . For further properties of the sequences {pk}
and {qk} we refer to Theorem 2.1 in [9]. As regards the parameter εk at the Step k

Iterative computation of negative curvature directions 87

(see also [9]), let ε̄ ∈ R be positive, then the choice

ε̄ < εk, at Step kA,

ε̄ < εk ≤ ε̂k = min

{
2

3
λmin(A)

‖rk‖
‖pk‖ , λ2

max(A)
‖pk‖
‖qk‖ ,

λ4
min(A)

2λmax(A)

‖pk‖2

‖qk‖2

}
, (2.6)

at Step kB,

guarantees the denominators at Step kA and Step kB to be sufficiently bounded away
from zero. We highlight that the choice (2.6) is slightly stronger than the choice of
the parameter εk at Step k of the FLR algorithm in [9]. As regards the apparently
cumbersome computation of the quantity ‖qk‖ in (2.6), no additional cost is needed
(see also [9]). In the sequel we assume that at Step k the parameter εk satisfies con-
dition (2.6).

2.2 Tridiagonalizations and current representations via the FLR algorithm

In this section we describe how to obtain a tridiagonal decomposition and a cur-
rent representation of the matrix A, by means of the FLR algorithm. As regards the
sequence of the directions generated by this algorithm, we adopt the following no-
tation: if at Step k the condition |pT

k Apk| ≥ εk‖pk‖2 is satisfied, then set wk = pk

(standard CG step) otherwise set wk = pk and wk+1 = qk (planar CG step). With the
latter convention, {wi} represents the sequence of directions generated by the FLR
algorithm.

Observe that the sequence of the residuals {ri} is necessary to form the matrix Rh

in (2.3); however, note that in the planar CG Step kB , the vector rk+1 is not generated.
The latter shortcoming may be overcome by introducing a “dummy” residual rk+1,
which completes the sequence of orthogonal vectors r1, . . . , rk, rk+1, rk+2, . . . , rh
[1, 7]. It is easy to see that the only possible choice (apart from a scale factor) for
the dummy residual rk+1, such that rk+1 ∈ Kk(A, r1) and rk+1 /∈ Kk−1(A, r1), is the
following [7]:

rk+1 = α̂krk + (1 + α̂k) sgn(σk)Apk, α̂k = − |σk|
‖rk‖2 + |σk| (2.7)

where the coefficient α̂k is computed by imposing the orthogonality condition
rT
k+1pk = rT

k+1rk = 0. We highlight that since ‖rk‖ and ‖Apk‖ are bounded, ‖rk+1‖
is bounded too. Moreover, from (2.7) and [9, Theorem 2.1], it can be readily seen that
the dummy residual rk+1 satisfies also the required orthogonality properties

rT
k+1ri = 0, i ≤ k, and rT

i rk+1 = 0, i > k + 1.

Now, we show that the FLR algorithm yields both the tridiagonalization (2.3) and
the current representation (2.2), when matrix A is indefinite. To this aim suppose that
the FLR algorithm performs up to step h and, for the sake of simplicity, the only
one planar CG step is Step kB < h. Then, considering (2.7) and the instructions at
Step kB , along with the position

Rh =
(

r1

‖r1‖ · · · rh

‖rh‖
)

∈ R
n×h, Ph =

(
w1

‖r1‖ · · · wh

‖rh‖
)

∈ R
n×h,

88 G. Fasano, M. Roma

the following result can be obtained:

Theorem 2.1 Consider the FLR algorithm and let ‖ri‖
= 0, i ≤ h. Suppose the only
one planar CG step is Step kB < h. Then the following relations hold:

PhL̃
T
h = Rh, (2.8)

APh =
(

Rh

...
rh+1

‖rh+1‖
)(

L̄h

l̄h+1,he
T
h

)
D̄h, h < n, (2.9)

ARh =
(

Rh

...
rh+1

‖rh+1‖
)(

T̄h

t̄h+1,he
T
h

)
, h < n, (2.10)

where

L̃h =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1

−√
β1 ·

· 1

−√
βk−1 1 0

α̃1 α̃2

α̃3 α̃4 1

0 −√
βk+2 ·

· 1

−√
βh−1 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

(2.11)

with (βk = ‖rk+1‖2/‖rk‖2, βk+1 = ‖rk+2‖2/‖rk+1‖2)

α̃1 = α̂k√
βk

, α̃2 = (1 + α̂k) sgn(σk),

α̃3 = β̂kδk

�k

√
βk+1βk

, α̃4 = − β̂k σk

�k

√
βk+1

,

(2.12)

D̄h =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
a1 ·

1
ak−1

0
1
ξk

1
ξk+1

0 1
ak+2 ·

1
ah

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.13)

Iterative computation of negative curvature directions 89

L̄h =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−√
β1 ·

· 1 0

−√
βk−1 ᾱ1 ᾱ3

ᾱ2 ᾱ4

ᾱ5 1

0 −√
βk+2 ·

· 1

−√
βh−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.14)

The coefficients ξk and ξk+1 are independent arbitrary non-zero parameters1, and ᾱi ,
i = 1, . . . ,5, have the following values:

ᾱ1 = σk

‖rk‖2
ξk, ᾱ2 = √

βk

[
sgn(σk) + σk

‖rk‖2

]
ξk,

ᾱ3 = ξk+1√
βkσ̂k

[
1 − σk

‖rk‖2
ĉk

]
, ᾱ4 = − ĉkξk+1

σ̂k(1 + α̂k) sgn(σk)
,

ᾱ5 = −ξk+1

σ̂k

√
βk+1.

(2.15)

Finally, T̄h is an irreducible symmetric tridiagonal matrix defined by
(

T̄h

0 · · · 0 t̄h+1,h

)
=

(
L̄h

0 · · · 0 l̄h+1,h

)
D̄hL̃

T
h (2.16)

where l̄h+1,h and t̄h+1,h are the element (h + 1, h) of the matrix L̄h+1 and T̄h+1,
respectively.

Proof From the FLR algorithm, [9, Theorem 2.1] and (2.7), after some calculations
and assuming that the only one planar CG step is Step kB < h, we obtain (2.8, 2.9)
and the expression of L̃h, D̄h and L̄h. Moreover, we have

ARh =
(

Rh

...
rh+1

‖rh+1‖
)(

T̄h

0 · · · 0 t̄h+1,h

)

=
(

Rh

...
rh+1

‖rh+1‖
)(

T̄h

t̄h+1,he
T
h

)
. �

Note that (2.10) can be rewritten in the form

ARh = RhT̄h + t̄h+1,h

‖rh+1‖ rh+1e
T
h , (2.17)

1We remark that σ̂k
= 0 in the FLR algorithm, thus the parameters ξk and ξk+1 may respectively be set
to 1 and σ̂k , in order to simplify (2.15).

90 G. Fasano, M. Roma

which is a current representation of the indefinite nonsingular matrix A. The follow-
ing result provides further theoretical properties of the matrix L̃h, which will be used
later on.

Proposition 2.2 Consider the FLR algorithm and let ‖ri‖
= 0, i ≤ h, where h < n.
Suppose that λmin(A) ≥ γ > 0, γ ∈ R, and that ν ≥ 0 planar CG steps are performed.
Let the parameter εk satisfy condition (2.6), with k ≤ h. Then, the matrix L̃h in (2.11)
is nonsingular and ‖L̃h‖ is bounded. Moreover, the following relations hold

(
1

1+4λ2
min(A)/(9ε̄)

)ν

≤ |det(L̃h)| ≤ 1, (2.18)

‖L̃h‖ ≤ �̃max

[
(2h − 1) + h

2

]1/2

where (2.19)

�̃max = max k∈{j1,...,jν }
i=1,...,h−1, i
=k,k+1

{√
βi,2,2

√
βk+1βk,2 ε̂k

λ2
min(A)

βk

√
βk+1

}
, (2.20)

�̃max is bounded, j1, . . . , jν are the indices of the planar CG steps and jp ≤ h − 1,
p = 1, . . . , ν.

For the sake of brevity, we do not report here the proof of this result for which we
refer to [11].

As we already discussed, several methods may be used to reduce the matrix A

to a tridiagonal form. Furthermore, it can be worthwhile to point out to what ex-
tent the tridiagonal matrix generated depends on the method. On this guideline the
Theorem 7-2-2 in [27] allows us to immediately derive the following proposition,
concerning the FLR algorithm.

Proposition 2.3 Let A ∈ R
n×n be symmetric and indefinite. Suppose to perform the

FLR algorithm and generate the orthogonal matrix Rn = (r1/‖r1‖ . . . rn/‖rn‖),
along with the irreducible tridiagonal matrix T̄n, such that ARn = RnT̄n. Then, T̄n

and Rn are uniquely determined by A and r1/‖r1‖ or, alternatively, by A and rn/‖rn‖.

2.3 Relationship between the eigenvalues of matrices T̄h and A

Suppose now to apply the Lanczos algorithm to the linear system As = b, with
b ∈ R

n. Then, after n steps the Lanczos algorithm generates the orthogonal matrix
Vn = (v1, . . . , vn) and the tridiagonal matrix Tn, such that AVn = VnTn. Similarly to
Proposition 2.3, by Theorem 7-2-2 in [27] we have that Tn and Vn are uniquely deter-
mined by A and v1, or alternatively by A and vn. However, this does not imply that the
tridiagonal matrices Tn (from the Lanczos process) and T̄n (from the FLR algorithm)
coincide. It rather suggests that the vectors ri/‖ri‖ and vi , i ≤ n, are parallel. Thus,
the sequences {vi} and {ri/‖ri‖} are orthonormal bases of the same Krylov subspace,
and vi = θi ri/‖ri‖, with θi ∈ {−1,+1}. The sequence {θi} is uniquely defined. In
particular, in case no planar CG steps are performed (the FLR algorithm reduces to
the standard CG), the detailed calculus of θi can be found, e.g., in [3, Sect. 5.2.2].

Iterative computation of negative curvature directions 91

When planar CG steps are performed in the FLR algorithm, the expression of θi is
reported in [8]. This implies that the following relation holds

Th = V T
h AVh = �T

h RT
h ARh�h = �hT̄h�h, h ≤ n, (2.21)

where �h = diag{θi, i = 1, . . . , h} is nonsingular. Due to the similarity (2.21), some
important relations between the eigenvalues of matrices T̄h and A hold from the rela-
tion between Th and A. Therefore, properties on the eigenvalues of T̄h can be directly
inherited from the properties of the eigenvalues of Th. We now briefly describe the
relation between the smallest eigenvalue of the tridiagonal matrix T̄h in (2.16), and
the eigenvalues of matrix A. This will provide a tool for estimating the eigenvector
of A associated to the smallest eigenvalue of matrix A. Then, the latter vector will be
used to compute a suitable negative curvature direction in optimization frameworks.

Theorem 2.4 Let λ1(A) ≤ · · · ≤ λn(A) be the ordered eigenvalues of the matrix A.
Moreover, let μ1(T̄h) ≤ · · · ≤ μh(T̄h) be the ordered eigenvalues of the matrix T̄h.
Then the following statements hold.

(i) The inequality λ1(A) ≤ μ1(T̄h) ≤ λ1(A) + C

φ2
h−1(1+2ρ)

, holds where C is a pos-

itive scalar, φh−1 is the h − 1 degree Chebyshev polynomial and ρ = (λ2(A) −
λ1(A))/(λn(A) − λ2(A)).

(ii) Let rh
= 0 and rh+1 = 0, then the eigenvalues μ1(T̄h) ≤ · · · ≤ μh(T̄h) of the
matrix T̄h are also eigenvalues of matrix A, and μ1(T̄h) < μ1(T̄h−1) < · · · <

μh−1(T̄h−1) < μh(T̄h). Moreover if u
(h)
i is the eigenvector of T̄h correspond-

ing to the eigenvalue μi(T̄h), then the vector Rhu
(h)
i is an eigenvector of the

matrix A.
(iii) There exists an eigenvalue λ(A) ∈ R of matrix A such that

∣∣λ(A) − μi(T̄h)
∣∣ ≤ |t̄h+1,h|.

Proof It is well known that properties (i) and (ii) hold if we consider the tridiago-
nal matrix Th generated by the Lanczos algorithm (see e.g. [13]). Hence, from the
similarity (2.21) they hold for the tridiagonal matrix T̄h.

As regards (iii), suppose (μi(T̄h), u
(h)
i) is an eigenpair of matrix T̄h, i ≤ h with

‖u(h)
i ‖ = 1. Then, by Theorem 4-5-1 in [27] and (2.17), an eigenvalue λ(A) of A

exists such that:

|λ(A) − μi(T̄h)| ≤ ‖ARhu
(h)
i − μi(T̄h)Rhu

(h)
i ‖

‖Rhu
(h)
i ‖

= ∥∥(ARh − RhT̄h)u
(h)
i

∥∥

=
∥∥∥∥t̄h+1,h

rh+1

‖rh+1‖eT
h u

(h)
i

∥∥∥∥ ≤ |t̄h+1,h|. (2.22)

�

Observe that from property (i), the smallest eigenvalue of the tridiagonal matrix
T̄h approaches very quickly the smallest eigenvalue of the matrix A (see also [30,
p. 279]).

92 G. Fasano, M. Roma

Property (ii) yields μ1(T̄h) < μ1(T̄h−1) therefore, at each iteration the FLR algo-
rithm improves the estimate of the smallest eigenvalue of the matrix A, by means of
(2.17) and (2.22).

Finally, property (iii) shows that if |t̄h+1,h| is sufficiently small, the quantity
μi(T̄h) is a good approximation of the eigenvalue λ(A) of matrix A (we recall that
when t̄h+1,h = 0 the FLR algorithm stops).

3 Iterative computation of negative curvature directions

In this section we use the theory developed in the previous sections within truncated
Newton frameworks. We recall that the latter iterative schemes have proved to be
effective tools for large scale optimization problems (see, e.g., [25]). In particular,
in unconstrained optimization, convergence towards second order stationary points
where the Hessian is positive semidefinite, can be ensured by computing, at each
iteration j , a pair of directions (sj , dj). The direction sj is a Newton-type direction
obtained by approximately solving the Newton’s system ∇2f (xj) s = −∇f (xj),
whose purpose is to guarantee the convergence to stationary points. The direction dj

is a suitable negative curvature direction used to force convergence to second order
stationary points [19, 23]. This requires that the sequence {dj } satisfies the following
assumption.

Condition A The directions {dj } are bounded and such that

(dj)T ∇2f (xj)d
j < 0, (3.1)

(dj)T ∇2f (xj)d
j → 0 implies min

[
0, λmin(∇2f (xj))

] → 0, (3.2)

where λmin(∇2f (xj)) is the smallest eigenvalue of the Hessian matrix ∇2f (xj).

Here we describe how to compute such directions {dj } by using the theory devel-
oped in the previous sections. More specifically, we describe how to exploit relation
(2.17), obtained in Sect. 2 via the FLR algorithm, for iteratively computing direction
dj in order to satisfy Condition A.

To this aim, we focus on a generic iteration j of a truncated Newton method and
we consider the matrix A as the system matrix at the j th iteration of the method
(in the unconstrained optimization case As = b is the Newton’s system at the j th
iteration with A = ∇2f (xj)). Now, suppose to apply the FLR algorithm and that it
terminates after n steps, i.e. the condition rn+1 = 0 is fulfilled and formulae (2.8) and
(2.9) hold with h = n. Observe that in a large scale setting, when far from the solution,
the FLR algorithm should possibly avoid to completely investigate an n-dimensional
Krylov subspace. Thus, in general it may be impossible to guarantee condition (3.2)
because (see [15, Sect. 4]) “. . . the Krylov subspace investigated may not contain any
eigenvector corresponding to the leftmost eigenvalue. However [in a truncated New-
ton scheme, when close to a stationary point] this happens with probability zero in
exact arithmetic, and we don’t expect it to happen in presence of rounding.” There-
fore, we carry on a theoretical analysis under the assumption that the FLR algorithm
performs exactly n steps, while in practice, we will compute the direction dj after

Iterative computation of negative curvature directions 93

a smaller number of steps. The numerical experience in Sect. 4 gives evidence that
the latter approach is effective and efficient.

On this guideline, condition rn+1 = 0 in (2.17) yields ARn = RnT̄n. So that from
(2.16), we have the following factorization for the symmetric tridiagonal matrix T̄n

T̄n = L̄nD̄nL̃
T
n (3.3)

where L̃n and L̄n are given in (2.11) and (2.14) (with h = n). Note that in general
L̄n
= L̃n, unless no planar CG steps were performed by the FLR algorithm. Since
both L̄n and L̃n are nonsingular, the nonsingular matrix �n ∈ R

n×n exists such that

L̄n = L̃n�n. (3.4)

Now, w.l.o.g. assume that only one planar CG step was performed and it was Step kB ;
then, the explicit expression of �n is given by

�n =

⎛

⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
. . . 0

1
πk,k πk,k+1

πk+1,k πk+1,k+1

1

0
. . .

1

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.5)

with

πk,k = ᾱ1, πk,k+1 = ᾱ3,

πk+1,k = ᾱ2 − ᾱ1α̃1

α̃2
, πk+1,k+1 = ᾱ4 − ᾱ3α̃1

α̃2

(3.6)

where α̃i and ᾱi , i ≤ 4, are given in (2.12) and (2.15). Hence, by (3.3) and (3.4)

T̄n = L̃n(�nD̄n)L̃
T
n , (3.7)

and it is easy to verify that the block diagonal matrix �nD̄n is symmetric.
The importance of the factorization (3.7) in computing the negative curvature di-

rection dj , for matrix A, relies on the following facts:

• the computation of the eigenpairs of �nD̄n is trivial. Furthermore it is possible to
establish a simple relation between the eigenvalues of T̄n and the eigenvalues of
�nD̄n;

• since ri
= 0, i = 1, . . . , n and rn+1 = 0, the matrix T̄n is irreducible and the
eigenvalues μ1(T̄n) < · · · < μn(T̄n) of T̄n are also eigenvalues of matrix A (Theo-
rem 2.4).

Now let us state the following technical proposition.

94 G. Fasano, M. Roma

Proposition 3.1 Consider the solution ȳ of the linear system L̃T
n y = z1, where L̃n

is given in (2.11) and z1 is the normalized eigenvector corresponding to the smallest
eigenvalue of �nD̄n (see (2.13) and (3.5)). Let ν ≥ 0 be the number of the planar CG
steps performed by the FLR algorithm. Let �̃max be an upper bound for the modulus
of the entries of matrix L̃n. Assume that εk in the FLR algorithm satisfies (2.6). Then
the vector ȳ is bounded and satisfies

‖ȳ‖ ≤ n2ν(�̂max)
n−1

√

(n − ν) + ν

(
1 + 4

9

λ2
min(A)

ε̄

)2

where

�̂max =
(

1 + 4

9

λ2
min(A)

ε̄

)
�̃max.

For the sake of brevity, we do not report here the proof of this result for which we
refer to [11].

The next theorem, which follows from [23, Lemma 4.3], shows how to determine
a direction of negative curvature by means of the decomposition (3.7).

Theorem 3.2 Let us consider the decomposition (3.7), where T̄n has at least one neg-
ative eigenvalue. Let z1 be the normalized eigenvector corresponding to the smallest
eigenvalue of �nD̄n, and ȳ ∈ R

n the solution of the linear system

L̃T
n y = z1. (3.8)

Then the vector

dj = Rnȳ (3.9)

is a bounded negative curvature direction satisfying (3.1) and (3.2).

Proof From relation (2.3) with h = n and considering that μmin(T̄n) is the smallest
eigenvalue of T̄n, Lemma 4.3 in [23] yields

0 > μmin(T̄n) ≥ (
ȳT T̄nȳ

)‖L̃n‖2 ≥ [
κ(L̃n)

]2 (ȳT T̄nȳ)

‖ȳ‖2

= [
κ(L̃n)

]2 [(Rnȳ)T A(Rnȳ)]
‖Rnȳ‖2

. (3.10)

Finally, from Theorem 2.4 the smallest eigenvalue λmin(A) of A satisfies λmin(A) =
μmin(T̄n), then

0 > λmin(A) ≥ [
κ(L̃n)

]2 [(Rnȳ)T A(Rnȳ)]
‖Rnȳ‖2

, (3.11)

i.e. dj is a negative curvature direction and (3.2) holds. Now we show that the direc-
tion dj defined in (3.9) is bounded. On this purpose, considering that Rn is orthog-
onal, dj is bounded as long as the solution ȳ of the linear system (3.8) is bounded.
The latter result is stated in Proposition 3.1. �

Iterative computation of negative curvature directions 95

Now observe that, according to (3.9), the computation of dj requires the storage
of both the vector ȳ and the full rank matrix Rn. Unfortunately this is unpractical for
large scale problems. Here we show that both the computation of ȳ and the storage of
Rn may be avoided, so that the FLR algorithm iteratively provides the vector dj . We
distinguish between the (simpler) case in which no planar CG steps are performed,
from the case where planar CG steps are performed.

3.1 No planar CG steps are performed in the FLR algorithm

If no planar CG steps are performed, in Proposition 3.1 we have z1 = em, for a certain
m ≤ n. Moreover, the decomposition (3.3) becomes T̄n = LnDnL

T
n , where [29]

Ln =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0
−√

β1 1

· ·

· 1
0 −√

βn−1 1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

and Dn = diag{1/a1, . . . ,1/an}. Therefore, recalling relation βi = ‖ri+1‖2/‖ri‖2,
i ≤ n − 1, the solution ȳ = (ȳ1 . . . ȳn)

T of the linear system (3.8) can be obtained by
backtracking from ȳn to ȳ1. In particular, we have

ȳn = · · · = ȳm+1 = 0, ȳm = 1, and

ȳm−1 = ‖rm‖
‖rm−1‖ , ȳm−2 = ‖rm‖

‖rm−2‖ , . . . , ȳ1 = ‖rm‖
‖r1‖ .

From (3.9), recalling that pi = ri + βi−1pi−1, i ≤ n, we simply obtain

dj = ‖rm‖
m∑

i=1

ri

‖ri‖2
= pm

‖rm‖ . (3.12)

The difficulty that m is not known “a priori,” can be easily overcome, since m is the
index of the least negative diagonal entry of matrix Dn, i.e. 1/am ≤ 1/ai , for any
ai < 0, i ≤ n. Hence, from (3.12) the calculation of dj may be easily carried on
iteratively and requires the storage of only one additional vector.

3.2 Some planar CG steps are performed in the FLR algorithm

In case some planar CG steps are performed by the FLR algorithm, the structure of
matrix L̃n in (3.8) is given in (2.11) with h = n. Now, we manipulate (3.7) so that

L̃n = L̂nD̃n and Tn = L̂nBnL̂
T
n (3.13)

where D̃n is a nonsingular diagonal matrix and L̂n is a nonsingular unit lower triangu-
lar matrix (see [11] for the exact definition of D̃n and L̂n). Then, Bn = D̃n�nD̄nD̃n

96 G. Fasano, M. Roma

is a block diagonal matrix with 1 × 1 and 2 × 2 nonsingular blocks. From Proposi-
tion 3.1 and its proof we observe that w.l.o.g., in place of solving the linear system
(3.8) in Theorem 3.2, we can consider equivalently from (3.13) the system

L̂T
n y = z1 (3.14)

where now z1 is the normalized eigenvector corresponding to the least negative eigen-
value of Bn. The vector z1 may have two different expressions:

(1) if the smallest negative eigenvalue of Bn is a 1 × 1 diagonal block of matrix Bn

(corresponding to a standard CG step in the FLR algorithm), then z1 = em for
a certain m ≤ n;

(2) otherwise, let λm,λm+1 be eigenvalues of Bn, corresponding to a 2 × 2 diagonal
block (planar CG step in the FLR algorithm), with λm ≤ λm+1. Then, if λm is the
smallest eigenvalue of Bn, it results z1 = (0, . . . ,0,ωm,ωm+1,0, . . . ,0)T where
ωm, ωm+1 ∈ R and can be trivially calculated.

Therefore, as in the previous section we want to determine the solution ȳ of (3.14)
and the direction dj of (3.9) in either the cases above, assuming that some planar CG
steps were performed.

• We first consider the case (1) in which

z1 = em, (3.15)

i.e. the smallest eigenvalue of Bn corresponds to a standard CG step in the FLR
algorithm. By simply backtracking from ȳn to ȳ1 we obtain (see (3.14))

ȳn = · · · = ȳm+1 = 0.

Then, we compute ȳi , i = 1, . . . ,m, by checking whether Step i, i = 1, . . . ,m,
was a standard CG step or a planar CG step. In particular, suppose w.l.o.g. that
the FLR algorithm performed the standard CG steps mA, (m − 1)A, . . . , (h + 2)A,

(h − 1)A, . . . ,1A, and the only one planar CG step hB . Then, it is possible to verify
that by backtracking from index i = m, we have from (3.14)

ȳi = ‖rm‖
‖ri‖ , i = m, . . . , h + 2,

ȳh+1 = ‖rm‖
‖rh+2‖�

(h)
1 ,

ȳh = ‖rm‖
‖rh+2‖�

(h)
2 ,

ȳi = ‖rm‖
‖rh+2‖�

(h)
2

‖rh‖
‖ri‖ , i = h − 1, . . . ,1,

(3.16)

where

�
(h)
1 = − α̃

(h)
4

α̃
(h)
2

, �
(h)
2 = α̃

(h)
1 α̃

(h)
4

α̃
(h)
2

− α̃
(h)
3 . (3.17)

Iterative computation of negative curvature directions 97

As a consequence, after few calculations we conclude that the negative curvature
direction dj = Rnȳ, can be computed similarly to (3.12). Note that the index m is
known only at Step n, so that the storage of Rn is apparently required. However,
observing the structure of vector ȳ in (3.16), at the current step of the FLR algo-
rithm we simply need to store only a pair of vectors. Roughly speaking, one cor-
responds to a “current” negative curvature direction, the others takes into account
that the smallest negative eigenvalue of Bn might not have been yet computed (see
the scheme in the next section).

• Let us consider now the case (2). Again the solution ȳ is obtained by simply back-
tracking from ȳn to ȳ1. In particular, from (3.14) we have

ȳn = · · · = ȳm+2 = 0, ȳm+1 = �
(m)
1 , ȳm = �

(m)
2 (3.18)

where �
(m)
1 = ωm+1 and �

(m)
2 = ωm − α̃1ωm+1 (α̃1 is defined in (2.12) with

k = m). Then, assuming w.l.o.g. that before the planar CG step mB the FLR algo-
rithm performed the standard CG steps (m − 1)A, . . . , (h + 2)A, (h − 1)A, . . . ,1A

and the planar CG Step hB , by backtracking we have from (3.14)

ȳi = ‖rm‖
‖ri‖ �

(m)
2 , i = m − 1, . . . , h + 2,

ȳh+1 = ‖rm‖
‖rh+2‖�

(m)
2 �

(h)
1 ,

ȳh = ‖rm‖
‖rh+2‖�

(m)
2 �

(h)
2 ,

ȳi = ‖rm‖
‖rh+2‖�

(m)
2 �

(h)
2

‖rh‖
‖ri‖ , i = h − 1, . . . ,1.

(3.19)

Again, from (3.19) it can be seen that dj may be iteratively computed, as summa-
rized in case (1) (see also the next section).

Finally, observe that the considerations above may be straightforwardly generalized,
in case several planar CG steps are performed.

3.3 Explicit scheme for computing the negative curvature direction

In the previous section we described the rules for the iterative computation of the
negative curvature direction dj , without requiring the storage of the full rank ma-
trix Rn. Now, we report in Table 2 a scheme which summarizes such computation,
in the general case of a sequence of standard and planar CG steps. We remark that
the algorithm in Table 2 performs as many iterations as the FLR algorithm (i.e. it can
possibly perform h < n steps). Thus, according with Sect. 3, the negative curvature
direction which satisfies (3.1) and (3.2) can be fruitfully approximately computed.
In particular, we denote by d

j
h the direction of negative curvature dj computed after

h ≤ n steps of the FLR algorithm. We give evidence in Sect. 4 that this approach is
effective.

Before going into the details of this scheme, we describe both variables and
parameters involved, in order to allow a straightforward consultation. Firstly, ob-
serve that since the approximated negative curvature direction d

j
h , h ≤ n, satisfies

98 G. Fasano, M. Roma

Table 2 The iterative computation of the approximate negative curvature direction d
j
h

, after h ≤ n itera-
tions of the FLR algorithm. The logical variable CR (defined in the FLR algorithm) is used for the stopping
criterion

Step 1: k = 1, dA = dcurrA = 0, dB = dcurrB = 0, rnormA = 0, λmA = λmB = 0,

CR = false.

Step k: If CR = true then go to the Final step.

If |σk | ≥ εk‖pk‖2 then

if 1/ak ≥ λmA then

dcurrA = dcurrA + rk
‖rk‖2 , k = k + 1, go to Step k

else

dcurrA = dcurrA + rk
‖rk‖2 , dA = dcurrA , λmA = 1/αk

rnormA = ‖rk‖, k = k + 1, go to Step k

endif

if 1/ak ≥ λmB then

dcurrB = dcurrB + rk
‖rk‖2 , k = k + 1, go to Step k

else

dcurrB = 0, dB = 0, λmB = 0, k = k + 1, go to Step k

endif

Else

compute λk, λk+1, ωk and ωk+1. Set λ = min{λk,λk+1}
if λ ≥ λmA then

dcurrA = (
dcurrA + rk

‖rk‖2

)
�

(k)
2

‖rk‖
‖rk+2‖ + rk+1‖rk+1‖‖rk+2‖�

(k)
1

k = k + 2, go to Step k

else

W = dcurrA
dcurrA = (

dcurrA + rk
‖rk‖2

)‖rk‖�(k)
2 + rk+1‖rk+1‖�

(k)
1

dA = dcurrA , rnormA = 1, λmA = λ, k = k + 2, go to Step k

endif

if λ ≥ λmB then

dcurrB = (
dcurrB + rk

‖rk‖2

)
�

(k)
2

‖rk‖
‖rk+2‖ + rk+1‖rk+1‖‖rk+2‖�

(k)
1

k = k + 2, go to Step k

else

dcurrB = (
W + rk

‖rk‖2

)‖rk‖�(k)
2 + rk+1‖rk+1‖�

(k)
1

dB = dcurrB , λmB = λ, k = k + 2, go to Step k.

endif

Endif

Final step:

If λmA < λmB then

d
j
h

= rnormAdA
Else

d
j
h

= dB
Endif

If gT d
j
h

> 0 then d
j
h

= −d
j
h
.

Iterative computation of negative curvature directions 99

d
j
h = ∑h

i=1 ȳi ri/‖ri‖, at each step of the FLR algorithm we refine the calculation

of d
j
h , by adding a new term. The latter result is iteratively achieved in the scheme

of Table 2 by updating contemporaneously the information referred to a couple of
different scenarios (A and B).

The index m in Sects. 3.1 and 3.2 corresponds either to the standard CG step mA
or the planar CG step mB . Thus, in the scenario with subscript A we store information
related to the best standard CG step, performed by the FLR algorithm up to the current
step. In the scenario with subscript B we store the information related to the best
planar CG step, performed by the FLR algorithm up to the current step. Moreover,
each step of the FLR algorithm may affect both scenarios, so that we need to store
a pair of vectors for each scenarios. As regards unknowns and parameters we have:

• k is the index of the current iteration of the FLR algorithm;
• d

j
h is the negative curvature direction computed after h ≤ n iterations of the FLR

algorithm;
• rnormA is a scalar which contains the norm ‖rm‖ where m is defined above;
• dA, dB , dcurrA , dcurrB are four n real vectors with the following role:

– rnormAdA and dB represent the best negative curvature directions, in the respec-
tive scenarios, detected up to the current Step k,

– dcurrA and dcurrB contain the current information which will be possibly used to
update respectively dA and dB;

• λmA and λmB contain the best current approximation of the least negative eigen-
value of the matrix A, respectively in scenario A and scenario B. Alternatively
λmA and λmB contain the current least negative eigenvalue of respectively 1 × 1
and 2 × 2 diagonal blocks of matrix Bn in (3.13);

• {rk}, {pk}, {εk}, {ak} are defined in the FLR algorithm;
• g is defined as g = −r1, and is used in the Final step to ensure that d

j
h is of descent

(in an optimization framework where As = b is the Newton equation);
• the sequences {�(k)

1 } and {�(k)
2 } are defined in (3.17);

• the sequences {�(k)
1 } and {�(k)

2 } are defined in (3.18);
• the real scalars λm, λm+1, ωm, ωm+1 are defined in (2) of the previous section;
• W is an n real working vector;
• CR is the logical variable introduced in Table 1, to address the stopping condition.

Thus, it is accordingly used in Table 2.

Observe that at Step k, either the quantity 1/ak (eigenvalue of the current 1×1 block)
or λ (the least eigenvalue of the current 2 × 2 block) is tested. In particular, the latter
quantities are compared with the current least negative eigenvalues λmA and λmB in
both scenarios. In case 1/ak and λ are larger than λmA and λmB , then only vectors
dcurrA and dcurrB are updated. On the contrary, if 1/ak or λ improve respectively λmA
or λmB , then also λmA or λmB will be updated, along with dA or dB .

Finally, observing the iterative procedure in the scheme of Table 2, we remark that
at most 4 vectors (dA, dB , dcurrA , dcurrB), additional with respect to the ones required

by the FLR algorithm, need to be stored for computing d
j
h .

100 G. Fasano, M. Roma

4 Preliminary numerical experience

In this section we aim at preliminarily assessing both the reliability and the effective-
ness of the approach proposed in this paper to compute negative curvature directions.
On this guideline we applied the algorithm proposed in Table 1 to solve:

(a) “stand alone” indefinite linear systems;
(b) linear systems arising in nonconvex unconstrained optimization.

As regards (a), the algorithm in Table 1 is experienced for solving a sequence
of symmetric indefinite linear systems of 500 unknowns, in order to verify if in
practice condition (3.11) is met. In other words, we give evidence that few itera-
tions (
n) suffice to obtain a satisfactory negative curvature direction. In partic-
ular different values of the condition number (cond) are considered for each lin-
ear system in Table 3. The latter choice is evidently motivated by the well known
strong dependency of the CG-type methods from cond [13]. In particular the values
cond = exp(α), α = 2,4,6,8,10, were considered. Furthermore, the stopping crite-
rion adopted at Step k of the FLR algorithm is ‖rk+1‖ ≤ 10−8‖r1‖, so that in Table 3
we can observe that the stopping criterion was met within 500 iterations only for
cond = exp(2) ∼= 7.39.

As regards the other acronyms in Table 3, n represents the number of unknowns,
CG_it is the number of iterations which are necessary to meet the stopping criterion.
CG_it gives an average result over 10 randomly generated runs with n and cond
fixed. Then, ‖r500‖/‖r1‖ is the ratio between the norm of the residual computed at
step 500 and the initial residual r1. Finally, with κ2

LRay(dk/‖dk‖) we indicate the
quantity (see relation (3.11))

[
κ(L̃k)

]2 [(Rkȳ)T A(Rkȳ)]
‖Rkȳ‖2

, k ≤ n,

computed after k = 50,100, . . . ,450 iterations. Observe that the results in Table 3
aim at giving evidence that (3.11) holds even in case k
 n in the FLR algorithm. In
particular, the Table 3 confirms that (3.11) is largely satisfied, provided that at least
one negative curvature direction was detected. We can see that the latter condition
always occurs even after a small fraction of n iterations.

As regards (b), in order to assess if the iterative computation of negative curvature
directions described in the previous sections is reliable within optimization frame-
works, we performed a preliminary numerical study. We embedded the new com-
putational scheme in the truncated Newton method for unconstrained optimization
proposed in [19]. For the sake of brevity, we refer to [19] and [20] for a description of
the method. We only recall that at the current iterate xj of this method, a pair of direc-
tions is computed—a Newton-type direction sj and a direction of negative curvature
dj —and the new point is computed by means of a curvilinear search along the path
x(α) = xj + α2sj + αdj . Convergence towards stationary points where the Hessian
matrix is positive semidefinite is guaranteed by a suitable assumption on the nega-
tive curvature direction (which is slightly weaker than Condition A stated in Sect. 3).
In [19] both the search directions are computed by using a Lanczos based iterative
truncated scheme. In particular, in determining the negative curvature direction, it is

Iterative computation of negative curvature directions 101

Table 3 Relation (3.11) is tested on different symmetric indefinite linear systems: the condition λmin >

κ2
L

Ray(dk/‖dk‖) is always fulfilled

n CG_it ‖r500‖/‖r1‖ cond k λmin κ2
L

Ray
(dk‖dk‖

)

500 105.7 0.795E−08 0.739E+01 50 −0.739E+01 −0.517E+10

100 −0.983E+09

500 510.9 0.918E−06 0.546E+02 50 −0.546E+02 −0.515E+13

100 −0.300E+13

150 −0.297E+12

200 −0.297E+12

250 −0.420E+12

300 −0.419E+12

350 −0.419E+12

400 −0.419E+12

450 −0.931E+11

500 1010.9 0.161E−01 0.403E+03 50 −0.403E+03 −0.745E+15

100 −0.985E+14

150 −0.165E+13

200 −0.164E+13

250 −0.175E+13

300 −0.935E+12

350 −0.927E+12

400 −0.923E+12

450 −0.562E+12

500 1510.9 0.471E−01 0.298E+04 50 −0.298E+04 −0.312E+16

100 −0.247E+16

150 −0.856E+15

200 −0.272E+14

250 −0.236E+14

300 −0.224E+14

350 −0.202E+14

400 −0.201E+14

450 −0.198E+14

500 2010.9 0.957E−01 0.220E+05 50 −0.220E+05 −0.405E+18

100 −0.145E+17

150 −0.129E+17

200 −0.951E+14

250 −0.897E+14

300 −0.884E+14

350 −0.861E+14

400 −0.861E+14

450 −0.792E+14

102 G. Fasano, M. Roma

required to store n Lanczos vectors to ensure the convergence to second order critical
points. Actually, due to the requirement of limited storage room, only a (fixed) small
number of such vectors (say 50) is stored in practice.

We considered the monotone version (MonNC) of the method proposed in [19]
where we replaced the computation of the negative curvature direction with the it-
erative scheme proposed in Table 2. Therefore the resulting algorithm uses substan-
tially the same Newton-type direction as in the MonNC algorithm, and differs from
MonNC only in the determination of the negative curvature direction. This is moti-
vated by the need to assess only the new iterative scheme for computing the direc-
tion of negative curvature, the computation of the Newton direction being equal (of
course, a more realistic algorithm could be considered, which uses the same itera-
tive scheme for computing both the search directions). As regards all the parameters,
we adopt the standard values reported in [19], while as termination criterion we use
‖∇f (xj)‖ ≤ 10−5 max{1,‖xj‖}.

The large scale unconstrained problems from the CUTEr collection [16] are used
as test problems. We compare the results obtained by the original (Lanczos based)
MonNC truncated algorithm and the one which uses the new iterative scheme (we
remark that for each outer iteration of the truncated scheme, both the algorithms are
forced to perform the same number of inner iterations). In Table 4, we report the re-

Table 4 Comparison on nonconvex large scale problems, between the Lanczos based iterative scheme
(MonNC [19]), and a Truncated Newton method which uses the algorithm in Table 1

Problem n Lanczos-based scheme New iterative scheme

it/ng nf it/ng nf

BRYBND 10000 26 42 25 34

COSINE 10000 10 15 9 13

CURLY10 10000 3034 3042 2963 2971

DIXMAANE 1500 15 17 15 17

DIXMAANE 3000 16 18 16 18

DIXMAANG 3000 15 16 15 16

DIXMAANH 1500 16 17 16 17

DIXMAANI 1500 24 25 24 25

DIXMAANI 3000 27 28 27 28

FLETCHCR 1000 1604 2368 1613 2417

GENROSE 1000 660 1194 679 1151

GENROSE 10000 6782 12380 6916 11693

MSQRTALS 1024 49 50 46 47

MSQRTBLS 1024 45 46 45 46

SINQUAD 1000 17 24 19 24

SINQUAD 10000 27 35 31 39

SPMSRTLS 1000 15 16 15 16

SPMSRTLS 10000 18 19 18 19

TOINTGSS 1000 5 6 6 7

TOINTGSS 10000 5 6 5 6

WOODS 1000 65 95 56 71

WOODS 10000 109 123 107 129

Iterative computation of negative curvature directions 103

sults obtained for all the problems coherently solved by both the algorithms, where
convergence to the same point is achieved and negative curvature directions were en-
countered (if negative curvature directions are not encountered, the two algorithms
coincide). The results are reported in terms of number of iterations and gradient eval-
uations (it/ng), number of function evaluations (nf). We highlight that this preliminary
test does not aim at assessing the performance of two different algorithms; rather it
tests the new approach in computing negative curvature directions in optimization
frameworks. From these results it can be observed that the adoption of the iterative
scheme based on the FLR algorithm provides “good” directions of negative curvature.
In fact, our proposal is effective and, in some cases, even better than the Lanczos
based scheme MonNC. Moreover, unlike algorithm MonNC, we recall that the new
scheme does not require to store any matrix, in order to guarantee the convergence to
second order critical points.

5 Conclusions

In this paper we introduce a new approach for iteratively computing directions of neg-
ative curvature, for an indefinite matrix. The latter result can be used within different
contexts of large scale optimization. The aim of this work is to provide a general
theoretical framework to ensure the convergence to second order critical points, in
solving optimization problems. The resulting method allows to compute adequate
negative curvature directions, avoiding any matrix storage in large scale settings. We
performed a preliminary numerical experience where our proposal was effective.

However, to better evaluate the efficiency of the proposed method, an extensive nu-
merical testing is certainly needed, and this deserves a separate work. In fact, a wide
investigation is necessary on different optimization contexts, in order to assess the
capability of our approach to take advantage from the nonconvexity of the objective
function.

Acknowledgement This work was partially supported by the Ministero delle Infrastrutture e dei
Trasporti in the framework of the research plan “Programma di Ricerca sulla Sicurezza,” Decreto
17/04/2003 G.U. n. 123 del 29/05/2003. This work was also partially supported by Research Project FIRB
RBNE01WBBB on “Large Scale Nonlinear Optimization,” Rome, Italy.

We would like to thank the anonymous referee for the constructive comments and suggestions which
led to improve the paper.

References

1. Bank, R., Chan, T.: A composite step bi-conjugate gradient algorithm for nonsymmetric linear sys-
tems. Numer. Algorithms 7, 1–16 (1994)

2. Boman, E., Murray, W.: An iterative approach to computing a direction of negative curvature. Pre-
sented at Copper Mountain conference, March 1998. Available at the url: www-sccm.stanford.edu/
students/boman/papers.shtml

3. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS–SIAM Series on Optimization.
SIAM, Philadelphia (2000)

4. Cullum, J., Willoughby, R.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations.
Birkhäuser, Boston (1985)

5. Dixon, L., Ducksbury, P., Singh, P.: A new three-term conjugate gradient method. Technical report
130, Numerical Optimization Centre, Hatfield Polytechnic, Hatfield, Hertfordshire, UK (1985)

104 G. Fasano, M. Roma

6. Facchinei, F., Lucidi, S.: Convergence to second order stationary points in inequality constrained
optimization. Math. Oper. Res. 93, 746–766 (1998)

7. Fasano, G.: Use of conjugate directions inside Newton-type algorithms for large scale unconstrained
optimization. PhD thesis, Università di Roma “La Sapienza”, Roma, Italy (2001)

8. Fasano, G.: Lanczos-conjugate gradient method and pseudoinverse computation, on indefinite and
singular systems. J. Optim. Theory Appl. DOI 10.1007/s10957-006-91193

9. Fasano, G.: Planar-conjugate gradient algorithm for large-scale unconstrained optimization, part 1:
theory. J. Optim. Theory Appl. 125, 523–541 (2005)

10. Fasano, G.: Planar-conjugate gradient algorithm for large-scale unconstrained optimization, part 2:
application. J. Optim. Theory Appl. 125, 543–558 (2005)

11. Fasano, G., Roma, M.: Iterative computation of negative curvature directions in large scale optimiza-
tion: theory and preliminary numerical results, Technical report 12-05, Dipartimento di Informatica
e Sistemistica “A. Ruberti”, Roma, Italy (2005)

12. Ferris, M., Lucidi, S., Roma, M.: Nonmonotone curvilinear linesearch methods for unconstrained
optimization. Comput. Optim. Appl. 6, 117–136 (1996)

13. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore
(1996).

14. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the Lanc-
zos method. SIAM J. Optim. 9, 504–525 (1999)

15. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Exploiting negative curvature directions in linesearch
methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000)

16. Gould, N.I.M., Orban, D., Toint, P.: CUTEr (and SifDec), a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

17. Hestenes, M.: Conjugate Direction Methods in Optimization. Springer, New York (1980)
18. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithm, part 1. J. Optim. Theory Appl.

69, 129–137 (1991)
19. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated Newton meth-

ods in large scale unconstrained optimization. SIAM J. Optim. 8, 916–939 (1998)
20. Lucidi, S., Roma, M.: Numerical experiences with new truncated Newton methods in large scale

unconstrained optimization. Comput. Optim. Appl. 7, 71–87 (1997)
21. McCormick, G.: A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13,

111–115 (1977)
22. Miele, A., Cantrell, J.: Study on a memory gradient method for the minimization of functions. J. Op-

tim. Theory Appl. 3, 459–470 (1969)
23. Moré, J., Sorensen, D.: On the use of directions of negative curvature in a modified Newton method.

Math. Program. 16, 1–20 (1979)
24. Moré, J., Sorensen, D.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)
25. Nash, S.: A survey of truncated-Newton methods. J. Comput. Appl. Math. 124, 45–59 (2000)
26. Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer.

Anal. 12, 617–629 (1975)
27. Parlett, B.: The Symmetric Eigenvalue Problem. Prentice-Hall Series in Computational Mathematics.

Prentice-Hall, Englewood Cliffs (1980)
28. Shultz, G., Schnabel, R., Byrd, R.: A family of trust-region-based algorithms for unconstrained mini-

mization. SIAM J. Numer. Anal. 22, 47–67 (1985)
29. Stoer, J.: Solution of large linear systems of equations by conjugate gradient type methods. In:

Bachem A., Grötschel M., Korte B. (eds.) Mathematical Programming. The State of the Art, pp. 540–
565. Springer, Berlin/Heidelberg (1983)

30. Trefethen, L., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

http://dx.doi.org/10.1007/s10957-006-91193

	Iterative computation of negative curvature directions in large scale optimization
	Abstract
	Introduction
	Tridiagonalizations and current representations
	A planar-CG algorithm
	Tridiagonalizations and current representations via the FLR algorithm
	Relationship between the eigenvalues of matrices Th and A

	Iterative computation of negative curvature directions
	No planar CG steps are performed in the FLR algorithm
	Some planar CG steps are performed in the FLR algorithm
	Explicit scheme for computing the negative curvature direction

	Preliminary numerical experience
	Conclusions
	Acknowledgement

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

