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This work deals with the solution of large scale unconstrained optimization problems,
namely the problems of finding a local minimizer of a real valued function f : R

n →
R, when the number of variables n is large. The function f is assumed to be twice
continuously differentiable.

The growing interest in solving large scale problems is mainly due to the fact that
problems with larger and larger number of variables arise very frequently in many and
different contexts and real world applications (see Ref. 8 and Ref. 9).

We focus on Truncated Newton (TN) methods which represent one of the most powerful
and flexible tools for solving such problems, having a sound convergence theory and
showing great robustness and efficiency (see, e.g. Ref. 7). Notwithstanding these methods
have been widely studied and extensively tested, two key aspects can be still considered
open questions: how to handle the case with indefinite Hessian and how to formulate a
general effective preconditioning strategy.

As well known, at each iteration (outer iteration) of a TN algorithm, a Krylov subspace
method is usually used for determining the search direction dk, by approximately solving
the Newton system

(0.1) Hkd = −gk,

where Hk = ∇2f(xk) and gk = ∇f(xk).
The Conjugate Gradient (CG) is often the method of choice, though it is a suitable

solver of linear systems (0.1) in the case of positive definite Hessian. However, additional
safeguard is needed in dealing with nonconvex problems; in fact, CG iterations (inner

iterations) may break down before satisfying a termination criterion whenever the Hessian
matrix is not positive definite.

On the other hand, a suited preconditioning strategy is often mandatory in dealing
with large scale problems for efficiently solving the systems (0.1), thus obtaining a sig-
nificative reduction of the overall number of inner CG iterations. Most of the available
preconditioners are unsuited in this context, since they require the knowledge of the
actual elements of the Hessian matrix. On the contrary in the framework of TN meth-
ods, the entries of the matrix Hk are supposed to be unavailable. In fact, in the large
scale setting it is not possible either to store or handle any matrix, and the information
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on the Hessian are usually gained by means of a routine, which provides us with the
matrix–vector product of the Hessian matrix times a vector.

On the basis of these observations, in this work we propose the use of Conjugate
Gradient–based schemes as a tool for facing up to both the questions. In particular,
we consider new CG planar schemes recently proposed in Ref. 3 and Ref. 4, in order to
overcome, in a unified framework, a couple of drawbacks of the standards CG. We are
concerned with getting through the difficulties in dealing with the indefinite case and in
building a suited preconditioner, which does not rely on the explicit knowledge of the
Hessian matrix.

The planar CG algorithm we consider is a modification of the one proposed by Hestenes
(Ref. 5). We refer to Ref. 3 for a detailed description of the algorithm. We briefly recall
that, in respect to CG, the planar CG methods prevent from untimely stopping the
detection of a stationary point of the quadratic function q(d) = 1/2 dTHkd + gT

k
d. This

is achieved by generating mutually conjugate directions or planes. In particular, as long
as the matrix Hk is indefinite and nonsingular, by applying the standard CG, a sequence
of conjugate directions {pi} is generated and a pivot breakdown occurs at the i-th step if
pT

i
Hkpi =0. On the contrary, in the latter case, the planar CG methods generate another

direction qi and perform a search on the 2-dimensional manifold dk + span{pi, qi}.
Moreover, we point out that any CG scheme provides useful information, as a by-

product of the CG iterations, which can be exploited for constructing a preconditioner.
In particular, we aim at defining an adaptive preconditioning technique based on the
Krylov subspace information. The basic idea is to deflate the eigenvalues of the matrix
of the system (0.1) associated with the invariant subspace explored by the CG.

We recall that after h ≤ n steps of the CG method, h orthogonal vectors, say r1, . . . , rh,
are generated such that RT

h
HkRh = Th, where Rh = (r1/‖r1‖ · · · rh/‖rh‖) and Th is

a h × h tridiagonal irreducible matrix. Moreover, if Hk is positive definite, Th can be
stably decomposed as Th = LhDhL

T

h
, where Lh is a unit lower diagonal matrix and Dh is

diagonal and positive definite. Furthermore, by setting Ph = (p1/‖r1‖ · · · ph/‖rh‖) it
results PhL

T

h
= Rh.

If Hk is indefinite, the factorization of the tridiagonal matrix Th may fail, in the sense
that it may not exist or may be very unstable. Planar–CG schemes enable to overcome
this drawback by means of planar steps. Indeed, the tridiagonal matrix Th is now indefi-
nite and can be decomposed as LT

h
DhLh, where Dh is now a 1× 1 or 2× 2 block diagonal

matrix.
In order to define the preconditioner for the indefinite case, we recall that the columns

of Rh span the Krylov subspace Kh(Hk, r1). Then, introducing the matrix Rn−h, whose
columns span R

n \ span{Rh}, with RT

n−h
Rn−h = In−h, let us define the following matrix

Mh = Rh |Th|R
T

h
+ Rn−kR

T

n−h
= Rh |Th|R

T

h
+ I − RhR

T

h
,

where |Th| = Lh|Dh|L
T

h
and |Dh| is a 1×1 or 2×2 positive definite block diagonal matrix.

We use this matrix (with h ≪ n) as preconditioner. Assuming that the matrix Hk is
nonsingular, then Mh is nonsingular too, and it results M−1

h
= Rh|Th|

−1RT

h
+ Rn−hR

T

n−h
.

Moreover, the spectrum of the preconditioned matrix M−1
h

Hk contains the eigenvalue 1
and −1 with overall multiplicity at least h.

This is not the first attempt in the literature to “recycle” Krylov information generated
during the iterations, in order to construct a preconditioner. In fact, a similar approach
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was considered in the context of GMRES algorithms (see Ref. 1, Ref. 2, Ref. 6). However,
in this approach the GMRES information are given in the form of a Hessenberg decom-
position of the matrix Hk and not as tridiagonal one. This is a distinguishing important
feature of our approach. In fact, by using the tridiagonal decomposition we can rewrite
M−1

h
as

M−1
h

= Ph|Dh|
−1P T

h
+ I − PhL

T

h
LhP

T

h
.

Therefore, in computing the preconditioned residuals M−1
h

ri, it suffices to store the h
vectors of Ph, the block diagonal elements of |Dh|

−1 and the subdiagonal elements of Lh,
all of them available as by product from the CG iterates. This implies that no n × n
matrix is stored and no explicit matrix inversion is needed to compute the preconditioned
residuals.

The resulting algorithm can be easily embedded in a truncated Newton method in order
to efficiently determine a good Newton type direction at each outer iteration k.

We performed some preliminary numerical experiments, by implementing a linesearch
based truncated Newton method, which carries out the preconditioning strategy we pro-
pose. The results obtained, show that this strategy may lead to an improvement of the
overall efficiency of the method, even though no definitive conclusions can be drawn.
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