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This paper deals with the preconditioning of truncated Newton methods for the solution of large
scale nonlinear unconstrained optimization problems. We focus on preconditioners which can be
naturally embedded in the framework of truncated Newton methods, i.e. which can be built without
storing the Hessian matrix of the function to be minimized, but only based upon information on the
Hessian obtained by the product of the Hessian matrix times a vector. In particular we propose a
diagonal preconditioning which enjoys this feature and which enables us to examine the effect of
diagonal scaling on truncated Newton methods. In fact, this new preconditioner carries out a scaling
strategy and it is based on the concept of equilibration of the data in linear systems of equations. An
extensive numerical testing has been performed showing that the diagonal preconditioning strategy
proposed is very effective. In fact, on most problems considered, the resulting diagonal preconditioned
truncated Newton method performs better than both the unpreconditioned method and the one using
an automatic preconditioner based on limited memory quasi-Newton updating (PREQN) recently
proposed by Morales and Nocedal [Morales, J.L. and Nocedal, J., 2000, Automatic preconditioning
by limited memory quasi-Newton updating. SIAM Journal on Optimization, 10, 1079–1096].

Keywords: Truncated Newton method; Conjugate gradient (CG) method; Preconditioning; Row-
column scaling; Equilibrated matrix

1. Introduction

This paper deals with large scale nonlinear unconstrained optimization problems, i.e. problems
of finding a local minimizer of a real valued function f : R

n → R, namely

min f (x)

x ∈ R
n,

where the number of variables n is large. The function f is assumed to be twice continuously
differentiable.

The growing interest in solving large scale problems is mainly due to the fact that in many
and different contexts and applications such problems arise very frequently. Moreover, as
well known, efficiently solving unconstrained problems is very important in the framework
of constrained optimization too, for instance when a penalty-barrier approach is used.
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Among the existing methods in large scale unconstrained optimization [see, e.g. refs. 1,2
for a survey] the truncated Newton methods represent one of the most powerful, reliable
and flexible tools for solving large scale problems. In fact, they have a solid convergence
theory, they retain the good Newton-like convergence properties exhibiting an excellent rate
of convergence; moreover, they are robust and efficient also in solving ‘difficult problems’
as highly nonlinear and ill-conditioned problems. Moreover, the truncated Newton methods
have been successfully used in solving real world problems arising in many applications and
several algorithmic enhancements have been developed and studied in the last years, too; see
the excellent survey of truncated Newton methods [3] recently published by Nash and the
references reported therein.

Although the truncated Newton methods have been widely studied and extensively tested a
number of important open questions still exist [see ref. 1, section 3.2] and motivate this work.
One of these open questions addresses the formulation of an effective preconditioning strat-
egy which enables to improve the behavior of the truncated Newton method in tackling large
scale problems. In this paper this question is considered, focusing on general purpose pre-
conditioners suitable within the truncated Newton method framework, that is preconditioners
which do not require the explicit knowledge of the Hessian matrix. The information about
the Hessian matrix are gained only by means of a routine which provides us with the matrix–
vector products of the Hessian matrix times a vector, i.e. by using a tool already required by any
truncated Newton method implementation. Of course, this makes this kind of preconditioners
also suitable within discrete truncated Newton methods where these matrix–vector products
are approximated by finite differences [4]. Moreover, we focus our attention on preconditioners
which are also ‘dynamic’, i.e. which change during the iterations of the method.

Very few preconditioners enjoying all these features have been developed up to now. The
most recent and efficient proposal of such a preconditioner is due to Morales and Nocedal [5]
which proposed an automatic preconditioning strategy based on limited memory quasi-Newton
updating.

In this work, we propose a diagonal preconditioning strategy which enjoys all these desired
features. It is based on the equilibration of data in linear systems and it consists of scaling the
column vectors of the Hessian matrix. Generally speaking, column scaling is carried out by
dividing each column of the matrix by the norm of the column, where different norms may be
considered. Equilibrating matrices is a topic of great importance in the numerical solution of
linear systems, and, as far as the author is aware, it has not yet been fully exploited as a useful
tool for building good general purpose preconditioners for the truncated Newton methods,
even though the optimal properties of the scaled matrices – in terms of condition numbers –
were well known since thirty years ago [see, e.g. refs. 6,7]. The need of equilibrating matrices
in solving linear systems arising from real world problems is, in general, very evident; in fact,
many times, these matrices have entries that vary over many orders of magnitude and they are
very spread. In this case, a simple diagonal scaling would greatly reduce the condition number
of the matrices. These general considerations are of fundamental importance in the framework
of truncated Newton methods, since at each iteration of these methods a linear system must
be (approximately) solved.

More specifically, we define the diagonal preconditioner M = diag{‖w1‖1, . . . , ‖wn‖1},
where ‖wj‖1 denote the �1-norm of the j th column vector wj of the Hessian matrix (with some
modifications in order to avoid too small elements). By using this diagonal preconditioner,
we obtain a system with a column equilibrated matrix in the �1-norm. At each outer iteration
of a truncated Newton method we approximately compute this preconditioner by means of
a single product of the Hessian matrix times the vector e = (1, 1, . . . , 1)T, thus limiting the
additional cost only to an extra matrix–vector product, for each outer iteration.
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We embedded the diagonal preconditioner proposed within a linesearch based implemen-
tation of the truncated Newton method and firstly, to check its reliability, we numerically
tested it on some real problems arising as finite dimensional approximation models taken
from the MINPACK-2 collection [8]. Then, we performed an extensive numerical testing on
a very large set of test problems of the CUTE collection [9]. The results obtained confirmed
our expectation: in fact this preconditioning strategy proved inexpensive and very effective,
reducing both the number of conjugate gradient (CG) iterations and the CPU time needed for
solving most of the problems considered with respect to the unpreconditioned method and,
in some cases, the gain is impressive. An investigation on the eigenvalues distribution clearly
showed the clustering effect due to the preconditioner. Moreover, a comparison with the results
obtained on the same set of test problems by using the automatic preconditioner based on lim-
ited memory quasi-Newton updating PREQN proposed in ref. [5] has been performed. Also
from this comparison, it is clearly pointed out that the efficiency of the proposed diagonal
preconditioner, in particular, a reduction of the number of the inner iterations is showed and
this is always joined with a savings of CPU time while, as regards PREQN, an increase of the
time needed is often observed even on those problems, where a reduction of the number of
inner iterations is obtained, due to the cost of the quasi-Newton preconditioner.

The paper is organized as follows: in section 2 the truncated Newton methods are briefly
recalled pointing out those questions which are still considered open problems and, in partic-
ular, concerning preconditioning. In section 3, the new diagonal preconditioning strategy is
described and in section 4, the results of the extensive numerical investigation are reported.

Throughout the paper the following notations are used: g(x) = ∇f (x) denotes the gradient
and H(x) = ∇2f (x) the Hessian matrix of the function f . Moreover, ‖v‖p denotes the �p-
norm of a vector v ∈ R

n and for a n × n matrix A, ‖A‖p denotes the induced matrix norm.
Moreover, κp(A) = ‖A‖p‖A−1‖p denotes the condition number of A in the �p-norm.

2. Preconditioned truncated Newton methods

In this section, the truncated Newton methods (TN) are briefly recalled, focusing on their
major components and in particular on preconditioning, a more precise description of truncated
Newton methods can be found in ref. [10] or, e.g. in the survey paper [3].

As well known, given a guess xk of a solution x�, the truncated Newton method is based on
the quadratic model of the objective function f given by

qk(d) = f (xk) + g(xk)
Td + 1

2
dTH(xk)d (1)

and it is defined by iterations of the form

xk+1 = xk + dk,

where the search direction dk is obtained by approximately minimizing the quadratic model of
the objective function (1) over R

n. Of course, whenever the Hessian matrix H(xk) is positive
definite, to minimize the quadratic model qk is equivalent to solve the linear system

H(xk)d = −g(xk). (2)

A good convergence rate of the method is still ensured by using a particular trade-off rule
between the computational burden required to solve the system (2) and the accuracy with
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which it is solved [11]. A natural measure of this accuracy is the relative residual. In the
truncated Newton methods, an approximation of the Newton direction dk is computed by
applying an iterative method for approximately solving the linear system (2) and ‘truncating’
the iterates whenever a required accuracy is achieved [10]. To this aim, the most frequently
used algorithm is the linear CG method since it is an efficient iterative method for solving
positive definite linear systems.

The components of the truncated Newton method are several, providing the method with
a great flexibility. In particular, three key aspects for the overall efficiency of the truncated
Newton method can be still considered open problems [see ref. 1, section 3.2]: (i) the formula-
tion of an effective ‘truncation criterion’for the inner loop; (ii) how to handle the case when the
Hessian matrix is not positive definite; (iii) the formulation and handling of a preconditioner
to accelerate the convergence in the inner CG iterates.

In this paper we concentrate on preconditioning, which is considered one of the most
important issues of the current research on the truncated Newton methods. As well known,
preconditioning the inner CG iterations can considerably accelerate the convergence of the CG
method affecting the overall efficiency of the truncated Newton method. In fact, the conver-
gence rate of the CG inner iterations is based on the condition number and the number of distinct
eigenvalues of the Hessian matrix H(xk) [see, e.g. ref. 12]. In particular, the larger the condi-
tion number, the slower is the convergence of the method; moreover, the more the eigenvalues
are clustered, the sooner the error is reduced. Preconditioning enables to reduce either the
condition number and the number of distinct eigenvalues thus accelerating the convergence of
the CG method. More precisely, if M denotes the preconditioner, the convergence depends on
the condition number κ2(H(xk)M

−1) and on the number of distinct eigenvalues of H(xk)M
−1.

It is out of the scope of this paper to discuss the well known features of preconditioning or to
survey the very broad field of preconditioners [see, e.g. refs. 13–17]. We mention in the sequel
of this section, the main preconditioning strategies up to now proposed in the framework of
truncated Newton methods.

A preconditioning strategy which has been successfully used within the truncated Newton
methods is based on the incomplete (modified) Cholesky factorization [18–20]. It is a valuable
choice since it is general purpose and a great reduction of the number of the inner CG iterations
can be obtained. However, unfortunately, it requires the knowledge of the Hessian matrix.
Another approach is based on efficiently exploiting the problem structure when it exists, in
particular, many large scale problems possess the so called ‘partial separability’ property, i.e.
the objective function can be written as sum of simpler functions and this property can be
exploited for defining ‘ad hoc’ preconditioners [21].

In the context of truncated Newton methods, a first key point in developing an efficient
preconditioning strategy for solving the sequence of systems (2) is to use a ‘dynamic precon-
ditioner’, i.e. a preconditioner which changes with the outer iterations. In particular, since at
each outer iteration k the Hessian matrix changes, consequently the preconditioner should be
changed. One possibility is to define, at each outer iteration k, a new preconditioner. This idea
is not new, and its importance, as a challenge topic in large scale optimization, has already
been clearly pointed out [see ref. 1, section 3.2].

Another key point is the availability of a preconditioner which can be effectively used
within the truncated Newton method, that is, which does not require to store and handle any
matrix. By using this kind of preconditioners, the PCG algorithm is still free from the storage
and handling of the Hessian matrix, like the unpreconditioned CG algorithm. Of course, this
feature is enjoyed by a preconditioner which can be built by using only information on the
Hessian matrix obtained by performing products of the Hessian matrix times a vector. We
remark that preconditioners of this kind can be used within discrete Newton methods [4] or
when automatic differentiation [22] is used.
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The first proposal of the preconditioned truncated Newton method which satisfies both
these requirements was performed in ref. [23]. It is based on a two-step limited memory
BFGS updating; in particular, a diagonal scaling which uses a diagonal approximation of the
Hessian matrix, obtained by means of BFGS updating is defined. This preconditioning strategy
has been embedded in a discrete truncated Newton method which has been numerically tested
and compared with other methods for large scale unconstrained optimization [24].

Recently, an automatic preconditioning based on m-step limited memory quasi-Newton
updating has been proposed [5,25]. This is a dynamic preconditioner which does not require the
explicit knowledge of the Hessian matrix, too. This preconditioner has been numerically tested
within a discrete Newton method and in the solution of linear systems arising in some finite
element models. The results obtained in the solution of large scale unconstrained optimization
problems indicate that this preconditioning strategy enables to reduce the number of CG
inner iterations but it is expensive, due to the considerable computational cost of building and
handling the preconditioner. This makes this particular preconditioner suited for problems
for which the matrix–vector products of the Hessian matrix times a vector are expensive
to compute. However, today this automatic preconditioning technique seems to be the best
proposal within the class of dynamic preconditioners that we are considering.

3. Diagonal preconditioning truncated Newton methods

On the basis of the remarks contained in the previous section, we now focus on diagonal pre-
conditioning techniques since they can be efficiently used in the context of truncated Newton
methods. In fact, we propose a diagonal preconditioner which possesses the desired features
which makes its use appealing within the truncated Newton methods. Before going into detail,
we briefly report the main features of the generic diagonal preconditioner considering the solu-
tion of a generic linear system As = b, where A is a n × n nonsingular symmetric matrix and
aij denotes its entries.

The diagonal preconditioning is the simplest form of preconditioning and it is very
inexpensive to handle. The matrix M is chosen as a diagonal matrix

M = diag{d1 · · · dn} =
d1 0

. . .

0 dn

,

where di ∈ R, di > 0, i = 1, . . . , n. This preconditioning corresponds to a scaling of the
columns of the matrix A, aiming at obtaining a system with a column equilibrated matrix which
is a better conditioned system. Analogously, a system with a row equilibrated matrix can be
considered, while it is more complicated to obtain an equilibrated matrix. The advantages of
having linear systems with an equilibrated matrix is well known and its importance in numerical
analysis is witnessed by the number of papers devoted to this topic [see, e.g. refs. 26–28].
Moreover, there exist algorithms for equilibrating a matrix in a specific norm; some examples
were proposed in refs. [28–30]. Furthermore, optimality properties of scaling in �p-norm
equilibrating the rows or the columns for minimizing the condition number are considered in
ref. [31, section 7.3].

Note that to apply the preconditioned CG method with this diagonal preconditioner, corre-
sponds to apply the CG method to the system with the transformed matrix D−1AD−1, where

D = diag{d1/2
1 , . . . , d

1/2
n }.



698 M. Roma

It is well known that diagonal preconditioning presents some very good features; in fact it
would greatly reduce the condition number of the matrix and it does not destroy the sparsity
of the matrix; moreover, it requires a minimal additional work and it is suitable to handle
practical problems whose matrices entries frequently vary over many orders of magnitude.

A choice which is ‘optimal’ with respect to diagonal preconditioners is to use the diagonal
of the matrix A as diagonal preconditioner matrix (Jacobi preconditioner); in fact this choice
enables to minimize the condition number of the matrix of the transformed system with
respect to all the diagonal preconditioners. In fact, the following result holds [6] [see also, e.g.
refs. 14,17,31].

THEOREM 3.1 Let A be a n × n symmetric positive definite matrix. Let Dn denote the set of

n × n nonsingular diagonal matrices and � = diag{a1/2
11 , . . . , a

1/2
nn }. Then,

κ2(�
−1A�−1) ≤ p min

D∈Dn

κ2(D
−1AD−1),

where p is the maximum number of nonzero elements in any row of A.

It is important to note that even in this special case of the Jacobi preconditioner no results
concerning the variation of the condition number or the eigenvalue distribution – and hence a
possible improvement of the convergence rate – is available. In fact, Theorem 3.1 states only
the existence of a lower bound but does not provide us with information about the variation of
the condition number of the transformed system. This result, however, states that this kind of
preconditioner is effective for sparse matrices. As regards the numerical efficiency of Jacobi
preconditioner, it is known that it typically works well whenever the matrix A is very diagonally
dominant.

Simple diagonal scaling of the variables has been already proved to be very effective in the
context of L-BFGS methods [32] and within partitioned quasi-Newton methods [33] especially
in tackling large scale problems. Moreover, in ref. [34] the effect of diagonal scaling with
projected gradient methods for bound constrained problems has been investigated.

Now we investigate the possibility to define and efficiently use a diagonal preconditioning
strategy within truncated Newton methods. In particular, we note that it corresponds to a
scaling of the Hessian matrix which appears in the sequence of linear systems (2) and, as well
known, to have ‘good’ scaling in defining algorithms is always very important, even if the
algorithm we are dealing with is a scaling invariant algorithm as the Newton method. More
in detail, as already observed, diagonal preconditioning corresponds to an equilibration of the
data in the large linear systems to be solved at each iteration of the truncated Newton method.

A classical approach for row (column) scaling is to divide each row (column) by the norm of
the row (column) vector. The most commonly used norms are the �1-norm and the �∞-norm.
To scale matrices such that the norm of all rows (or columns) are equal to one is an heavy task
from the computational point of view, and this should be the reason for which, as far as the
author is aware, this numerical tool has not yet been fully exploited for building preconditioner
in the context of truncated Newton methods, tackling large scale problems. In fact to compute
the norm of each row (or column) of the Hessian matrix at each outer iteration of the method
is computationally too expensive and thus impracticable, whichever norm is chosen. Also,
the use of the diagonal of Hessian matrix itself as diagonal preconditioner is not practicable
to derive efficiently by means of a routine which provides the product of the Hessian matrix
times a vector.

On the basis of these remarks, we propose a strategy based on columns scaling of the
Hessian matrix H(xk) in the solution of the systems (2) and, in particular, we focus on an
equilibration strategy which uses the �1-norm.
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In the sequel of this section, for the sake of simplicity, we remove the dependency on k

and hence we refer to the system Hd = −g. Let hij , i, j = 1, . . . , n, denote the entries of
the Hessian matrix H and for each j = 1, . . . , n let wj ∈ R

n defined by wj = Hej , where
ej = (0, . . . , 1, . . . , 0)T is the j th unit vector, that is, for each column j , wj denotes the column
vectors of the matrix H (which are also the row-vectors for the symmetry). We consider the
diagonal preconditioning generated by the matrix

D = diag
{
‖w1‖1/2

1 , . . . , ‖wn‖1/2
1

}
=

‖w1‖1/2
1 0

. . .

0 ‖wn‖1/2
1


Obviously, in terms of the preconditioning matrix, this corresponds to choose

M = diag{‖w1‖1, . . . , ‖wn‖1},

and it results that the matrix HM−1 is a column equilibrated matrix in the �1-norm.
It is now important to analyze the condition number and the eigenvalues distribution of the

preconditioned matrix to check if the use of such a preconditioner leads to a better conditioned
system. Note that the (unsymmetric) matrix HM−1 and the (symmetric) matrix M−1/2HM−1/2

are similar and hence they have the same eigenvalues. Firstly, we address to the condition
number of the preconditioned matrix showing that the particular column scaling proposed has
a very important feature, since it is an optimal column scaling strategy. In fact, the following
proposition holds.

PROPOSITION 3.2 If H is nonsingular and Dn denotes the set of n × n nonsingular diagonal
matrices, then

κ1(HM−1) ≤ min
D∈Dn

κ1(HD).

Proof The results immediately follows from Theorem 7.5 in ref. [31]. �

Therefore the proposed column scaling is the best column scaling in terms of condition
number in �1-norm. As regards the eigenvalues distribution of the preconditioned matrix, by
exploiting the fact that the matrix HM−1 is column equilibrated in the �1-norm, it is possible
to prove the following result.

PROPOSITION 3.3 Let ρ(HM−1) = max{|λi |: λi eigenvalues of HM−1} be the spectral radius
of the matrix HM−1. Then it results

ρ(HM−1) ≤ 1.

Proof The result can be obtained by observing that for a square matrix A it results ρ(A) ≤
‖A‖p for every �p-norm. In fact, we have

ρ(HM−1) ≤ ‖HM−1‖1 = 1,

where the last equality follows from the fact that ‖HM−1ej‖1 = 1 for all j = 1, . . . , n, i.e. all
the columns of HM−1 have unitary �1-norm. �
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The result stated in this proposition shows how the use of the proposed preconditioner
enables to have clustered eigenvalues and hence the PCG iterates are expected to converge
quickly.

Now, we prove a general result concerning diagonal preconditioning.

PROPOSITION 3.4 Let D = diag{d1, . . . , dn} be a n × n diagonal matrix with dj > 0, j =
1, . . . , n and z ∈ R

n such that Hz = Dz. Then the matrix D−1/2HD−1/2 admits an eigenvalue
equal to one and the corresponding eigenvector is given by v = D1/2z.

Proof Since Hz = Dz, we have

D−1/2HD−1/2v = D−1/2Hz = D1/2z = v.

that is, v is an eigenvector of D−1/2HD−1/2 corresponding to the eigenvalue equal to 1. �

By applying this proposition, assuming that H is a nonnegative matrix, i.e. hij ≥ 0 for all
i, j = 1, . . . , n, it is possible to say more about the eigenvalues of the preconditioned matrix
M−1/2HM−1/2. In fact, the following result holds.

PROPOSITION 3.5 If H is a nonnegative matrix, the preconditioned matrix M−1/2HM−1/2

admits an eigenvalue equal to one, and the corresponding eigenvector is given by v = M1/2e,
where e = (1, . . . , 1)T.

Proof It is enough to apply Proposition 3.4 with z = e. In fact, in this case, the equality
He = Me holds. �

Proposition 3.3 shows that the proposed preconditioner correspond to normalize the precon-
ditioned matrix in such a way that its largest eigenvalue is less than or equal to one. Moreover,
if the Hessian is a nonnegative matrix, Proposition 3.5 implies that the largest eigenvalue of
the preconditioned matrix is equal to one. Finally, Proposition 3.4 shows that this diagonal
preconditioner can be viewed as a particular case of a more general setting in which in the
definition of the preconditioner M , the vector e in He = Me is replaced with any vector z ∈ R

n

provided that Hz = Mz. However, note that if a vector different from e is used in the equality
He = Me, the optimal properties of the �1-norm scaling do not necessarily hold, even if H is
a nonnegative matrix.

Our aim is now to embed this diagonal preconditioning strategy in the framework of trun-
cated Newton methods, but it is not straightforward, since the matrix H is not available. In
order to obtain information on the �1-norm of the columns of the Hessian matrix, we propose
to use the only tool available in this context for providing us with information on the Hessian
matrix that is the routine for the product of H times a vector. In fact, we observe that an
estimate of the �1-norm of the columns of the Hessian matrix can be obtained as follows: for
each j th column, j = 1, . . . , n let us consider

σj =
∣∣∣∣∣

n∑
i=1

hij

∣∣∣∣∣. (3)

These quantities have the following properties:

• They are a lower estimate of the �1-norm of the j th column vector.
• Due to the symmetry of H , all the σj , j = 1, . . . , n, can be very easily computed by means

of the product of the Hessian matrix H times the vector e = (1, 1, . . . , 1)T. In fact, by taking
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the absolute value of each component of the vector resulting from this product, we obtain
all the σj . Therefore, only one call to the routine which provides us with the product of the
Hessian matrix times a vector is enough to compute all the σj .

Obviously, for each column j for which hij ≥ 0 for all i = 1, . . . , n, we have σj = ‖wj‖1.
Therefore, if H is a nonnegative matrix, then it results σj = ‖wj‖1, for all j = 1, . . . , n.

The quantities (3) can be used to build the diagonal preconditioner defined by the following
diagonal positive definite matrix

M̃ = diag{σ̃1, . . . , σ̃n}, (4)

where for j = 1, . . . n,

σ̃j =
{

σj if σj > δ

1 otherwise

with δ > 0 small.
By using this diagonal preconditioning, each column of the matrix is scaled by a quantity

which represents an estimate of the �1-norm of the column vectors and no scaling is performed
in correspondence of those columns for which σj is small.

The proposed diagonal preconditioner has the following important features:

• The explicit knowledge of the Hessian matrix is not required, but only a routine which
provides the product of the Hessian matrix times a vector is needed, enabling its use within
a truncated Newton method.

• It carries out a dynamical preconditioning technique, i.e. the preconditioner changes from
one outer iterate to the next, thus overcoming the drawback of having the same precondi-
tioner during the solution of each of the sequence of Newton’s systems (2), whereas the
Hessian matrix can change drastically.

• The solution of the auxiliary system needed to compute the preconditioned residual is very
inexpensive.

• The additional cost of preconditioning is essentially due to one additional call, at each outer
iteration, to the subroutine which provides the matrix–vector product of the Hessian matrix
times the vector e = (1, . . . , 1)T.

This diagonal preconditioner represents a useful tool that can be viewed as a ‘dynamic scaling’
since it is derived from dynamic preconditioning and scaling and we name it DSPREC.

We note that if the Hessian matrix H is a nonnegative matrix, the quantities σj in equation (3)
are the �1-norm of the j th column vector and therefore the results stated in Propositions 3.2,
3.3 and 3.5 apply; in this case this diagonal preconditioner possess the important theoretical
properties stated. Otherwise, as it occurs in most cases when dealing with preconditioning, in
the general setting, it is impossible to derive results which apply to any matrix. Therefore, since
we are interested in general purpose preconditioner, the best assessment tool is represented
by an extensive numerical study.

4. Numerical experiments

If a wide numerical investigation is usually considered an essential tool for assessing the effi-
ciency of an algorithm, it is so much important in dealing with preconditioning strategies when,
as often occurs, some choices are mainly based on numerical experiments rather than on solid
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theoretical results. Keeping in mind the central role of the numerical experiments in evaluating
the effectiveness of different preconditioning strategies, we have been trying to perform a very
extensive numerical testing. To this aim we embedded the proposed preconditioning strategy
in a linesearch-based truncated Newton method which uses a preconditioned CG algorithm for
computing the search direction, terminating the inner PCG iterations whenever the residual-
based criterion is satisfied or a negative curvature direction is encountered [10]. This criterion
is preferred here with respect to the quadratic model-based criterion proposed in ref. [35] since
it allows to easily control the rate of convergence of the truncated Newton method. Further
details of our implementation can be found in ref. [36]; here we mention that the termination
criterion of the outer iterations is the standard test ‖g(xk)‖2 < 10−5 max(1, ‖xk‖2), and that
we set δ = 10−6 in the definition of the preconditioner (4).All the tests have been performed on
a Pentium III 700 with 512 Mb RAM, and all the codes used are double precision FORTRAN
codes. All the results are reported in terms of number of outer iterations (it) – which is the
same as the number of gradient evaluation (ng) – number of function evaluations (nf), total
number of inner iterations (CG-it) and CPU time (time).

As regards a different preconditioning strategy available in literature needed for making
a comparison of the results, we have been seeking among those preconditioners which can
be efficiently used within the truncated Newton framework and the state-of-the-art seems to
be represented by the automatic preconditioner proposed in refs. [5,25], implemented in the
available software PREQN that we already mentioned in the previous section. It has the form
of a limited memory quasi-Newton matrix and it is generated using information from the CG
iterations without requiring the explicit knowledge of the Hessian matrix. It is a dynamic
preconditioner which exploits only the matrix–vector product of the Hessian matrix times a
vector as information on the Hessian matrix and therefore a coherent comparison of the results
can be performed by embeddeding the preconditioner PREQN within our implementation of
the linesearch-based truncated Newton method.

Since the proposed preconditioning strategy is also motivated by the possibility of more
efficiently solving real problems, we start our numerical investigation by considering real
unconstrained problems taken from the MINPACK-2 collection [8] for which a routine which
computes the product of the Hessian matrix times a vector is available. The aim of this
preliminary test is to check the reliability of the diagonal preconditioning strategy DSPREC
as well as to compare the results with those obtained by means of unpreconditioned CG and
preconditioner PREQN. We report these results in table 1. As it can be observed from this
table, on the problem GL2 (which is the most difficult in terms of computational burden
needed to solve it) the use of the proposed diagonal preconditioning leads to a significative
reduction of the total number of the inner iterations with respect to the results obtained by the
unpreconditioned CG and by PREQN; moreover, a significant saving of the computing time

Table 1. Results on MINPACK-2 problems: 2-dimensional Ginzburg–Landau model for superconductivity with
nv = 8 (GL2); minimal surfaces (MSA); optimal design with composite materials with λ = 0.008 (ODC).

Unpreconditioned CG PREQN DSPREC

Problem n it/ng nf CG-it Time it/ng nf CG-it Time it/ng nf CG-it Time

GL2 400 28 19 6,282 30.13 34 146 6,031 33.54 17 60 4,017 18.59
900 37 149 11,755 126.91 49 234 16,927 211.47 16 50 9,275 97.04

MSA 400 4 4 52 0.10 4 4 35 0.10 4 4 75 0.12
900 5 5 116 0.32 5 5 79 0.35 5 5 223 0.58

ODC 400 11 15 268 0.47 11 16 168 0.49 12 15 269 0.48
900 14 18 297 0.86 14 20 233 1.06 15 22 595 1.62
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is also noticed. This situation is evidenced in both the instances, that is the beneficial effect
of diagonal preconditioning is not reduced as a consequence of an increase of the dimension
of the problem; moreover, note that a reduction of number of the iterations is obtained, too.
As regards the other two problems, they are solved very quickly by all the three algorithms
even if, on the instances of 900 variables, the diagonal preconditioning does not seems to be
effective since an increase of the number of CG iterations is observed; however, note that this
does not lead to a significative increase of CPU time needed to solve the problems.

Now, after this preliminary test, we turn to a more general numerical investigation. In
particular, we are interested in evaluating the effectiveness of the proposed diagonal precon-
ditioning strategy as ‘general purpose’ rather than an ‘ad hoc’ strategy for a specific problem.
To this aim, we now consider a very large set of test problems; in fact we use all the large
scale (n ≥ 1000) unconstrained problems available in the CUTE collection [9]. Moreover, for
those problems with variable dimension, we consider two instances, usually n = 1000 and
n = 10,000 or different if a problem has assigned dimensions. These leads to consider 117 test
problems. The computation of the matrix–vector products of the Hessian matrix times a vector
is performed directly by using the routine uprod available from the CUTE environment.

The complete results obtained by our implementation of the linesearch-based truncated
Newton using the unpreconditioned CG, the quasi-Newton preconditioner PREQN and the
diagonal preconditioner DSPREC are reported in ref. [36]. For the sake of brevity, here we
report only some summary of the results. In particular, in tables 2–4, a summary of the results
considering all those problems coherently solved by the three algorithms and where they con-
verges towards to the same point is reported. As it can be observed, the use of the diagonal
preconditioner DSPREC enables a considerable computational saving on most problems with
respect to both the unpreconditioned method and the one usingPREQN, both in terms of number
of inner iterations and in terms of CPU time and on some test problems the gain is impressive
(see, e.g. problems DIXMAANE, DIXMAANF, DIXMAANG, DIXMAANH, DIXMAANI,
DIXMAANJ, DIXMAANK, DIXMAANL, GENHUMPS, NONDQUAR, POWER (n =
10,000), SPARSINE, TESTQUAD, TQUARTIC (n = 1000), TRIDIA). We have been inves-
tigating the distribution of the eigenvalues for these problems and, for the sake of shortness,
we report here only the plot of the distributions which seem to be typical and significative (in
the plot we reduce the dimension in order to be able to compute and plot the spectrum of the
matrices). Figure 1 reports a typical distribution of the eigenvalues of the Hessian matrix and
the Hessian matrix preconditioned via DSPREC for the DIXMAANα problems. The effect of
clustering due to preconditioning is clearly evidenced. Figure 2 reports the spectrum of the
Hessian and the preconditioned Hessian for NONDQUAR problem (n = 100): the Hessian
matrix presents 99 eigenvalues in the range [0, 48] and one eigenvalue over 103, while all the
eigenvalues of the preconditioned Hessian matrix belong to [0, 1]. Finally, we report the plot
of the eigenvalue distribution for the problem TESTQUAD on which the diagonal precondi-
tioner DSPREC is really very effective. The plot reported in figure 3 gives a clear justification
of this. The eigenvalues distributions now reported are only examples, but they represent the
typical situation which occurs whenever the preconditioner works well; in particular, the capa-
bility of clustering the eigenvalues is clearly showed. It is at the basis of the preconditioning
strategy and explains the great improvements obtained on many problems compared with the
unpreconditioned method.

Moreover, it is very important to note that on those problems where DSPREC leads to a
reduction of the number of the inner iterations with respect to the unpreconditioned case, a sav-
ing of CPU time is always observed, too. This means that DSPREC possesses the fundamental
feature of a good preconditioner, that is, the cost of building and applying it is very low, thus
succeeding not only to offset the additional computational effort, but also allowing to obtain
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Table 2. Results for unpreconditioned CG, PREQN and DSPREC – Part A.

Unpreconditioned CG PREQN DSPREC

n it/ng nf CG-it Time it/ng nf CG-it Time it/ng nf CG-it Time

ARWHEAD 1,000 6 6 6 0.46 6 6 6 0.08 7 7 7 0.09
ARWHEAD 10,000 6 6 6 0.97 6 6 6 1.11 7 7 7 1.42
BDQRTIC 1,000 13 13 59 0.26 14 14 59 0.37 10 10 13 0.16
BDQRTIC 10,000 14 32 64 5.31 14 32 53 5.42 10 10 12 2.35
BRYBND 1,000 11 11 73 0.39 11 11 71 0.51 11 11 69 0.45
BRYBND 10,000 17 24 168 11.33 16 20 141 11.33 12 12 78 6.34
COSINE 1,000 7 8 9 0.07 7 8 9 0.05 9 13 12 0.07
COSINE 10,000 7 8 7 0.87 7 8 9 0.89 9 13 12 1.36
CRAGGLVY 1,000 15 15 102 0.32 16 16 92 0.45 20 21 149 0.48
CRAGGLVY 10,000 17 17 133 7.94 16 16 75 6.25 20 21 168 10.29
CURLY10 1,000 17 31 8,008 6.74 14 28 4,806 10.84 18 25 8,295 8.51
CURLY20 1,000 17 31 6,783 20.38 16 26 5,798 24.86 18 29 6,903 22.06
CURLY30 1,000 19 36 7,126 35.25 18 37 5,955 34.95 18 37 6,317 32.60
DIXMAANA 1,500 7 7 8 0.12 8 8 11 0.14 8 8 8 0.15
DIXMAANA 3,000 8 8 9 0.34 8 8 10 0.31 8 8 8 0.33
DIXMAANB 1,500 8 8 8 0.14 8 8 8 0.14 8 8 8 0.17
DIXMAANB 3,000 8 8 8 0.34 8 8 8 0.30 8 8 8 0.36
DIXMAANC 1,500 9 9 9 0.15 9 9 9 0.16 9 9 9 0.17
DIXMAANC 3,000 9 9 9 0.38 9 9 9 0.34 9 9 9 0.40
DIXMAAND 1,500 11 11 13 0.20 11 11 12 0.20 10 10 10 0.20
DIXMAAND 3,000 11 11 13 0.48 11 11 12 0.48 10 10 10 0.52
DIXMAANE 1,500 10 10 188 0.55 11 11 285 1.48 9 9 9 0.16
DIXMAANE 3,000 11 11 427 3.04 11 11 345 3.84 9 9 9 0.37
DIXMAANF 1,500 15 19 406 1.40 18 29 482 2.64 14 14 24 0.30
DIXMAANF 3,000 15 20 600 4.69 17 20 626 7.18 14 14 23 0.70
DIXMAANG 1,500 15 20 450 1.57 16 23 439 2.36 14 14 23 0.30
DIXMAANG 3,000 16 21 370 3.15 18 34 464 5.59 16 16 34 0.87
DIXMAANH 1,500 19 27 423 1.57 18 21 426 2.32 16 21 34 0.38
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Table 3. Results for unpreconditioned CG, PREQN and DSPREC – Part B.

Unpreconditioned CG PREQN DSPREC

n it/ng nf CG-it Time it/ng nf CG-it Time it/ng nf CG-it Time

DIXMAANH 3,000 21 33 637 5.14 25 50 886 9.91 16 16 32 0.89
DIXMAANI 1,500 11 11 3,255 7.73 11 11 2,988 13.68 9 9 9 0.16
DIXMAANI 3,000 11 11 6,218 37.81 11 11 5,799 57.38 9 9 9 0.39
DIXMAANJ 1,500 26 58 4,069 12.60 37 132 7,028 34.55 16 16 25 0.33
DIXMAANJ 3,000 35 114 8,621 58.41 30 83 3,787 40.38 16 16 24 0.82
DIXMAANK 1,500 20 43 1,865 5.94 39 121 3,986 19.96 16 16 24 0.34
DIXMAANK 3,000 48 185 8,359 57.70 38 111 9,679 101.94 16 16 23 0.80
DIXMAANL 1,500 21 42 3,721 11.58 26 50 2,988 13.38 17 17 26 0.40
DIXMAANL 3,000 42 152 5,505 38.57 62 234 8,883 94.93 17 17 26 0.86
DQDRTIC 1,000 7 7 14 0.06 6 6 9 0.07 2 2 2 0.01
DQDRTIC 10,000 8 8 16 1.39 7 7 12 1.24 2 2 2 0.23
DQRTIC 1,000 23 23 23 0.07 23 23 23 0.08 23 23 23 0.08
DQRTIC 10,000 27 27 27 1.84 27 27 27 1.86 27 27 27 2.19
EDENSCH 1,000 14 15 29 0.21 15 17 33 0.33 13 13 19 0.20
EDENSCH 10,000 17 17 40 4.46 15 16 31 3.79 13 13 19 3.24
EIGENALS 930 39 57 811 21.81 32 38 688 18.99 38 52 138 8.75
ENGVAL1 1,000 10 10 25 0.11 10 10 19 0.18 9 9 13 0.10
ENGVAL1 10,000 10 10 20 2.13 10 10 16 2.03 9 9 13 1.95
FLETCBV2 1,000 1 1 1 0.01 1 1 1 0.01 1 1 1 0.00
FLETCBV2 10,000 1 1 1 0.08 1 1 1 0.08 1 1 1 0.07
FLETCHCR 1,000 1,484 1,699 24,522 32.15 1,477 1,683 18,937 60.57 1,475 1,681 25,207 36.67
FMINSURF 1,024 39 243 6,854 10.12 34 223 6,162 18.58 26 167 5,547 9.03
FMINSURF 5,625 62 601 33,799 641.33 37 285 21,253 514.60 41 362 27,395 538.76
FREUROTH 1,000 12 17 30 0.19 12 17 25 0.26 13 18 24 0.26
FREUROTH 10,000 11 16 23 2.76 11 16 18 2.68 13 18 24 3.75
GENHUMPS 1,000 2,154 2,703 5,657 24.67 1,162 3,204 3,686 18.58 615 1,696 1,873 8.38
GENROSE 1,000 550 1,713 9,388 12.69 638 2,407 8,289 22.48 560 1,589 7,528 12.52
LIARWHD 1,000 16 16 23 0.18 15 15 24 0.20 12 12 20 0.13
LIARWHD 10,000 17 19 23 2.91 14 14 22 2.47 13 13 17 2.44



706
M

.R
om

a

Table 4. Results for unpreconditioned CG, PREQN and DSPREC – Part C.

Unpreconditioned CG PREQN DSPREC

n it/ng nf CG-it Time it/ng nf CG-it Time it/ng nf CG-it Time

MOREBV 1,000 2 2 185 0.12 2 2 185 0.15 2 2 185 0.15
MOREBV 10,000 2 2 1,200 32.33 2 2 1,200 34.83 2 2 1,200 33.32
NCB20B 1,000 18 55 975 18.82 21 69 1,538 30.07 18 70 3,263 59.19
NONDQUAR 1,000 61 170 10,793 5.38 68 203 12,669 16.94 38 78 3,814 2.17
NONDQUAR 10,000 46 105 3,222 74.90 60 154 3,743 134.79 25 34 801 20.77
PENALTY1 10,000 47 49 56 5.75 47 49 56 5.70 52 54 494 18.00
POWELLSG 1,000 20 20 66 0.10 20 20 52 0.13 19 19 68 0.11
POWELLSG 10,000 21 21 74 2.77 21 21 52 2.72 20 20 75 3.01
POWER 1,000 32 32 937 0.57 32 32 296 0.51 31 37 406 0.33
POWER 10,000 38 38 2,608 49.88 38 38 1,002 32.93 36 64 121 4.87
SCHMVETT 1,000 7 7 36 0.17 7 7 29 0.19 7 7 29 0.17
SCHMVETT 10,000 8 8 46 3.28 7 7 26 2.62 8 9 32 2.98
SPARSINE 1,000 17 21 3,729 9.10 36 205 3,234 12.70 5 5 5 0.07
SPARSQUR 1,000 20 20 36 0.28 20 20 27 0.29 20 20 20 0.27
SPARSQUR 10,000 23 23 38 9.08 23 23 30 8.59 23 23 23 9.47
SPMSRTLS 1,000 12 16 143 0.59 12 15 133 0.75 18 58 727 2.59
SPMSRTLS 10,000 18 41 303 17.53 15 32 319 21.78 51 276 7,436 360.34
SROSENBR 1,000 8 8 9 0.04 8 8 10 0.05 9 9 11 0.05
SROSENBR 10,000 8 8 9 0.79 8 8 10 0.85 9 9 11 1.02
TESTQUAD 1,000 14 14 1,188 0.62 14 14 1,454 1.66 2 2 2 0.01
TOINTGSS 1,000 5 5 9 0.05 5 5 9 0.06 3 3 3 0.04
TOINTGSS 10,000 4 4 4 0.47 4 4 4 0.59 3 3 3 0.35
TQUARTIC 1,000 464 469 921 3.23 16 35 26 0.13 10 11 14 0.07
TQUARTIC 10,000 8 12 9 1.00 9 13 11 1.18 7 11 9 1.03
TRIDIA 1,000 12 12 674 0.35 12 12 488 0.60 9 9 47 0.10
TRIDIA 10,000 13 13 1,910 37.93 13 13 1,479 48.06 9 9 47 1.70
VARDIM 1,000 19 177 18 0.11 19 177 18 0.11 19 151 179 0.20
VAREIGVL 1,000 16 18 1,501 4.08 32 98 393 2.11 27 73 4,849 13.37
WOODS 1,000 296 305 1,159 2.38 47 79 136 0.45 82 100 298 0.72
WOODS 10,000 283 296 1,108 53.19 46 75 134 9.41 83 100 302 17.72
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Figure 1. Distribution of the eigenvalues of the Hessian matrix H (on the left) and the preconditioned matrix

M̃−1/2HM̃−1/2 (on the right) for the problem DIXMAANK n = 90.

Figure 2. Distribution of the eigenvalues of the Hessian matrix H (on the left) and the preconditioned matrix

M̃−1/2HM̃−1/2 (on the right) for the problem NONDQUAR n = 100.

Figure 3. Distribution of the eigenvalues of the Hessian matrix H (on the left) and the preconditioned matrix

M̃−1/2HM̃−1/2 (on the right) for the problem TESTQUAD n = 100.
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an overall computational saving. On the contrary, as regards PREQN, in many cases, even if it
enables a reduction of the inner iterations, an increase of the time needed to solve the problem
is observed with respect to the unpreconditioned case, due to the cost of preconditioning.

Furthermore, by observing tables 2–4 it is worthwhile noticing that there are problems (see,
e.g. CURLY30, POWER, FLETCHCR) on which both the preconditioning strategies allows
to obtain a reduction of the number of inner iterations with respect to the unpreconditioned
method, and moreover, PREQN behaves better than DSPREC in terms of inner iterations. How-
ever, if we observe the CPU time needed to solve these problems, we discover that PREQN is
more expensive, pointing out a general consideration on the fact that a preconditioning strategy
more elaborate with respect to a diagonal preconditioning can lead to a great reduction of the
number of inner iterations but with an heavy computational effort (note that the differences
obtained on these problems in terms of CPU time are only due to the different preconditioners,
since the number of iterations is nearly the same).

Finally there are four problems (NCB20B, SPMSRTLS, VARDIM, VAREIGVL) on which
DSPREC has a poor behavior in terms of inner iterations and CPU time, in comparison with
the other two methods. We have been studying the distribution of the eigenvalues for those
problems where the preconditioner does not work well. The plot for two typical significative
situations are now reported: the spectrum of the Hessian and the Hessian matrix precondi-
tioned via DSPREC for the problem NCB20B and for the problem SPMSRTLS are plotted
in figures 4 and 5, respectively. Figure 4 points out that the poor behavior is mainly due to
the fact the Hessian matrix is nearly singular. As regards figure 5, it can be observed that
the eigenvalues remain similarly distributed after preconditioning; in this case, the deteriora-
tion of the performance is justified by a significative increase of the condition number of the
preconditioned Hessian matrix with respect to the unpreconditioned one.

The latter case considered represents an example for which the Hessian matrix is such as
to give rise to the definition of a very poor preconditioner. This relies, in general, on the fact
that the diagonal elements σj in (3) might be a poor approximation of the �1-norm of the j th
column vector of the Hessian matrix. When this occurs, the equilibration strategy based on
columns scaling of DSPREC may be not successful in the sense that the Hessian matrix could
remain badly scaled or even the conditioning could be worsened after preconditioning. This
seems to be one of the main reasons of the poor behavior of DSPREC observed is some cases.

Another interesting analysis of the results can be carried on by considering the cumulative
results, that is the total number of iterations, function evaluations, inner iterations and CPU
time needed to solve all the problems considered in the tables 2–4. These cumulative results are

Figure 4. Distribution of the eigenvalues of the Hessian matrix H (on the left) and the preconditioned matrix

M̃−1/2HM̃−1/2 (on the right) for the problem NCB20B n = 100.
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Figure 5. Distribution of the eigenvalues of the Hessian matrix H (on the left) and the preconditioned matrix

M̃−1/2HM̃−1/2 (on the right) for the problem SPMSRTLS n = 100.

Table 5. Cumulative results for unpreconditioned CG, PREQN
and diagonal preconditioned CG.

Unpreconditioned CG PREQN DSPREC

it/ng 6,617 4,832 4,016
nf 10,260 10,712 7491
CG-it 182,027 154,257 114,833
Time 1437.95 1550.73 1279.48

reported in table 5. They confirm the effectiveness of DSPREC; in fact, the method which uses
the diagonal preconditioning strategy performs the best in terms of all the criteria considered.
In order to complete the numerical comparison among the three algorithms, in table 6 we
report the number of times each algorithm performs the best in term of number of iterations,
function evaluations, inner iterations and CPU time. This table confirms that, in most cases,
the diagonal preconditioning strategy proposed in this paper produces the best results with
respect to the unpreconditioned method and the automatic preconditioning PREQN.

To conclude the numerical investigations, it is interesting to compare the behavior of
DSPREC with other two diagonal preconditioners which can be considered ideal, in the sense
they satisfy the strong theoretical properties reported in the previous section: the Jacobi pre-
conditioner and the exact diagonal column scaling in the �1-norm. Actually, for large scale
problems, they are impracticable since to build them the actual elements of the Hessian matrix
must be known. However, this comparison is very interesting to know how close DSPREC
is to an ‘ideal’ preconditioner. Note that a huge computational effort is usually required to

Table 6. Number of times each algorithm performs the best.

Unpreconditioned CG PREQN DSPREC

it/ng 24 29 55
nf 25 30 54
CG-it 18 29 54
Time 16 13 33
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Table 7. Results for Jacobi preconditioner, exact diagonal column scaling and DSPREC – Part A.

Jacobi preconditioner Exact diagonal column scaling DSPREC

n it/ng nf CG-it it/ng nf CG-it it/ng nf CG-it

ARWHEAD 1000 7 7 7 7 7 7 7 7 7
BDQRTIC 1000 10 10 18 10 10 13 10 10 13
BRYBND 1000 10 10 32 11 11 32 11 11 69
COSINE 1000 7 8 9 7 8 9 9 13 12
CURLY10 1000 17 26 7455 17 22 7821 18 25 8295
CURLY20 1000 18 35 6678 19 32 8467 18 29 6903
CURLY30 1000 18 33 6663 18 33 5830 18 37 6317
DIXMAANA 1500 8 8 8 8 8 8 8 8 8
DIXMAANA 3000 8 8 8 8 8 8 8 8 8
DIXMAANB 1500 8 8 8 8 8 8 8 8 8
DIXMAANB 3000 8 8 8 8 8 8 8 8 8
DIXMAANC 1500 10 10 12 9 9 9 9 9 9
DIXMAANC 3000 10 10 12 9 9 9 9 9 9
DIXMAAND 1500 11 11 13 10 10 10 10 10 10
DIXMAAND 3000 11 11 13 10 10 10 10 10 10
DIXMAANE 1500 8 8 8 9 9 9 9 9 9
DIXMAANE 3000 8 8 8 9 9 9 9 9 9
DIXMAANF 1500 9 9 9 14 14 24 14 14 24
DIXMAANF 3000 9 9 9 14 14 23 14 14 23
DIXMAANG 1500 10 10 12 14 14 23 14 14 23
DIXMAANG 3000 10 10 10 17 18 39 16 16 34
DIXMAANH 1500 11 11 14 16 21 34 16 21 34
DIXMAANH 3000 11 11 14 16 16 32 16 16 32
DIXMAANI 1500 8 8 8 9 9 9 9 9 9
DIXMAANI 3000 8 8 8 9 9 9 9 9 9
DIXMAANJ 1500 10 10 11 16 16 25 16 16 25
DIXMAANJ 3000 10 10 10 16 16 24 16 16 24
DIXMAANK 1500 10 10 10 16 16 24 16 16 24
DIXMAANK 3000 10 10 10 16 16 23 16 16 23
DIXMAANL 1500 11 11 11 17 17 26 17 17 26
DIXMAANL 3000 11 11 11 17 17 26 17 17 26
DQDRTIC 1000 2 2 2 2 2 2 2 2 2
DQRTIC 1000 23 23 23 23 23 23 23 23 23
EDENSCH 1000 13 13 19 13 13 21 13 13 19

construct the preconditioner which carries out the exact diagonal column scaling, and there-
fore in this comparison we concentrate on the number of CG iterations needed for solving
each problem without considering the CPU time. In tables 7 and 8 these results are reported
for all the problems where the three algorithms converge to the same point, excluding those
ones with 10,000 variables for which the computation of the exact �1-norm of the columns of
the Hessian matrix is impracticable. As it can be observed from these tables, in many cases
DSPREC behaves exactly like the exact column scaling or it is very close to it, and this is at
the basis of the good behavior of DSPREC on those problems. On the overall, these results
reveal that the use of the diagonal of the Hessian as preconditioner would be very effective
in terms of number of CG inner iterations, whenever this diagonal were available at a low
computational cost; as regards DSPREC, these results point out how it closely resembles the
exact diagonal column scaling, leading to a great efficiency due to the fact that DSPREC can
be built very inexpensively.
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Table 8. Results for Jacobi preconditioner, exact diagonal column scaling and DSPREC – Part B.

Jacobi preconditioner Exact diagonal column scaling DSPREC

n it/ng nf CG-it it/ng nf CG-it it/ng nf CG-it

EIGENALS 930 31 45 143 37 52 129 38 52 138
ENGVAL1 1,000 9 9 13 9 9 13 9 9 13
FLETCBV2 1,000 1 1 1 1 1 1 1 1 1
FLETCHCR 1,000 1,477 1,683 23,808 1,479 1,689 23,795 1,475 1,681 25,207
FMINSURF 1,024 1,412 2,915 2,520 41 378 2,557 26 167 5,547
FREUROTH 1,000 10 15 18 11 16 17 13 18 24
GENHUMPS 1,000 306 716 585 1,142 1,429 2,306 615 1,696 1,873
GENROSE 1,000 711 2,350 6,262 669 1,853 6,035 560 1,589 7,528
LIARWHD 1,000 12 12 21 11 11 18 12 12 20
MOREBV 1,000 2 2 188 2 2 186 2 2 185
NCB20B 1,000 23 90 3,165 18 66 3,338 18 70 3,263
NONDIA 1,000 776 807 1,542 36 58 50 36 58 50
NONDQUAR 1,000 41 91 2,903 33 66 2,877 38 78 3,814
PENALTY1 1,000 42 44 70 50 57 323 49 55 324
POWELLSG 1,000 19 19 63 19 19 60 19 19 68
POWER 1,000 31 37 36 31 37 225 31 37 406
QUARTC 1,000 23 23 23 23 23 23 23 23 23
SCHMVETT 1,000 7 7 26 8 8 42 7 7 29
SINQUAD 1,000 111 168 298 393 427 1,175 89 157 221
SPARSINE 1,000 15 18 2,433 12 12 1,465 5 5 5
SPARSQUR 1,000 20 20 50 20 20 20 20 20 20
SPMSRTLS 1,000 17 35 132 11 12 119 18 58 727
SROSENBR 1,000 9 10 11 9 9 11 9 9 11
TESTQUAD 1,000 2 2 2 2 2 2 2 2 2
TOINTGSS 1,000 7 7 10 7 7 10 3 3 3
TQUARTIC 1,000 15 20 21 15 23 21 10 11 14
TRIDIA 1,000 11 11 46 11 11 46 9 9 47
VARDIM 1,000 28 101 1,340 19 151 184 19 151 179
VAREIGVL 1,000 15 17 628 15 15 736 27 73 4,849
WOODS 1,000 48 58 155 83 104 302 82 100 298

5. Concluding remarks

In this paper, the problem of defining preconditioning strategies for truncated Newton methods
has been considered. In particular, dynamical preconditioners which use only information
on the Hessian matrix obtained by the product of the Hessian matrix times a vector are
investigated. Within this framework, a new preconditioning strategy is proposed based on a
dynamic scaling of the Hessian matrix, aiming at obtaining a column equilibrated matrix in
�1-norm.

The diagonal preconditioning strategy proposed has been embedded within a linesearch-
based truncated Newton method and an extensive numerical investigation has been performed
on a large set of large scale test problems. The obtained results have been compared with
those obtained by means of the same method which does not use any preconditioner and by
a preconditioned method which uses the automatic preconditioner based on limited quasi-
Newton updating (PREQN) proposed in ref. [5]. This comparison evidenced that the truncated
Newton method which uses this new diagonal preconditioning strategy is very effective in the
solution of most problems considered, performing better than the unpreconditioned method
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and the one which uses the automatic quasi-Newton preconditioner PREQN. It is also evident
that both the preconditioners are not always beneficial; hence, once more, the experiments
performed in this work pointed out the difficulty to define a ‘general purpose’ preconditioner.
Further numerical experiences showed that the behavior of the new diagonal preconditioner
is very closely related to the ideal exact diagonal column scaling.

Even if no final conclusion can be drawn, on the whole, the new preconditioning strategy
proposed in this paper seems to be very efficient and we believe that it could be success-
fully used for defining efficient truncated Newton methods for the solution of large scale
unconstrained problems. Moreover, some points are still worthwhile investigating: to devise
adaptive rules to decide when the preconditioner should be used based on information gained
from the CG iterations, getting inspiration from ref. [37]; to exploit the information obtained
from the sequence of the matrix–vector products involving the Hessian computed at each CG
iteration to improve the preconditioner, like, e.g. in ref. [23]; to combine the use of this diag-
onal preconditioner with other preconditioners, or to use it to initialize other preconditioners.
Furthermore, the diagonal preconditioner could be combined with a suited transformation
so that the first matrix–vector product at each first inner iteration provides the product He,
thus avoiding the extra matrix–vector product needed, at each outer iteration, to construct the
diagonal preconditioner.

Finally, we think that the definition of an effective preconditioning strategy is strictly con-
nected with the choice of an efficient truncation criterion for the inner iterations which is still
a challenging topic for the research in the truncated Newton methods.
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