
INSEAN

National Research Center for Ships

and Marine Systems

INSEAN Technical Report N. 2007-002

On the iterative computation of a `2-norm

scaling based preconditioner

Giovanni Fasano and Massimo Roma

On the iterative computation of a `2-norm scaling based

preconditioner

Giovanni Fasano1,2 and Massimo Roma2

(1) Istituto Nazionale per Studi ed Esperienze di Architettura Navale INSEAN,
via di Vallerano, 139 – Roma, ITALY
E-mail: g.fasano@insean.it.

(2) Dipartimento di Informatica e Sistemistica “A. Ruberti”,
Sapienza Università di Roma , via Buonarroti, 12 – Roma, ITALY
E-mail: (fasano,roma)@dis.uniroma1.it.

Abstract

In this paper we consider the Krylov subspace based method introduced in [Fasano, 2005a], for
iteratively solving the symmetric and possibly indefinite linear system Ax = b. We emphasize the
application of the latter method to compute a diagonal preconditioner. The approach proposed
is based on the approximate computation of the `2-norm of the rows (columns) of the matrix A
and on its use to equilibrate the matrix A. The distinguishing feature of this approach is that
the computation of the `2-norm is performed without requiring the knowledge of the entries of
the matrix A but only using a routine which provides the product of A times a vector.

Keywords: Diagonal Preconditioning, Indefinite linear systems, Krylov subspace methods.

1 Introduction

In this paper we consider the solution of the symmetric (possibly) indefinite linear system

Ax = b (1.1)

where A is a n × n dense matrix and n is “large”. Krylov subspace methods are a broad class of
iterative methods widely used for the solution of the system (1.1). They include the well known
Conjugate Gradients (CG) method along with many variants. In particular, we focus on a mod-
ification of the standard Conjugate Gradient method, in order to cope also with the indefinite
case. The Krylov subspace method we adopt can be used both for solving the linear system and
for iteratively approximating the `2-norm of the rows (columns) of the linear system matrix. The
resulting approximation of the `2-norm is then used to generate a diagonal preconditioner. The
application of such a preconditioner corresponds to a scaling of the matrix, aiming at obtaining an
equilibrated system.

It is well known that equilibrating the matrix of a linear system is of great importance (see
e.g. [Duff et al., 1986, Schneider and Zenios, 1990, Ruiz, 2001]), especially when solving linear sys-
tems arising from real world applications, when the entries of the matrix may even vary of many

1

orders of magnitude and the eigenvalues may be very spread. In general, to balance the ma-
trix to have an equilibrated system is a difficult and computationally heavy task. Some algorithms
have been proposed for equilibrating matrices in a specific norm (see e.g. [Bunch, 1971, Ruiz, 2001,
Parlett and Landis, 1982]). Moreover, some optimality properties have been proved for the `p-norm
scaling, equilibrating the rows or the columns of a matrix for minimizing the condition number (see
e.g. Section 7.3 of [Higham, 2002]). On the basis of these properties, an optimal diagonal scaling
is obtain by using the Jacobi preconditioner, which enables to minimize the condition number in
the `2-norm of the transformed system, with respect to all the diagonal preconditioners. Jacobi
preconditioner is simply defined by using as diagonal preconditioner the diagonal elements of the
matrix itself, but it is impracticable in the large scale setting whenever the actual entries of the
matrix are unknown.

Of course, diagonal preconditioning is a particular case of more general preconditioning tech-
niques. The literature on general preconditioning linear systems is very broad and we refer, e.g.
to [Greenbaum, 1997] for a survey. Here we focus on diagonal preconditioners since they enjoy the
following good features:

• it is possible to construct a diagonal preconditioner without requiring the knowledge of the
entries of the matrix A but only by means of a routine, which provides us with the matrix–
vector product of the matrix A times a vector. This is a key point since this routine is already
available in any implementation of a CG type algorithm, and it is usually the only available
information on A;

• even if they carry out a simple scaling, they enable to greatly reduce the condition number
of the matrix and they do not destroy the possible sparsity of the matrix;

• they require a minimal additional work to be implemented.

As far as the authors are aware, very few proposals satisfying these requirements exist. Recently,
in [Roma, 2005] a diagonal preconditioner which satisfies these requirements has been proposed.
It is based on the approximate `1-norm scaling of the columns vectors and it is proved to be
successful in the framework of truncated Newton methods for large scale unconstrained opti-
mization. Other proposals base on diagonal scaling exist (see e.g. [Liu and Nocedal, 1989] and
[Barlow and Toraldo, 1995] in the context of nonlinear optimization). Usually a preconditioning
strategy requires the knowledge of the system matrix, therefore it often results impracticable in the
large scale setting.

In this paper we concentrate on the `2-norm scaling and we show how it is possible to ap-
proximate compute it by means of a particular Krylov subspace method. The paper is orga-
nized as follows: in Section 2 we briefly recall the algorithm FLR which is the Krylov subspace
methods we adopt, along with some useful features. In Section 3 we describe its use for ob-
taining a tridiagonal decomposition of the system matrix. In Section 4 we describe the approxi-
mate computation of the `2-norm which is at the basis of our preconditioner. We will denote by
Kh(A, b) = span{b, Ab, . . . , Ah−1b} the h-dimensional Krylov subspace.

2 The CG type algorithm FLR

The Krylov subspace method we use in this paper is the CG type method FLR introduced in
[Fasano, 2005a]. It belongs to the class of Krylov subspace methods and, unlike the Conju-
gate Gradient, it copes with the indefinite case too. A complete scheme of the algorithm FLR
is reported in Table 2.1. It is a “planar”–CG algorithm and is a modification of the stan-

2

Algorithm FLR

Step 1 : k = 1, x1 = 0, r1 = b. If r1 = 0 then STOP,
else compute p1 = r1.

Step k : Compute σk = pT
k Apk.

If | σk | ≥ εk‖pk‖2 then go to Step kA else go to Step kB

– Step kA (standard CG step) :

Set xk+1 = xk + akpk, rk+1 = rk − akApk , where ak =
rT
k pk

σk
=
‖rk‖2

σk
.

If rk+1 = 0 then STOP

else compute pk+1 = rk+1 + βkpk with βk =
−pT

k Ark+1

σk
=
‖rk+1‖2

‖rk‖2
.

Set k = k + 1 and go to Step k.

– Step kB (planar CG step) :
If k = 1 then compute the vector qk = Apk,
else compute the vector

qk =





Apk + bk−1pk−1, if the previous step is Step (k − 1)A

Apk +
b̂k−2

∆k−2
(σk−2qk−2 − δk−2pk−2) , if the previous step is Step (k − 2)B

where bk−1 = −(Apk−1)T Apk/σk−1 and b̂k−2 = −(Aqk−2)T Apk.

Compute ck = rT
k pk, δk = pT

k Aqk, ek = qT
k Aqk, ∆k = σkek − δ2

k

and ĉk = (ckek − δkq
T
k rk)/∆k, σ̂k = (σkq

T
k rk − δkck)/∆k.

Set xk+2 = xk + ĉkpk + σ̂kqk , rk+2 = rk − ĉkApk − σ̂kAqk.

If rk+2 = 0 then STOP

else compute pk+2 = rk+2 +
β̂k

∆k
(σkqk − δkpk) with β̂k = −qT

k Ark+2.

Set k = k + 2 and go to Step k.

Table 2.1: The Planar CG method FLR to solve the linear system Ax = b.

3

dard CG algorithm [Hestenes, 1980]. Further details on the FLR algorithm can be found in
[Fasano, 2005a, Fasano, 2005b]; here we simply consider some useful results.

First observe that as long as at Step k the planar CG Step kB is not performed, the FLR
algorithm reduces to the standard CG and hence, at Step kA the algorithm detects the solution
of (1.1) along the conjugate direction pk. On the contrary, if a pivot breakdown occurs at Step k
(i.e. pT

k Apk ≈ 0), the FLR algorithm generates another direction at Step kB (namely qk). Then, it
performs a search for the system solution on the 2-dimensional linear manifold xk + span{pk, qk},
and generates the new point xk+2. In addition it can be easily proved (see [Fasano, 2005a]) that,
if the indefinite matrix A is nonsingular and at Step k we have rk 6= 0, then the FLR algorithm
can always perform either Step kA or Step kB. As concerns the assessment of the parameter εk at
the Step k, some proposals where considered in [Fasano, 2006, Fasano and Roma, 2005], in order
to avoid possible instabilities.

3 Tridiagonalization via the FLR algorithm

In this section we will show how to obtain a tridiagonal decomposition of the system matrix A via
the FLR algorithm, which will be at the basis of the construction of the preconditioner. In particular,
we will describe how, under very mild assumptions described in [Fasano, 2005a], after h ≤ n steps,
the FLR algorithm provides h orthogonal vectors r1, . . . , rh, so that, if ri 6= 0, i = 1, . . . , h and
rh+1 = 0, the relation

ARh = RhTh, h ≤ n, (3.1)

holds with Rh ≡
(

r1
‖r1‖ · · · rh

‖rh‖
)
. Moreover, since A is nonsingular, Th is a tridiagonal irreducible

matrix. Furthermore, if rh+1 6= 0 the FLR algorithm provides the relation

ARh = RhTh + ρh+1 rh+1e
T
h , for some ρh+1 6= 0, (3.2)

in place of relation (3.1), that is, the matrix equality (3.2) is obtained from (3.1) with the additional
rank–one update ρh+1rh+1e

T
h . Finally, the orthogonality of the vectors r1, . . . , rh+1 and relation

(3.1) yield
Th = RT

h ARh. (3.3)

When h = n, Rh is an orthogonal matrix and (3.3) represents a factorization of matrix A into a
tridiagonal form. Furthermore, it is possible to define the unit lower tridiagonal matrix Lh ∈ IRh×h,
and the nonsingular 2× 2 block diagonal matrix Bh ∈ IRh×h, such that

Th = LhBhLT
h . (3.4)

The aim of this paper is to use relations (3.1)-(3.4), computed via the Krylov subspace method
FLR, in order to determine a preconditioner for solving indefinite linear systems.

We will show in the remainder of this section that the entries of the matrix Lh and Bh have
very simple expressions, in terms of the coefficients of the FLR algorithm.

Let us consider the Algorithm FLR at a generic Step k and let us introduce the following notation
[Fasano and Roma, 2005]: if at Step k of the FLR algorithm the condition |pT

k Apk| ≥ εk‖pk‖2 is
satisfied, then we set wk = pk (standard CG step); otherwise we set wk = pk and wk+1 = qk

(planar CG step). According with the latter positions, the sequence {wi} represents the sequence
of directions generated by the Algorith FLR which contains, at most, pairs of consecutive non–
conjugate directions.

4

Similarly, we consider the sequence {ri} of the residuals generated by the algorithm FLR up to
Step k. However, in the planar CG Step kB we observe that two directions (wk and wk+1) and only
one residual rk are generated. Nevertheless, if the Step k is the planar Step kB, we can introduce
a “dummy” residual rk+1, which completes the sequence of orthogonal vectors {r1, . . . , rk, rk+1}
[Bank and Chan, 1994, Fasano, 2001]. We can soon realize [Fasano, 2001] that the possible choices
for rk+1 are:

rk+1 = ± [α̂krk + (1 + α̂k) sgn(σk)Apk] , α̂k = − |σk|
‖rk‖2 + |σk| , (3.5)

which satisfy the conditions rk+1 ∈ Kk(A, r1) and rk+1 6∈ Kk−1(A, r1). Also observe that the
coefficient α̂k in (3.5) is computed by imposing the orthogonality condition rT

k+1pk = rT
k+1rk = 0.

Moreover, from (3.5) and Theorem 2.1 in [Fasano, 2005a], it can be readily seen that the dummy
residual rk+1 satisfies also the required orthogonality properties

rT
k+1ri = 0, i ≤ k, and rT

i rk+1 = 0, i > k + 1.

Now, suppose that the FLR algorithm performs up to step h and w.l.o.g. the only one planar
CG step is Step kB < h. Let us consider the matrices

Rh =
(

r1

‖r1‖ · · ·
rh

‖rh‖
)
∈ IRn×h, Ph =

(
w1

‖r1‖ · · ·
wh

‖rh‖
)
∈ IRn×h,

generated by the FLR Algorithm. Then, from (3.5) and the instructions at Step kB we obtain the
following result [Fasano and Roma, 2005].

Theorem 3.1 Consider the FLR algorithm where A is symmetric, indefinite and nonsingular.
Suppose εk > 0 and let ‖ri‖ 6= 0, i ≤ h. Assume the only one planar CG step performed by the FLR
Algorithm is Step kB < h. Then the following relations hold:

PhL̃T
h = Rh, (3.6)

APh =
(

Rh
...

rh+1

‖rh+1‖
) (

L̄h

l̄h+1,heT
h

)
Dh, h < n, (3.7)

ARh =
(

Rh
...

rh+1

‖rh+1‖
) (

Th

th+1,heT
h

)
, h < n, (3.8)

5

where

L̃h =




1

−√β1 ·

· 1

−√
βk−1 1 0

α̃1 α̃2

α̃3 α̃4 1

0 −√
βk+2 ·

· 1

−√
βh−1 1




(3.9)

with (βk = ‖rk+1‖2/‖rk‖2, βk+1 = ‖rk+2‖2/‖rk+1‖2)

α̃1 =
α̂k√
βk

, α̃2 = (1 + α̂k) sgn(σk),

α̃3 =
β̂kδk

∆k

√
βk+1βk

, α̃4 = − β̂k σk

∆k

√
βk+1

,
(3.10)

Dh =




1
a1

·
1

ak−1
0

1
ξk

1
ξk+1

0
1

ak+2

·
1
ah




, (3.11)

6

L̄h =




1

−√β1 ·

· 1 0

−√
βk−1 ᾱ1 ᾱ3

ᾱ2 ᾱ4

ᾱ5 1

0 −√
βk+2 ·

· 1

−√
βh−1 1




. (3.12)

The coefficients ξk and ξk+1 are independent arbitrary non-zero parameters, and ᾱi, i = 1, . . . , 5,
have the following values:

ᾱ1 =
σk

‖rk‖2
ξk, ᾱ2 =

√
βk

[
sgn(σk) +

σk

‖rk‖2

]
ξk,

ᾱ3 =
ξk+1√
βkσ̂k

[
1− σk

‖rk‖2
ĉk

]
, ᾱ4 = − ĉkξk+1

σ̂k(1 + α̂k) sgn(σk)
,

ᾱ5 = −ξk+1

σ̂k

√
βk+1.

(3.13)

Finally, Th is an irreducible symmetric tridiagonal matrix defined by
(

Th

0 · · · 0 th+1,h

)
=

(
L̄h

0 · · · 0 l̄h+1,h

)
DhL̃T

h , (3.14)

where l̄h+1,h and th+1,h are the element (h + 1, h) of the matrix L̄h+1 and Th+1, respectively. 2

Since both the matrices L̄h and L̃h are nonsingular from (3.1) we also have the following result (see
[Fasano and Roma, 2005]).

Proposition 3.2 Consider the FLR algorithm where εk > 0 and let ‖ri‖ 6= 0, i ≤ h. Suppose the
only one planar CG step performed by the FLR Algorithm is Step kB < h. Then, the nonsingular
matrix Qh ∈ IRh×h exists such that

L̄h = L̃hQh, (3.15)

7

where

Qh =




1
. . . 0

1
πk,k πk,k+1

πk+1,k πk+1,k+1

1

0
. . .

1




, (3.16)

with
πk,k = ᾱ1, πk,k+1 = ᾱ3,

πk+1,k =
ᾱ2 − ᾱ1α̃1

α̃2
, πk+1,k+1 =

ᾱ4 − ᾱ3α̃1

α̃2
.

(3.17)

2

Hence, by (3.14) and (3.15) we obtain

Th = L̃h(QhDh)L̃T
h = L̃hBhL̃T

h , (3.18)

and iterating (3.15) in case many planar CG steps are performed, it can be proved that the matrix
Bh is nonsingular, indefinite and 2× 2 block diagonal.

4 Iterative approximation of a `2-norm diagonal preconditioner

In the previous sections we have introduced the iterative scheme for solving the indefinite linear
system (1.1). Now we show how the same iterative method can be used in order to build a diagonal
preconditioner, based on the `2-norm scaling of the columns of matrix A.

Let us denote by a1, . . . , an the columns of the symmetric matrix A, that is

A = AT = (a1 · · · an), ai ∈ IRn, i = 1, . . . , n.

Our aim is to compute the `2-norm of the columns vectors ai, i.e. the quantities ‖ai‖2, i = 1, . . . , n,
in order to define the matrix

M = diag1≤i≤n {‖ai‖2} (4.1)

to be used as diagonal preconditioner. Hence, the preconditioned matrix is AM−1 and it is straight-
forward to see that to apply such a preconditioner is equivalent to scale the columns of the matrix
A. Moreover, note that the preconditioned matrix AM−1 is similar to the matrix M−1/2AM−1/2.

In order to compute the preconditioner M , first, observe that the diagonal elements of the
matrix A2 = AT A are given by ‖ai‖2

2, i.e.
[
A2

]
ii

= diag{‖ai‖2
2} i = 1, . . . , n.

Of course the matrix A2 is not available, but the decompositions of the matrix A obtained in the
previous section enable to compute an approximation of the diagonal elements A2, as showed in
the next proposition.

8

Proposition 4.1 Consider the FLR algorithm used to solve the linear system (1.1), where εk sat-
isfies the assumption (2.6) in [Fasano and Roma, 2005] for any k. Suppose to iterate the FLR
algorithm up to step h and that Kh(A, b) = Range(A). Then it results

A2 = Rh

[
L̄hDhdiag1≤i≤h {‖ri‖2}B−1

h diag1≤i≤h {‖ri‖2}DhL̄T
h

]2
RT

h . (4.2)

Proof: Let us denote by A+ the Moore–Penrose pseudoinverse of the matrix A. In [Fasano, 2006])
it has been proved that

[
A+ − (w1 · · ·wh)B−1

h (w1 · · ·wh)T
]
y = 0, for each y ∈ Kh(A, b),

where (w1 · · ·wh) are the directions generated by the algorithm FLR as defined in Section 3. Since

(w1 · · ·wh) = Ph diag1≤i≤h {‖ri‖2} and Ph = RhL̃−T
h ,

if Kh(A, b) = Range(A) we have

A+ = Ph

[
diag1≤i≤h {‖ri‖2}B−1

h diag1≤i≤h {‖ri‖2}
]
P T

h

= RhL̃−T
h

[
diag1≤i≤h {‖ri‖2}B−1

h diag1≤i≤h {‖ri‖2}
]
L̃−1

h RT
h .

Now, since A+ is also inner inverse of A, then A = AA+A, which yields

A = AA+A = ARhL̃−T
h

[
diag1≤i≤h {‖ri‖2}B−1

h diag1≤i≤h {‖ri‖2}
]
L̃−1

h RT
h A.

By using the conditions A = AT , ARh = RhTh and Th = T T
h we obtain

A = RhThL̃−T
h

[
diag1≤i≤h {‖ri‖2}B−1

h diag1≤i≤h {‖ri‖2}
]
L̃−1

h ThRT
h ,

so that, the relation Th = L̄hDhL̃T
h = L̃hDhL̄T

h yields

A2 = Rh

[
ThL̃−T

h diag1≤i≤h {‖ri‖2}B−1
h diag1≤i≤h {‖ri‖2} L̃−1

h Th

]2
RT

h

= Rh

[
L̄hDhdiag1≤i≤h {‖ri‖2}B−1

h diag1≤i≤h {‖ri‖2}DhL̄T
h

]2
RT

h .

This proposition shows that to compute an approximation of ‖ai‖2
2 = eT

i A2ei, we do not need to
explicitely compute A2. It suffices to apply the Krylov subspace method FLR and generate, as
by product, the matrices Rh, Th, Bh and L̄h. Of course, it must be taken into account that this
approximation has been obtained by using the pseudoinverse of the matrix A, restricted to the
Krylov subspace spanned up to the h-th iteration of the method.

Remark 4.1 Note that if no planar steps are performed by the FLR method, then the expression
of A2 reduces to

A2 = Rh

[
LhDhLT

h

]2
RT

h = RhT 2
hRT

h ,

which gives for the i-th diagonal entry
[
A2

]
ii

= (eT
i Rh)T 2

h (RT
h ei) = ‖ThRT

h ei‖2.

9

5 Conclusions and perspectives

In this paper we extend the use of a Krylov subspace method for iteratively generating a diagonal
preconditioner based on the `2-norm scaling, which should improve the efficiency of the iterative
method in solving a large symmetric indefinite linear system. This approach can be easily embedded
within a Newton–Krylov method, where a good efficiency is required to solve the Newton’s system
at each outer iteration of the method. A numerical investigation is certainly needed to assess the
behaviour of a preconditioning technique, which makes use of the preconditioner proposed in this
paper. It will be subject of a future work.

Acknowledgements

The author G.Fasano thanks the research programs “VISIR” and “SICUREZZA” for their support.
G.Fasano also thanks Patrizia Novello and Viola Balestri for their unaware suggestions.

References

[Bank and Chan, 1994] Bank, R. and Chan, T. (1994). A composite step bi-conjugate gradient
algorithm for nonsymmetric linear systems. Numerical Algorithms, 7, pag. 1–16.

[Barlow and Toraldo, 1995] Barlow, J. and Toraldo, G. (1995). The effect of diagonal scaling
on projected gradient methods for bound constrained quadratic programming problems. Opti-
mization Methods and Software, 5, pag. 235–245.

[Bunch, 1971] Bunch, J. (1971). Equilibration of symmetric matrices in the max-norm. Journal
of ACM, 18, pag. 566–572.

[Duff et al., 1986] Duff, I. S., Erisman, A. M., and Reid, J. K. (1986). Direct methods for
sparse matrices. Oxford University Press, London.

[Fasano, 2001] Fasano, G. (2001). Use of conjugate directions inside Newton–type algorithms for
large scale unconstrained optimization. PhD thesis, Università di Roma “La Sapienza”, Rome,
Italy.

[Fasano, 2005a] Fasano, G. (2005a). Planar–conjugate gradient algorithm for large–scale uncon-
strained optimization, Part 1: Theory. Journal of Optimization Theory and Applications, 125,
pag. 523–541.

[Fasano, 2005b] Fasano, G. (2005b). Planar–conjugate gradient algorithm for large–scale uncon-
strained optimization, Part 2: Application. Journal of Optimization Theory and Applications,
125, pag. 543–558.

[Fasano, 2006] Fasano, G. (2006). Lanczos-conjugate gradient method and pseudoinverse compu-
tation, in unconstrained optimization. Journal of Optimization Theory and Applications, 130(3).
(to appear).

[Fasano and Roma, 2005] Fasano, G. and Roma, M. (2005). Iterative computation of negative
curvature directions in large scale optimzation: theory and preliminary numerical results. Tech-
nical Report n. 12, Dipartimento di Informatica e Sistemistica. To appear on Computational
Optimization and Applications.

10

[Greenbaum, 1997] Greenbaum, A. (1997). Iterative methods for solving linear systems. SIAM,
Philadelphia, PA.

[Hestenes, 1980] Hestenes, M. (1980). Conjugate Direction Methods in Optimization. Springer
Verlag, New York.

[Higham, 2002] Higham, N. (2002). Accuracy and stability of numerical algorithms. SIAM,
Philadelphia, PA. Second edition.

[Liu and Nocedal, 1989] Liu, D. and Nocedal, J. (1989). On the limited memory BFGS method
for large scale optimization. Mathematical Programming, 45, pag. 503–528.

[Parlett and Landis, 1982] Parlett, B. and Landis, T. (1982). Methods for scaling to double
stochastic form. Linear Algebra and Applications, 48, pag. 53–79.

[Roma, 2005] Roma, M. (2005). A dynamic scaling based preconditioning for truncated newton
methods in large scale unconstrained optimization. Optimization Methods and Software, 20, pag.
693–713.

[Ruiz, 2001] Ruiz, D. (2001). A scaling algorithm to equilibrate both rows and columns norms
in matrices. Techical Report RAL–TR–2001–034, Computational Sciences and Engineering De-
partment, Rutherford Appleton Laboratory, Oxon, UK. Submitted to Linear Algebra and Ap-
plications.

[Schneider and Zenios, 1990] Schneider, M. H. and Zenios, S. (1990). A comparative study of
algorithms for matrix balancing. Operations Research, 38, pag. 439–455.

11

