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Abstract. This paper reports two proposals of possible preconditioners for the Nonlinear Conjugate Gradient (NCG) method, in
large scale unconstrained optimization. On one hand, the common idea of our preconditioners is inspired to L-BFGS quasi–Newton
updates, on the other hand we aim at explicitly approximating in some sense the inverse of the Hessian matrix. Since we deal
with large scale optimization problems, we propose matrix–free approaches where the preconditioners are built using symmetric
low–rank updating formulae. Our distinctive new contributions rely on using information on the objective function collected as
by-product of the NCG, at previous iterations. Broadly speaking, our first approach exploits the secant equation, in order to impose
interpolation conditions on the objective function. In the second proposal we adopt and ad hoc modified–secant approach, in order
to possibly guarantee some additional theoretical properties.

INTRODUCTION

In this paper we consider the large scale unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn −→ R is twice continuously differentiable and n is large. Without loss of generality, we assume here
that an NCG iterative scheme is used to solve (1), starting from the point x0 ∈ Rn, such that the level set

Ω0 = {x ∈ Rn : f (x) ≤ f (x0)}

is compact. There is possibly no need to remark the amount of real applications where the model (1) naturally arises.
In this regard, though unconstrained optimization is surely by now a mature research area, there is yet room for
improvements when tough highly nonlinear problems are considered (see also [1]).

Effective iterative methods for large scale unconstrained optimization are undoubtedly the NCG method and
Limited Memory quasi–Newton methods, being L-BFGS often the method of choice due to its efficiency (see again
[1]). Nevertheless, on highly nonlinear problems where the Hessian matrix is indefinite [2] and ill-conditioning easily
arises, also quasi–Newtonmethodsmay become inefficient, showing the importance of further research on this relevant
topic. Our perspective starts from considering some keynote technicalities of L-BFGS, whose update can be suitably
reformulated in order to evidence some of its features. Then, we explicitly attempt to replicate in our two proposals
the idea behind the latter features, in the light of implicitly pursuing an approximation of the Hessian matrix of
the function. To this purpose we directly inherit the rationale behind [3] and [4], where in different contexts the
information on the objective function is collected by the Conjugate Gradient (CG) method, and is then used as by-
product to build efficient general preconditioners.
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Here we similarly focus on the NCG method, in order to provide the necessary information to build our precon-
ditioners. Then, a Preconditioned Nonlinear Conjugate Gradient (PNCG) method is adopted for the solution of (1). In
particular, we recall that the NCG method generates the sequence of iterates {xk}, based on the recursion

xk+1 = xk + αk pk, pk = −∇ f (xk) + βk pk−1,

where {pk} is a sequence of search directions, αk is a suitable steplength obtained by a proper linesearch procedure
based on Wolfe conditions [1]. As well known, different values of βk and αk may give rise to different algorithms (see
also [5] for a survey).

Regardless of the techniques used to select the parameters αk and βk, preconditioning strategies remain a key
aspect for increasing the efficiency of NCG methods, especially on ill–conditioned problems. Finally, observe that
our proposals owe much of their interest to the close connection between BFGS and NCG, as stated in [6]. The latter
consideration is better detailed and fully exploited in the next section, in order to show the role played by some specific
dyads in L–BFGS update.

L–BFGS UPDATE AND APPROXIMATE INVERSE HESSIANS

Here we review information on L–BFGS, in order to detail how our proposals tend to approximate information on the
inverse Hessian matrix of the objective function in (1). As well known the search direction using L–BFGS is generated
at step k as

pk = −Hk∇ f (xk),
where Hk ∈ Rn×n is updated according with

Hk+1 = VTk HkVk + ρk sk s
T
k , ρk =

1
yTk sk
, Vk = In − ρkyksTk ,

and the n-dimensional vectors yk, sk are computed as

sk = xk+1 − xk = αk pk, yk = ∇ f (xk+1) − ∇ f (xk).

Two relevant reasons for the successful application of L–BFGS in the literature is surely due to the following distinc-
tive properties:

(i) starting from a positive definite matrix Hk, the update Hk+1 is the unique positive definite matrix which solves
the subproblem (here ‖ · ‖F indicates the Frobenius norm)

min
H
‖H − Hk‖F

s.t. H = HT
sk = Hyk;

(ii) when the objective function f (x) is quadratic, with f (x) = 1
2 x
TAx − bT x, A ∈ Rn×n and b ∈ Rn, then after some

computation the L–BFGS update becomes explicitly

Hk+1 = VTk HkVk +
sksTk
yTk sk

= VTk V
T
k−1 · · ·V

T
1 H0V1 · · ·Vk−1Vk +

k∑

i=1

si sTi
sTi Asi

.

Hence, on one hand the L–BFGS update Hk+1 is well-scaled, by means of using the Frobenius norm; then, it satisfies
some interpolation conditions summarized by the secant equation sk = Hk+1yk. Finally, the rank-k update

k∑

i=1

si sTi
sTi Asi

in (ii) can be seen, in some sense, as an approximate inverse Hessian matrix, since (see [6]) for f (x) = 1
2 x
T Ax − bT x

and k = n, exploiting the conjugacy among s1, . . . , sn we obtain

A−1 =
n∑

i=1

si sTi
sTi Asi

.
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Similarly to [2], [3] and [4] the above conclusions suggest the possibility to use the NCG in order to convey
information on the inverse Hessian matrix, using the search directions {pk} and the vectors {yk}. The next section
details some basic aspects of our two proposals, following the guidelines of the above considerations.

Note that in [2] the preconditioner is built starting from the identity matrix, then adding the sum of specific dyads
obtained from the NCG at different iterations. On the contrary, our second proposal in the present paper sets the new
preconditioner starting from the previous one, and using information by the NCG just from the current iteration.

OUR TWO PROPOSALS FOR PRECONDITIONER UPDATES, BASED ON L–BFGS

For the sake of brevity here we simply report our two approaches, which provide preconditioners to the NCG method,
aiming at approximating the inverse Hessian matrix of the objective function f (x). The first proposal is based on the
recurrence (with H0 positive definite)

Hk+1 = Hk + γkvkvTk + ωk
pk pTk
yTk pk

, γk, ωk ∈ R \ {0}, vk ∈ Rn, (2)

where pk is the search direction calculated by the NCG at step k, and the vector vk is computed such that the secant
condition Hk+1yk = sk (similarly to SR1 quasi–Newton updates) is imposed. After some easy computation we obtain
for vk the expression vk = sk − Hkyk − ωk pk. Moreover, the next result holds for the update (2) (the proof is omitted
for the sake of brevity).

Proposition 1 Assume that f is the quadratic function f (x) = 1
2 x
T Ax−bT x, where A ∈ Rn×n is symmetric and b ∈ Rn.

Suppose that k steps of the (unpreconditioned) CG are performed, in order to detect the stationary point (if any) of the
function f , and that the vectors p1, . . . , pk are generated. Then, the matrix Hk+1 in (2) satisfies the secant equations

Hk+1y j = s j, j = 1, . . . , k, (3)

provided that the nonzero coefficients γ j, ω j, j = 1, . . . , k are computed such that

γ j =
1

sTj y j − y
T
j H jy j − ω j p

T
j y j
, ω j �

sTj y j − y
T
j H jy j

pTj y j
, j = 1, . . . , k.

Finally, Hn+1 = A−1.

The Proposition 1 specifically highlights in which sense the update (2) tends to approximate the inverse Hessian
matrix in the quadratic case; moreover, the same formula can be adopted also for general nonlinear (and possibly
nonconvex) functions. The main inconvenience of (2) is that the matrix Hk+1 might be rarely indefinite, i.e. in some
specific cases the positive definiteness of Hk+1 may be hardly imposed. A possible remedy to the latter drawback is
pursued by replacing (2) with the update (see also [2])

Hk+1 = τkCk + γkvkvTk + ωk
k∑

j=k−m

s j sTj
yTj s j
, (4)

where 0 ≤ m ≤ k − 1 represents a memory of the preconditioner, γk, ωk ≥ 0, τk > 0, Ck ∈ Rn×n is symmetric positive
definite and vk ∈ Rn. The vector vk is computed following guidelines similar to those adopted for (2), whileCk satisfies
at step k

Ck = σkIn, σk ∈ R,

and σk solves the least squares subproblem
min
σ
‖(σIn)yk − sk‖2 ,

yielding Ck = sTk yk/‖yk‖
2In. We remark that now a suitable choice of γk > 0 and ωk > 0 always exists such that in (4)

we obtain that Hk+1 is positive definite.

090007-3



Our second proposal is based on an updating formula which is more similar to L-BFGS, since it adopts the rank-2
update (H0 positive definite)

Hk+1 = δkHk + γkvkvTk + ωk
pkpTk
yTk pk

, γk, ωk ∈ R \ {0}, vk ∈ Rn. (5)

However, now the matrix Hk+1 is also assumed to satisfy the modified secant equations
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hk+1y j = δ j s j, δ j > 0, for all j < k,

Hk+1yk = sk.
(6)

We incidentally observe that the latter appealing property is satisfied by all the updates of the Broyden class, with
δ j = 1, for any j ≥ 1, provided that the linesearch adopted is exact (see e.g. [1]). Following the idea in Proposition 1,
the next interesting result can be proved for the update (5).

Proposition 2 Let f be a nonlinear twice continuously differentiable function. Suppose that the NCG method is
used to minimize the function f . Suppose that at current step k, Hk is positive definite and set

0 < δk = (1 − εk)
sTk yk
yTk Hkyk

,

0 < ωk < εkαk,

0 < γk =
1

(εkαk − ωk)pTk yk
.

with εk ∈ (0, 1). Then, Hk+1 is positive definite and satisfies the modified secant equations
⎧⎪⎪⎪⎨⎪⎪⎪⎩
Hk+1y j = δ j s j, δ j > 0, for all j < k,

Hk+1yk = sk.

Since H0 is positive definite, this proposition ensures that Hk, for k ≥ 1, is positive definite, thus overcoming the
drawback of (2). The prize to pay is that now the secant equations in (3) are not satisfied since they are replaced by
the weaker conditions (6).

The effectiveness and the robustness highlighted by the use of the preconditioners proposed suggest promising
guidelines for further investigations on both the approaches.
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