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1. Introduction

We deal with the large scale unconstrained optimization problem

(1.1) min
x∈IRn

f(x)

where f : IRn −→ IR is a twice continuously differentiable function and n is

large. We assume that for a given x0 ∈ IRn the level set

Ω0 = {x ∈ IRn | f(x) ≤ f(x0)}

is compact. The huge number of real world applications which can be modelled

as a large scale optimization problem strongly motivates the growing interest

for the solution of such problems.

Among the iterative methods for large scale unconstrained optimization,

when the Hessian matrix is possibly dense, limited memory quasi–Newton

methods are often the methods of choice. As well known (see any textbook,

e.g. [11]), they generate a sequence {xk}, according to the following scheme

(1.2) xk+1 = xk + αkpk, k = 0, 1, . . . ,

with

pk = −Hk∇f(xk),

where Hk is an approximation of the inverse of the Hessian matrix ∇2f(xk)

and αk is a steplength. In particular, instead of computing Hk at each iteration

k, these methods update Hk in a simple manner, in order to obtain the new

approximation Hk+1 to be used in the next iteration. Moreover, instead of

storing full dense n× n approximations, they only save a few vectors of length

n, which allow to represent the approximations implicitly.

Among the quasi–Newton schemes, the L–BFGS method is usually consid-

ered one of the most efficient. It is well suited for large scale problems because

the amount of storage is limited and controlled by the user. This method is

based on the construction of the approximation of the inverse of the Hessian

matrix, by exploiting curvature information gained only from the most recent

iterations. The inverse of the Hessian matrix is updated at the k-th iteration

by the formula



4

(1.3) Hk+1 = V T
k HkVk + ρksks

T
k

where

ρk =
1

yTk sk
, Vk = I − ρkyks

T
k ,

and

(1.4) sk = xk+1 − xk = αkpk, yk = ∇f(xk+1)−∇f(xk).

Observe that Hk also satisfies relation

Hk = (V T
k−1 · · ·V

T
k−m)H0

k(Vk−m · · ·Vk−1)

+ ρk−m(V T
k−1 · · ·V

T
k−m+1)sk−msTk−m(Vk−m+1 · · ·Vk−1)

+ ρk−m+1(V
T
k−1 · · ·V

T
k−m+2)sk−m+1s

T
k−m+1(Vk−m+2 · · ·Vk−1)

+ · · ·

+ ρk−1sk−1s
T
k−1,

where m is the memory of the method and H0
k is an initial approximation of

the inverse of the Hessian matrix.

The well known reasons for the success of the L–BFGS method can be

summarized in the following two points: firstly, even when m is small, Hk+1 is

an effective approximation of the inverse of the Hessian matrix, secondly Hk+1

is the unique (positive definite) matrix which solves the problem

min
H

‖H −Hk‖F

s.t. H = HT

sk = Hyk,

where ‖ · ‖F is the Frobenius norm. Namely, Hk+1 is the positive definite ma-

trix “closest” to the current approximation Hk, satisfying the secant equation

sk = Hyk. However, L–BFGS method presents some drawbacks, including the

slow convergence on ill–conditioned problems, namely when the eigenvalues of
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the Hessian matrix are very spread. Moreover, on some applications, the per-

formances of L–BFGS method and the Nonlinear Conjugate Gradient method

are comparable.

In this paper we focus on the latter method: the Nonlinear Conjugate

Gradient method (NCG). As well known (see any textbook, e.g. [11]) it is a

natural extension to general functions of the linear Conjugate Gradient (CG)

method for quadratic functions. It generates a sequence {xk} according to

scheme (1.2), with

pk = −∇f(xk) + βkpk−1,

where βk is a suitable scalar. Different values of βk give rise to different algo-

rithms (see [8] for a survey). The most common are the Fletcher and Reeves

(FR), the Polak and Ribière (PR) and the Hestenes and Stiefel (HS) algorithms.

Although the NCG methods have been widely studied and are often very

efficient when solving large scale problems, a key point for increasing their effi-

ciency is the use of a preconditioning strategy, especially when solving difficult

ill–conditioned problems. Defining good preconditioners for NCG methods is

currently still considered a challenging research topic. On this guideline, this

work is devoted to investigate the use of quasi–Newton updates as precon-

ditioners. In particular, we want to propose preconditioners which possibly

inherit the effectiveness of the L–BFGS update. Indeed, here we build precon-

ditioners iteratively defined and based on quasi–Newton updates of the inverse

of the Hessian matrix. This represents an attempt to improve the efficiency

of the NCG method by conveying information collected from a quasi–Newton

method, in a Preconditioned Nonlinear Conjugate Gradient method (PNCG).

In particular, we study new symmetric low–rank updates of the inverse of the

Hessian matrix, in order to iteratively define preconditioners for PNCG.

It is worth to note that there exists a close connection between BFGS and

NCG [10], and on the other hand, NCG algorithms can be viewed as memoryless

quasi–Newton methods (see e.g., [13], [12], [11]).

The idea of using a quasi–Newton update as a preconditioner within NCG

algorithms is not new. In [2], when storage is available, a preconditioner de-

fined by m quasi–Newton updates is used within NCG algorithm. In [1] a

scaled memoryless BFGS matrix is used as preconditioner in the framework
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of NCG. Moreover, an automatic preconditioning strategy based on a limited

memory quasi–Newton update for the linear CG is proposed in [9], within Hes-

sian free Newton methods, and is extended to the solution of a sequence of

linear systems.

In this paper, we propose two classes of parameters dependent precondi-

tioners. In particular, in the next section we briefly recall a scheme of a general

PNCG method. In Section 3 a new symmetric rank-2 update is introduced

and its theoretical properties are studied. Section 4 is devoted to describe a

new BFGS–like quasi–Newton update. Finally, in Section 5 the results of a

preliminary numerical experience are reported, showing a comparison between

one of our proposals and an L–BFGS–based preconditioner for PNCG.

2. Preconditioned Nonlinear Conjugate Gradient algorithm

In this section we report the scheme of a general Preconditioned Nonlinear

Conjugate Gradient (PNCG) algorithm (see e.g. [12]). In the PNCG scheme

Mk denotes the preconditioner at the iteration k.

Preconditioned Nonlinear Conjugate Gradient (PNCG) algorithm

Step 1: Data x1 ∈ IRn. Set p1 = −M1∇f(x1) and k = 1.

Step 2: Compute the steplength αk by using a linesearch procedure which

guarantees the Wolfe conditions to be satisfied, and set

xk+1 = xk + αkpk.

Step 3: If ‖∇f(xk+1)‖ = 0 then stop, else compute βk+1 and

(2.1) pk+1 = −Mk+1∇f(xk+1) + βk+1pk,

set k = k + 1 and go to Step 2.
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By setting Mk = I for any k, the popular (unpreconditioned) Nonlinear

Conjugate Gradient (NCG) method is obtained. The parameter βk+1 can be

chosen in a variety of ways. For PNCG algorithm the most recurrent choices

are the following:

βFR
k+1 =

∇f(xk+1)
TMk∇f(xk+1)

∇f(xk)T∇f(xk)
,(2.2)

βPR
k+1 =

[∇f(xk+1)−∇f(xk)]
T
Mk∇f(xk+1)

∇f(xk)TMk∇f(xk)
,(2.3)

βHS
k+1 =

[∇f(xk+1)−∇f(xk)]
T
Mk∇f(xk+1)

[∇f(xk+1)−∇f(xk)]
T
pk

.(2.4)

We recall that with respect to other gradient methods, a more accurate line-

search procedure is required to determine the steplength αk in a PNCG algo-

rithm. This is due to the presence of the term βk+1pk in (2.1). The latter fact

motivates the use of the (strong) Wolfe conditions to compute the steplength

αk, which also guarantee that sTk yk > 0 for any k.

As already said, preconditioning is applied for increasing the efficiency of

the NCG method. In this regard, we remark a noticeable difference between

linear CG and NCG. Whenever the linear CG is applied, the Hessian matrix

does not change during the iterations of the algorithm. On the contrary, when

NCG is applied to a nonlinear function, the Hessian matrix (possibly indefinite)

changes at each iteration.

3. A new Symmetric Rank-2 update

In this section we study a new quasi–Newton updating formula, by consid-

ering the properties of a parameter dependent symmetric rank-2 (SR2) update

of the inverse of the Hessian matrix. Suppose we generate after k iterations

the sequence of iterates {x1, . . . , xk+1}. Then our quasi–Newton update Hk+1,

which approximates [∇2f(x)]−1, satisfies the secant equation along all previous

directions; namely it results

Hk+1yj = sj , for all j ≤ k.
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Observe that the latter appealing property is satisfied by all the updates of the

Broyden class, provided that the linesearch adopted is exact (see e.g. [11]). We

would like to recover the motivation underlying the latter class of updates, and

by using rank-2 updates we would like to define a preconditioner for PNCG.

On this guideline, in order to build an approximate inverse of the Hessian

matrix, we consider the update

(3.1) H(γk+1, ωk+1) = H(γk, ωk) + ∆k, ∆k ∈ IRn×n, symmetric,

where the sequence {H(γk, ωk)} depends on the parameters γk, ωk and provides

our quasi-Newton updates of [∇2f(x)]−1.

It is first our purpose to propose the new update H(γk+1, ωk+1) such that:

(0) H(γk+1, ωk+1) is well-defined and nonsingular

(1) H(γk+1, ωk+1) can be iteratively updated

(2) H(γk+1, ωk+1) collects the information from the iterations 1, 2, . . . , k of a

NCG method

(3) H(γk+1, ωk+1) satisfies the secant equation at iterations j = 1, 2, . . . , k

(4) H(γk+1, ωk+1) either “tends to preserve” the inertia of the inverse of

∇2f(xk+1), in case f(x) is a general quadratic function or, by suitably

setting the two parameters, it can be used as a preconditioner for PNCG,

i.e. Mk = H(γk, ωk).

Observe that the Symmetric Rank-1 (SR1) quasi-Newton update (see Sec-

tion 6.2 in [11]) satisfies properties (1)-(4) but not the property (0), i.e. it

might be possibly not well–defined for a general nonlinear function. The latter

result follows from the fact that SR1 update provides only a rank-1 quasi-

Newton update, unlike BFGS and DFP. On the other hand, while BFGS and

DFP quasi-Newton formulae provide only positive definite updates, the SR1

formula is able to recover the inertia of the Hessian matrix, by generating pos-

sibly indefinite updates. Thus, now we want to study an SR2 quasi-Newton

update, which satisfies (0)–(4) and where one of the two newest dyads of the
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update is provided by information from the NCG method. To this aim, assum-

ing that Hk = H(γk, ωk) is given, we consider the relation (3.1) where we set

(see (1.4))

∆k = γkvkv
T
k + ωk

pkp
T
k

yTk pk
, γk, ωk ∈ IR, vk ∈ IRn,

and pk is generated at the k−th iteration of the (unpreconditioned) NCG

method. Thus, we will have the new update

(3.2) Hk+1 = Hk + γkvkv
T
k + ωk

pkp
T
k

yTk pk
, γk, ωk ∈ IR, vk ∈ IRn,

and in order to satisfy the secant equation Hk+1yk = sk the following equality

must hold

Hkyk + γk(v
T
k yk)vk + ωk

pkp
T
k

yTk pk
yk = sk,

that is

(3.3) γk(v
T
k yk)vk = sk −Hkyk − ωkpk.

Therefore it results

(3.4) vk = σk (sk −Hkyk − ωkpk)

for some scalar σk ∈ IR. By substituting the expression (3.4) of vk in (3.3) we

have

γkσ
2
k

[

yTk (sk −Hkyk − ωkpk)
]

(sk −Hkyk − ωkpk) = sk −Hkyk − ωkpk.

Thus, the following relation among the parameters γk, σk and ωk must hold

(3.5) γkσ
2
k =

1

sTk yk − yTk Hkyk − ωkpTk yk
.

Note that from the arbitrariness of γk, without loss of generality, we can set

σk ∈ {−1, 1}.

Now, in the next proposition we first consider the case of quadratic func-

tions, and prove that the update (3.2) satisfies the secant equation, along all

previous directions.
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Proposition 3.1. Assume that f is the quadratic function f(x) = 1

2
xTAx +

bTx, where A ∈ IRn×n is symmetric and b ∈ IRn. Suppose that k steps of the

(unpreconditioned) CG are performed, in order to detect the stationary point

(if any) of the function f , and that the vectors p1, . . . , pk are generated. Then,

the matrix Hk+1 in (3.2) satisfies the secant equations

(3.6) Hk+1yj = sj , j = 1, . . . , k,

provided that the coefficients γj , ωj , j = 1, . . . , k are computed such that

(3.7)

γj =
1

sTj yj − yTj Hjyj − ωjpTj yj
, j = 1, . . . , k,

ωj 6=
sTj yj − yTj Hjyj

pTj yj
, j = 1, . . . , k.

Proof – The proof proceeds by induction. Equations (3.6) hold for k = 1,

that is H2y1 = s1, as long as

s1 =

[

H1 + γ1σ
2
1(s1 −H1y1 − ω1p1)(s1 −H1y1 − ω1p1)

T + ω1

p1p
T
1

yT1 p1

]

y1,

or equivalently

s1 −H1y1 − ω1p1 = γ1(s
T
1 y1 − yT1 H1y1 − ω1p

T
1 y1) [s1 −H1y1 − ω1p1] ,

which is satisfied selecting γ1 and ω1 according with (3.7).

Now, suppose that the relations (3.6) hold for the index k − 1. To complete

the induction we need to prove that the relations (3.6) hold for the index k.

Firstly, note that Hk+1yk = sk holds. In fact

sk =

[

Hk + γkσ
2
k(sk −Hkyk − ωkpk)(sk −Hkyk − ωkpk)

T + ωk

pkp
T
k

yTk pk

]

yk

holds if and only if

sk −Hkyk − ωkpk = γk(s
T
k yk − yTk Hkyk − ωkp

T
k yk)(sk −Hkyk − ωkpk),

and the latter holds from (3.7) with j = k. Now, we have to prove that (3.6)

hold for any j < k. For j < k we have

Hk+1yj = Hkyj + γkσ
2
k(sk −Hkyk −ωkpk)(sk −Hkyk −ωkpk)

T yj +ωk

pTk yj
yTk pk

pk,
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where Hkyj = sj by the inductive hypothesis. Moreover,

(sk −Hkyk)
T yj = sTk yj − yTk Hkyj = sTk yj − yTk sj = sTk Asj − (Ask)

T sj = 0,

where the third equality holds since yj = Asj , for any j, for the quadratic

function f . Finally,

ωkp
T
k yj = ωkp

T
kAsj = ωkαjp

T
kApj = 0,

which follows from the conjugacy of the directions {p1, . . . , pk} generated by

the CG. Thus, (3.6) hold for any j ≤ k and the induction is complete.

As an immediate consequence of the previous proposition, we prove now

the finite termination property for a quadratic function, i.e. after at most n

steps, Hn+1 is the inverse of the Hessian of the quadratic function.

Corollary 3.1. Assume that f is the quadratic function f(x) = 1

2
xTAx+bTx,

where A ∈ IRn×n is symmetric and b ∈ IRn. Suppose that n steps of the

(unpreconditioned) CG are performed, in order to detect the stationary point

of the function f , and that the vectors p1, . . . , pn are generated. If (3.7) holds,

we have Hn+1 = A−1.

Proof – By applying Proposition 3.1, we have that (3.6) hold for k = n,

i.e.

Hn+1yj = sj , j = 1, . . . , n.

Since f is quadratic then yj = Asj , for any j, i.e.

Hn+1Asj = sj , j = 1, . . . , n.

Now, since sj = αjpj , j = 1, . . . , n, the conjugacy of the vectors {p1, . . . , pn}

implies that Hn+1 = A−1.

We highlight that, whenever k = n, Corollary 3.1 justifies the first part of

the statement (4) on page 8. Moreover, later on in the paper we show that

for k < n, the update matrix in (3.2) can be suitably modified to provide a

preconditioner.
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After analyzing the case of f(x) quadratic, we turn now to the general case

of a nonlinear twice continuously differentiable function. In particular, since we

are interested in using the matrix Hk+1 in (3.2) as a preconditioner, we need to

investigate if there exists a suitable setting of the parameters such that Hk+1

is positive definite, provided that (3.7) are satisfied. In the next proposition

we prove that if the parameter ωk is below a threshold value, then the matrix

Hk+1 is almost always positive definite.

Proposition 3.2. Let f be a nonlinear twice continuously differentiable func-

tion. Suppose that the (unpreconditioned) NCG method is used to minimize

the function f . Suppose that (3.7) is satisfied and

(3.8) 0 ≤ ωk <
sTk yk − yTk Hkyk

pTk yk
,

with

(3.9) yTk sk + yTk Hkyk ≤ 0 or yTk sk − yTk Hkyk ≥ 0,

where sj = αjpj . Then the matrix Hk+1 in (3.2) is positive definite.

Proof – By substituting (3.4) in (3.2), recalling that σ2
k = 1 we obtain

Hk+1 = γk

[

(αk − ωk)
2
pkp

T
k + (αk − ωk)

(

(Hkyk) p
T
k + pk (Hkyk)

T
)

+ (Hkyk) (Hkyk)
T
]

+ ωk

pkp
T
k

yTk pk
.

Hence Hk+1 can be rewritten in the form

(

pk
... Hkyk

)













γk(αk − ωk)
2 +

ωk

yTk pk
γk(αk − ωk)

γk(αk − ωk) γk





























pTk

. . .

(Hkyk)
T

















.

Therefore Hk+1 is positive definite if and only if the following inequalities hold:

(3.10)

γk(αk − ωk)
2 +

ωk

yTk pk
> 0

γk

(

γk(αk − ωk)
2 +

ωk

yTk pk

)

− γ2(αk − ωk)
2 > 0.
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Using the expression of γk in (3.5) and recalling that yTk sk > 0 (as a consequence

of the Wolfe conditions), (3.10) are equivalent to

(αk − ωk)
2yTk pk

(αk − ωk)pTk yk − yTk Hkyk
+ ωk > 0

ωk

(αk − ωk)pTk yk − yTk Hkyk
> 0.

After some computation we obtain that there exist values of the parameter ωk

for which the latter inequalities admit solutions, with only one exception. In

fact, they are satisfied for any value of ωk such that

0 ≤ ωk <
αkp

T
k yk − yTk Hkyk

pTk yk

but they do not admit solution in case

αky
T
k pk + yTk Hkyk > 0 and αky

T
k pk − yTk Hkyk < 0,

i.e. when (3.9) does not hold.

From Proposition 3.1 and Corollary 3.1, we could use the matrix Hk+1

as an approximate inverse of ∇2f(x). However, Proposition 3.2 evidences that

conditions (3.7) and (3.8) do not suffice to ensure Hk+1 positive definite. In fact,

whenever (3.9) occurs, additional safeguard is needed since Hk+1 is possibly

indefinite. Thus, the definition of Hk+1 should be possibly modified in order

to obtain positive definite updates.

4. A preconditioner using a BFGS–like low–rank quasi-Newton update

In this section we partially address the final remark of Section 3. Indeed, we

introduce a new class of preconditioners which are still iteratively constructed

by using information from the NCG iterations and, as in the case of BFGS

updates, they are always positive definite. On this purpose, the price we pay

with respect to (3.2), is that the secant equation is satisfied only at the current

iterate, and not necessarily along all the previous iterates.
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We draw our inspiration from [4], where a new preconditioner for Newton–

Krylov methods is described. In particular, in [4] the set of directions generated

by the Krylov subspace method is used to provide an approximate inverse

preconditioner, for the solution of Newton’s systems. On this guideline, observe

that if f(x) = 1

2
xTAx + bTx, where A is positive definite and b ∈ IRn, then

it is well known (see e.g. [6]) that the CG method may generate n conjugate

directions {pj} such that

(4.1) A−1 =

n
∑

j=1

pjp
T
j

pTj Apj
.

Now, in order to introduce a class of preconditioners for the NCG, in case of a

general twice continuosly differentiable function f , suppose we have performed

k iterations of the (unpreconditioned) NCG, so that the directions p1, . . . , pk

are generated. Let us consider the matrix Mk+1 defined by

(4.2) Mk+1 = τkCk + γkvkv
T
k + ωk

k
∑

j=k−m

pjp
T
j

pTj ∇
2f(xj)pj

,

where 0 ≤ m ≤ k, γk, ωk ≥ 0, τk > 0, Ck ∈ IRn×n is symmetric positive

definite and vk ∈ IRn. In order to use Mk+1 as a preconditioner and to update

its expression iteratively, we set τk = 1, Ck = H(τk, γk, ωk) (with H(τ0, γ0, ω0)

given) and rewrite (4.2) in the form

(4.3) H(τk+1, γk+1, ωk+1) = H(τk, γk, ωk)+γkvkv
T
k +ωk

k
∑

j=k−m

pjp
T
j

pTj ∇
2f(xj)pj

.

H(τk+1, γk+1, ωk+1) may be treated as a symmetric quasi–Newton update.

However, for simplicity, in the sequel we prefer to use the more general form

given by (4.2).

Observe that in the expression of Mk+1, vkv
T
k represents a rank-1 update

and from (4.1) the dyads pjp
T
j /p

T
j ∇

2f(xj)pj are aimed to build an approxi-

mate inverse. The integer m can be viewed as a “limited memory” parameter,

similarly to the L–BFGS method. Moreover, we can set the vector vk and the

parameters τk, γk, ωk such that the class of preconditioners Mk satisfies, for
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any k, the secant equation

(4.4) Mk+1yk = sk.

Indeed, from (4.4) we have

τkCkyk + γk(v
T
k yk)vk + ωk

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj = sk;

hence, assuming γk(v
T
k yk) 6= 0,

(4.5) vk = σk



sk − τkCkyk − ωk

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj



 ,

for some σk ∈ IR. Using (4.5) in (4.4) we have

γkσ
2
k



sTk yk − τky
T
k Ckyk − ωk

k
∑

j=k−m

(pTj yk)
2

pTj ∇
2f(xj)pj







sk − τkCkyk − ωk

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj



 =

sk − τkCkyk − ωk

k
∑

j=k−m

pTj yk

pTj ∇
2f(xj)pj

pj .

Thus, the following relation among the parameters γk, σk, τk and ωk has to be

satisfied

(4.6) γkσ
2
k =

1

−τkyTk Ckyk − ωk

k
∑

j=k−m

(pTj yk)
2

pTj ∇
2f(xj)pj

+ sTk yk

and without loss of generality we can set σk ∈ {+1,−1}. Then, observe that

unlike the update proposed in the previous section (namely (3.2)), the matrix

Mk+1 in (4.4) satisfies the secant equation only at the k-th iteration (even

for quadratic functions), and possibly not along all the previous iterations,

as proved in Proposition 3.1 for the update (3.2). As regards the positive
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definiteness of Mk+1, the Wolfe conditions used in the linesearch procedure for

computing the steplength αk ensure that sTk yk > 0, so that for τk > 0 and

ωk ≥ 0 sufficiently small in (4.6) the matrix Mk+1 is positive definite. Indeed,

suppose that ωk → 0, then Mk+1 ≈ τkCk + γkvkv
T
k . Now, since τk > 0 and

Ck is positive definite, by (4.6) for τk sufficiently small we have γk > 0, i.e. we

definitely have that Mk+1 is positive definite.

Finally, observe that the different choices for the parameters τk and ωk in

(4.6) provide a different scaling of the matrices Ck and

k
∑

j=k−m

pjp
T
j

pTj ∇
2f(xj)pj

,

in the preconditioners.

Now we note that the quantities pTj ∇
2f(xj)pj , j = 1, . . . , k, in the expres-

sion (4.2) of Mk+1 are in general unavailable. By considering that the Hessian

matrix is not constant at the points in the closed segment [xj , xj+1], then we

can use the Mean Value Theorem to estimate the average curvature of f along

the direction pj , that is

∫ 1

0

sTj ∇
2f [xj + β(xj+1 − xj)]sj dβ = sTj yj

and recalling that sj = αjpj, we can estimate the quantity pTj ∇
2f(xj)pj , in

the expression of Mk+1, by

pTj ∇
2f(xj)pj ≈

∫ 1

0

pTj ∇
2f [xj + β(xj+1 − xj)]pj dβ =

sTj yj

α2
j

=
pTj yj

αj

.

Observe that by the Wolfe conditions used in the linesearch procedure, the

latter quantity satisfies the condition

pTj yj

αj

> 0.

Moreover, in case f is the quadratic function f(x) = 1

2
xTAx+ bTx then

(4.7)

∫ 1

0

pTj ∇
2f [xj + β(xj+1 − xj)]pj dβ = pTj Apj ,

i.e. the left hand side of (4.7) may be regarded as a generalization (to the

general nonlinear case) of the quantity pTj ∇
2f(xj)pj .
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As regards the matrix Ck in (4.2), an obvious choice could be for any k

Ck = εkI, εk ∈ IR.

Furthermore, εk may be computed as the least squares solution of the equation

(εI)yk − sk = 0, i.e. εk solves

min
ε

‖(εI)yk − sk‖
2 .

Hence,

εk =
sTk yk
‖yk‖2

so that since sTk yk > 0 by the Wolfe conditions, the matrix

Ck =
sTk yk
‖yk‖2

I

is positive definite.

For the sake of clarity we report here the resulting expression of our class

of preconditioners (4.2):

(4.8) Mk+1 = τk
sTk yk
‖yk‖2

I + γkvkv
T
k + ωk

k
∑

j=k−m

sjs
T
j

yTj sj
,

where

vk = σk



sk − τk
sTk yk
‖yk‖2

yk − ωk

k
∑

j=k−m

sTj yk

yTj sj
sj



 , σk ∈ {−1, 1},

and

γkσ
2
k =

1

(1− τk)s
T
k yk − ωk

k
∑

j=k−m

(sTj yk)
2

yTj sj

.

We conclude this section by highlighting that, interestingly enough, simi-

larly to (4.3) we can construct a class of preconditioners based on DFP-like

quasi-Newton updates. Indeed, we can iteratively build matrices

B(τk+1, γk+1, ωk+1)
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approximating ∇2f(x) and not its inverse. Then, by the Sherman-Morrison-

Woodbury formula applied to B(τk+1, γk+1, ωk+1) we can compute a class of

preconditioners.

5. Preliminary numerical experiences

In order to investigate the reliability of the classes of preconditioners we have

introduced, we preliminarily performed a numerical testing for the use of the

preconditioners defined in (4.8). This choice is motivated by the fact that for

this class of preconditioners we can easily guarantee the positive definitiveness,

whereas in case of the class of preconditioners given by (3.2) an alternative

strategy must be proposed to guarantee the positive definiteness.

Therefore, we embedded the preconditioners (4.8) within the standard CG+

code [5]. We used the same linesearch and the same stopping criterion used

by default in CG+ code. Thus we refer to [5] for a complete description of all

the details. We tested both the Fletcher and Reeves (FR) and the Polak and

Ribiere (PR) versions of the PNCG method at page 6.

As regards the test problems, we selected all the large scale unconstrained

test problems in the CUTEr collection [7]. The dimension of the test problems

is between n = 1000 and n = 10000 (we considered 110 resulting problems).

The parameters of the preconditioner (4.8) have been chosen as follows: m = 4,

σk = 1 and

τk = ωk =
1

2
sTk yk

yTk Ckyk +

k
∑

j=k−m

(pTj yk)
2

pTj ∇
2f(xj)pj

for all k (this choice ensures that the denominator of (4.6) is equal to 1

2
sTk yk >

0). As preliminary investigation, we considered the results in terms of the

number of iterations and the number of function evaluations. We compared the

results obtained by (4.8), the unpreconditioned case, and the case where Mk

coincides with the L–BFGS update Hk+1 in (1.3). This comparison is reported

by using performance profiles [3]. For a fair comparison, we have excluded

in each profile all the test problems where the three algorithms converge to

different stationary points.



19

In particular, as regards the FR version, in Figure 1 we report the com-

parison among the three algorithms in terms of number of iterations. Figure 2

2 4 6 8 10 12 14
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Unprec_iter
Prec_iter
LBFGS_iter

Figure 1: Comparison of the FR algorithms in terms of number of iterations

reports the same plot with a different scale. In Figures 3 and 4 the comparison

among the three algorithms is reported in terms of number of function evalu-

ations. These profiles show that using the FR algorithm, the preconditioner

(4.8) tends to be preferable, both in terms of number of iterations and number

of function evaluations.

Now we turn to the PR version of the PNCG algorithm and, in Figure 5

we report the comparison among (4.8), the unpreconditioned algorithm and

the L–BFGS based preconditioner in terms of number of iterations. Figure 6

reports the same plot with a different scale.

In Figures 7 and 8 the comparison among the three algorithms is reported

in terms of number of function evaluations.

From the observation of these plots it is easy to ascertain that the situation

is reversed with respect to the FR version of the algorithms.
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Figure 2: Comparison of the FR algorithms in terms of number of iterations

(expanded)
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Figure 3: Comparison of the FR algorithms in terms of number of function

evaluations
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Figure 4: Comparison of the FR algorithms in terms of number of function

evaluations (expanded)
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Figure 5: Comparison of the PR algorithms in terms of number of iterations
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Figure 6: Comparison of the PR algorithms in terms of number of iterations

(expanded)
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Figure 7: Comparison of the PR algorithms in terms of number of function

evaluations
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Figure 8: Comparison of the PR algorithms in terms of number of function

evaluations (expanded)
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On the overall, even if these preliminary results do not allow us to draw

final conclusions, they show that the preconditioning strategies proposed may

be reliable and in same cases they are beneficial. In particular, we observe that

our proposals are cheaper than the L–BFGS based preconditioner. However,

observing the case of PR setting, since in (4.2) we convey only informations

from the current iterate, we guess that a more sophisticated choice of the matrix

τkCk is definitely needed, in order to preserve efficiency.

6. Conclusions and future works

In this paper we propose two new classes of quasi–Newton update, aiming

at using the update matrix as preconditioner within NCG method. In the first

proposal the satisfaction of the secant equations at each previous iteration is

ensured (in the quadratic case), but we can not ensure, in general, that the

resulting update is positive definite. In the latter cases, an alternative strategy

is needed.

In the second proposal the satisfaction of the secant equation only at the

current iteration is ensured but the resulting update is guaranteed to be pos-

itive definite. We numerically tested the latter approach both with the un-

constrained case and L–BFGS based preconditioning approach. The results

obtained, thought preliminary, showed that it may be promising in some cases,

even if non–carefully selected settings of the parameters are chosen.
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