
Data Management for Data Science

Corso di laurea magistrale in Data Science
Sapienza Università di Roma

2015/2016

Domenico Lembo, Riccardo Rosati

Dipartimento di Ingegneria Informatica Automatica e Gestionale A. Ruberti

Sapienza Università di Roma

NoSQL Databases: Aggregated DBs

Bibliographic References

• The main bibliographic reference for this part is:

[SaFo13] NoSQL Distilled: A Brief Guide to the Emerging

World of Polyglot Persistence. Pramod J. Sadalage & Martin

Fowler. Addison Wesley. 2013

2

• NoSQL data models

• Key-value, document, column databases

• Distribution models

• Consistency

• Map-Reduce

3

NoSQL databases: Aggregated DBs

4

NoSQL: beyond graph databases

• So far we have investigated Graph Databases, mainly for their
ability of providing

• schemaless modeling of data

• native treatment of relationships between pieces of
information

• The above characteristics make them particularly suited at
handling data with complex relationships, in particular in those
contexts in which the domain dynamics make solutions based on
the classical relational model not effectively and efficiently
applicable (e.g., user connections’ in a social networks,
recommendation systems, geospatial applications, ecc.).

• We also have investigated an interesting use of graph databases
specified through the RDF W3C standard for data (and
knowledge) sharing at the web scale.

5

NoSQL: completing the picture

• Graph databases are only a particular family of databases that we
can classify as belonging to the “NoSQL movement”

• Also, graph databases generally present only some of the
characteristics that are typical of NoSQL solutions, and which we
summarize below (even though there is no generally accepted
definition of NoSQL in the literature):

• schemaless

• not using SQL

• generally open-source (even though the NoSQL notion is also
applied to closed-source systems)

• generally driven by the need to run on clusters (but graph databases
do not typically fall in this class)

• generally not handling consistency through ACID transactions (but
notice that graph databases instead do it)

6

NoSQL: Aggregate data models

• Besides Graph databases other three categories are widely used
in the NoSQL ecosystem to classify data models adopted by
NoSQL solutions:

• key-value

• document

• column-family

• They share a common characteristic of their data models which
we will call aggregate orientation[SaFo13]

• Aggregate is a term that comes from Domain-Driven Design
(DDD) (http://dddcommunity.org/). In DDD, an aggregate is a
collection of related objects that we wish to treat as a unit. In
particular, it is a unit for data manipulation and management of
consistency

7

Aggregate data models

• The relational model divides the information that we want
to store into tuples (rows): this is a very simple structure for
data (which somehow is the key of the success of the
relational model and the cause of the relational dominance we
experienced from the late 70s to the first years of 2000s)

• Aggregate orientation takes a different approach. It
recognizes that often you want to operate on data in units
that have a more complex structure.

• It can be handy to think in terms of a complex record that
allows lists and other record structures to be nested inside it

• As well see, key-value, document, and column-family
databases all make use of this more complex record.

• However, there is no common term for this complex record;
according to [SaFo13] we use here the term aggregate.

Aggregate data models

An order, which looks like a single aggregate 8

9

Aggregate data models

• A natural question is now which are the main motivations at
the basis of the rise of aggregate data models and tools
supporting them

• Some of them coincide with the motivations that originated the
development of the Big Data ecosystem, and which we already
discussed (recall the three v’s, etc.)

• According to [SaFo13], two main aspects however should be
emphasized:

• Dealing with aggregates makes it much easier for these
databases to handle operating on a cluster, since the aggregate
makes a natural unit for replication and sharding

• Also, it may help solving the impedance mismatch problem,
i.e., the difference between the relational model and the in-
memory data structures (see previous figure)

10

Attack of the clusters

• The 2000s did see several large web properties dramatically
increase in scale!

• Websites started tracking activity and structure in a very
detailed way. Large sets of data appeared: links, social
networks, activity in logs, mapping data. With this growth in
data came a growth in users

• Coping with the increase in data and traffic required more
computing resources

• Scaling up implies bigger machines, more processors, disk
storage, and memory. But bigger machines get more and
more expensive, not to mention that there are real limits as
your size increases

11

Attack of the clusters

• The alternative is to scale out, i.e., use lots of small
machines in a cluster. A cluster of small machines can use
commodity hardware and ends up being cheaper at these kinds
of scales.

• It can also be more resilient while individual machine failures
are common, the overall cluster can be built to keep going
despite such failures, providing high reliability

• As large properties moved towards clusters, that revealed a
new problem: relational databases are not designed to be run
on clusters!

12

Attack of the clusters

• Relational databases could also be run as separate servers for
different sets of data, effectively sharding the database, (i.e., data are
physically segmented on various storage nodes)

• While this separates the load, all the sharding has to be controlled by
the application which has to keep track of which database server to
talk for each bit of data

• Also, we lose any querying, referential integrity, transactions , or
consistency controls that cross shards

• Deciding the granularity of sharding is a very difficult issue!

• Aggregate orientation fits well with scaling out because the
aggregate is a natural unit to use for distribution

• On the other hand, NoSQL aggregate databases generally adopt a
relaxed notion of consistency, with respect to the classical one used
in the relation world which is based on ACID transactions. Also,
slicing aggregates for more fine grained access to them may become
very difficult

13

Impedance mismatch

• The impedance mismatch is a major source of frustration to application
developers, and in the 1990s many people believed that it would lead to
relational databases being replaced with databases that replicate the in-
memory data structures to disk

• That decade was marked with the growth of object-oriented
programming languages, and with them came object-oriented databases

• However, while object-oriented languages succeeded in becoming the
major force in programming, object-oriented databases were not
successful: Relational databases remained the major technology for data
storage, being them highly consolidated, well-known, optimized, and,
above all, based on standard language (SQL)

• Thus, impedance mismatch remained an issue: Object-relational
mapping frameworks like Hibernate or iBatis have been proposed that
make it easier, but are not suited for those (frequent) scenarios in which
many applications rely on the same (integrated) database. Also, query
performance in general suffers under these frameworks .

14

Impedance mismatch - example

Actual data is stored in a DB:

D2[Code: Int, Salary: Int, SSN: String]

Employee’s Code with salary and SSN

D1[Code: Int, PrName: String]

Employees and Projects they work for

Conceptually:

– An Employee is identified by her SSN.

– A Project is identified by its name.

Thus,

(i) an employee should be created from her SSN;

(ii) a project should be created from its PrName

SSN: String

salary: Integer

Employee

prName: String

Project

1..*

1..*

worksFor

in-memory

data structure

15

SQL as an integration mechanism

• The primary factor that made relational databases more successful
over OO databases is probably the role played by SQL as an
integration mechanism between applications

• In this scenario, multiple applications store their data in a common,
integrated database. This improves communication because all the
applications are operating on a consistent set of persistent data

16

Integration vs application databases

• There are downsides to shared database integration

� A structure that is designed to integrate many applications
ends up being more complex

� Changes to data by different applications need to be
coordinated

� different applications have different performance needs,
thus call for different index structures

� complex access control policies

• A different approach is to treat your database as an application
database

17

Application databases

• An application database is only directly accessed by a single
application, which makes it much easier to maintain and evolve

• Interoperability concerns can now shift to the interfaces of the
application:

� During the 2000s we saw a distinct shift to web services,
where applications would communicate over HTTP (cf.
work on Service-oriented Architecture).

• If you communicate with SQL, the data must be structured as
relations. However, with a service, you are able to use richer
data structures, possibly with nested records and lists.

• These are usually represented as documents in XML or, more
recently, JSON (JavaScript Object Notation), a lightweight
data-interchange format.

18

Application databases

• Since using application databases there is a decoupling between
your internal database and the services with which you talk to
the outside world, the outside world doesn’t have to care how
you store your data, allowing you to consider nonrelational
options

• Furthermore, there are many features of relational databases,
such as security, that are less useful to an application database
because they can be done by the enclosing application instead

Note: On the other hand, when each application has its own database, the risk
arises that data may become non-aligned, mutually inconsistent, and difficult to
access in an integrated fashion. All these aspects should be indeed managed at
the application level, which does not always take care of them.

19Relational database perspective: no aggregates

*

Example of Relations and Aggregates

20

Note: for simplicity, only interesting attributes for the instance at
hand of the Address relation are represented. By default, each
entity is assigned with a code

Example of Relations and Aggregates

21

Note: Address is strongly aggregated into Customer (implicit cardinality 0..1). Order
is a strong aggregation of Address, OrderItem and Payment. Payment is a strong
aggregation of Addresses (strong aggregation means that a single istance of
Address is aggregated into a single instance of Customer, or Order, or Payment,
but not in more than one)

Example of Relations and Aggregates

22

Example of Relations and Aggregates
There are two main aggregates:

customer and order

The customer contains a list of

billing addresses and a name; the

order contains a list of order items, a

shipping address, and a list of

payments. Each payment contains a

billing address for that payment.

A single logical address record

appears three times in the example

data, but, instead of using IDs, it is

treated as a value and copied each

time.

The link between the customer and

the order isn’t an aggregation.

However, we’ve shown the product

name as part of the order to minimize

the number of aggregates we access

during a data interaction

23

An alternative way of aggregating data

Example of Relations and Aggregates

....

24

Consequences of Aggregate Orientation

• The fact that an order consists of order items, a shipping address, and
a payment can be expressed in the relational model in terms of
foreign key relationships but there is nothing to distinguish
relationships that represent aggregations from those that don’t. As a
result, the database can’t use the knowledge about an aggregate
structure to help it store and distribute the data

• Aggregation is however, not a logical data property: It is all about
how the data is being used by applications -- a concern that is often
outside the boundary of data modeling

• Also, an aggregate structure may help with some data interactions but
be an obstacle for others (in our example, to get to product sales
history, you’ll have to dig into every aggregate in the database)

• The clinching reason for aggregate orientation is that it helps
greatly with running on a cluster!

25

Consequences of Aggregate Orientation

• Aggregates have an important consequence for transactions.

• Relational databases allow you to manipulate any combination of rows
from any tables in a single (ACID) transaction (i.e., Atomic, Consistent,
Isolated, and Durable)

• It’s often said that NoSQL databases don’t support ACID transactions
and thus sacrifice consistency. This is however not true for graph
databases (which are, as relational database, aggregate-agnostic)

• In general, its true that aggregate-oriented databases don’t have ACID
transactions that span multiple aggregates. Instead, they support atomic
manipulation of a single aggregate at a time: This means that if we need
to manipulate multiple aggregates in an atomic way, we have to manage
that ourselves in the application code!

• In practice, we find that most of the time we are able to keep our
atomicity needs to within a single aggregate; indeed, that is part of the
consideration for deciding how to divide up our data into
aggregates

• NoSQL data models

• Key-value, document, column databases

• Distribution models

• Consistency

• Map-Reduce

26

NoSQL databases: Aggregated DBs

27

Key-Value and Document Data Models

• We said earlier on that key-value and document databases were strongly
aggregate-oriented

• In a key-value database, the aggregate is opaque to the database: just
some big blob of bits. The advantage of opacity is that we can store
whatever we like in the aggregate. It is the responsibility of the
application to understand what was stored. Since key-value stores
always use primary-key access, they generally have great performances,
Descended as they are from Amazon’s Dynamo database—a platform
designed for a nonstop shopping cart service—Key-values stores
essentially act like large, distributed hashmap data structures.

• In contrast, a document database is able to see a structure in the
aggregate, but imposes limits on what we can place in it, defining
allowable structures and types. In return, however, we get more
flexibility when accessing data.

28

Key-Values: example

29

Documents: example (JSON format)

30

Key-Value and Document Data Models

• With a key-value store, we can only access an aggregate by lookup
based on its key

• At the simplest level, even in document databases documents can be
stored and retrieved by ID (as key-values stores). however, in general,
we can submit queries to the database based on the fields in the
aggregate, we can retrieve part of the aggregate rather than the whole
thing, and the database can create indexes based on the contents of the
aggregate. In general, indexes are used to retrieve sets of related
documents from the store for an application to use.

• As usual, indexes speed up read accesses but slow down write accesses,
thus they should be designed carefully.

31

Indexes on Document Data Models

For example, in an ecommerce scenario, we might use indexes to

represent distinct product categories so that they can be offered up to

potential sellers.

32

Key-Value and Document Data Models

• In practice, the line between key-value and document gets a bit
blurry: People often put an ID field in a document database to do a
key-value style look-up. Databases classified as key-value databases
may allow you structures for data beyond just an opaque. For example,
Redis allows you to break down the aggregate into lists or sets, Riak
allows you to put aggregates into buckets.

• Some of the popular key-value databases are Riak, Redis (often referred
to as Data Structure server), Memcached DB, Berkeley DB, HamsterDB
(especially suited for embedded use), Amazon DynamoDB (not open-
source), Project Voldemort (an open-source implementation of Amazon
DynamoDB)

• Some of the popular document databases are MongoDB, CouchDB,
Terrastore, OrientDB (which is also a graph DBMS), RavenDB, but also
Lotus Notes, which adopts document storage.

33

Column Family Stores

• Column family stores are modeled on Google’s BigTable. The

data model is based on a sparsely populated table whose rows can

contain arbitrary columns.

• Some popular Column Family stores are Cassandra, Hbase,

Hypertable, and Amazon SimpleDB

• Note: These databases with a bigtable-style data model are often

referred to as column stores, and not column family stores, but that

name has been around for a while to describe a different object: Pre-

NoSQL column stores, such as C-Store or MonetDB, were happy with

SQL and the relational model. The thing that made them different was

the way in which they physically stored data, based on columns rather

than on rows as a unit for storage (this storage system is particularly

suited to speed up read accesses)

Column Family Stores

• The column-family model can be seen as a two-level

aggregate structure

– As with key-value stores, the first key is often described as a

row identifier, picking up the aggregate of interest

– This row aggregate is itself formed of a map of more

detailed values. These second-level values are referred to as

columns, each being a key-value pair

• Columns are organized into column families. Each column

has to be part of a single column family (data for a

particular column family will be usually accessed together)

• Each row identifier (i.e., first-level key) is unique in the

context of a single Column Family.

34

Column Family Stores

35

36

Column Family Stores

Two ways to think about how the data is structured:

• Row-oriented: Each row is an aggregate (for example,

customer with the ID of 1234) with column families

representing useful chunks of data (profile, order history) within

that aggregate

• Column-oriented: Each column family defines a record type

(e.g., customer profiles) with rows for each of the records. You

then think of a row as the join of records in all column families.

Column Families can be then to some extent considered as

tables in RDBMSs. Unlike table in RDBMSs, a Column Family

can have different columns for each row it contains

37

Column Family Stores: Cassandra

• The terminology used so far is as established by Google

Bigtable and HBase, but Cassandra looks at things slightly

differently:

• What we have called column family according to the

Bigtable terminology is somehow equivalent to Cassandra

supercolumns, i.e., columns that contain nested columns.

• We can still use the term column family in Cassandra, and

think of column families as tables, but now, each row in the

table, besides possibly having different columns with

respect to other rows, presents columns aggregated in

supercolums. Also, a row in Cassandra only occurs in one

column family.

38

Column Family Stores:

Cassandra terminology

39

Aggregate DBs: Wrapping up

• All aggregate data models are based on the notion of an aggregate
indexed by a key that you can use for lookup. Within a cluser, all the
data for an aggregate should be stored together on one node. The
aggregate also acts as the atomic unit for management

• The key-value data model treats the aggregate as an opaque whole (no
access to portion of an aggregate is allowed). Great performances are
allowed but the aggregate has to be understood at the application level

• The document model makes the aggregate transparent, allowing you to
do queries and partial retrievals. However, since the document has no
schema, the database cannot act much on the structure of the document
to optimize the storage

• Column-family models divide the aggregate into column families,
allowing the database to treat them as units of data within the row
aggregate. This imposes some structure on the aggregate but allows the
database to take advantage of that structure to improve its accessibility

40

Schemaless databases

• NoSQL databases are schemaless:

• A key-value store allows you to store any data you like under a key.

• A document database effectively does the same thing, since it makes no
restrictions on the structure of the documents you store.

• Column-family databases allow you to store any data under any column
you like.

• Graph databases allow you to freely add new edges and freely add
properties to nodes and edges as you wish.

• This has various advantages:

• Without a schema binding you, you can easily store whatever you need,
and change your data storage as you learn more about your project

• You can easily add new things as you discover them

• A schemaless store also makes it easier to deal with nonuniform data:
data where each record has a different set of fields (limiting sparse data
storage)

41

Schemaless databases

• Schemalessness is appealing, but it brings some problems of its own

• Indeed, whenever we write a program that accesses data, that program
almost always relies on some form of implicit schema: it will assume
that certain field names are present and carry data with a certain
meaning, and assume something about the type of data stored within
that field

• Having the implicit schema in the application means that in order to
understand what data is present you have to dig into the application
code. Furthermore, the database remains ignorant of the schema: it
cannot use the schema to support the decision on how to store and
retrieve data efficiently. Also, it cannot impose integrity constraints to
maintain information coherent

42

Schemaless databases

• Since the implicit schema is into the application code that accesses it,
the situation becomes problematic if multiple applications access the
same database

• These problems can be reduced with a couple of approaches.

• One is to encapsulate all database interaction within a single
application and integrate it with other applications using web
services

• Another approach is to clearly delineate different areas of an
aggregate for access by different applications (e.g., different
sections of a document, different column families, etc.)

• Remark: if you need to change your aggregate boundaries in
aggregate databases, the data migration is as complex as it is in the
relational case (remember also that, even though not frequent,
relational schemas can be changed at any time with standard SQL
commands).

43

(Materialized) Views

• Although NoSQL databases don’t have views as relational databases,
they may have precomputed and cached queries, and they use the
term “materialized views” to describe them

• This is particularly useful for those applications that have to deal with
some queries that don’t fit well with the aggregate structure

• There are two basic strategies to manage materialized views

• update the materialized view at the same time you update the
base data for it (this is useful if you have more read than write
accesses)

• run batch jobs to update the materialized views at regular
intervals (of course, in this case some temporal windows exist in
which data in the materialized views may be not aligned).

in both approaches, strategies for incremental updates of view are
often used.

44

Data Modeling

• Despite several NoSQL tools have been developed in the last years,
and various technical solutions have been proposed so far, to date no
methodologies have been developed to guide the database designer in
the modeling of a NoSQL database

• This contrasts with the well established methodologies available for
the design of a relational database

• This is however justified by the fact that NoSQL data models and
technologies are still in their infancy

• Methodologies need thus to be devised to both (i) model data (e.g.,
decide the form of aggregates in aggregate DBs), and (ii) distribute
data on a cluster (in this respect, we notice that no consolidated
methodologies exist even for distributing relational databases over
several storage nodes in a network)

• In what follows we limit to present some general considerations on
data modeling with the help of an example

45

Data Modeling

• When modeling data aggregates we need to consider how the data is going to
be read (and what are the side effects with the chosen aggregates)

• Example: Let’ s start with the model where all the data for the customer is
embedded using a key-value store

• The application can read the
customers information and all
the related data by using the key

• To read the orders or the
products sold in each order, the
whole object has to be read and
then parsed on the client side

46

Data Modeling

When references are needed we
should change the data for the key-
value store to split the value object
into Customer and Order objects and
then maintain these objects reference

We can now find the orders
independently from the Customer,
and access then the customer using
the CustomerID reference in the
Order, whereas with the OrderId in
the Customer we can find all Orders
for the Customer

Using aggregates this way allows for
read optimization, but we have to
push the OrderId reference into
Customer for every new Order

47

Data Modeling

In document stores,
since we can query
inside documents, we
can find all Orders
for the Customer
even removing
references to Orders
from the Customer
object. This change
allows us to not
update the Customer
object when orders
are placed by the
Customer

48

Data Modeling

• Aggregates can also be used to obtain analytics; for example, an aggregate
update may fill in information on which Orders have a given Product in
them.

• This denormalization of the data allows for fast access to the data we are
interested in and is the basis for Real Time Businees Intelligence or Real
Time Analytics: enterprises do not have to rely on end-of-the-day batch to
populate data warehouses tables and generate analytics.

• Of course, only pre-packed analyses are possible through this approach

document store

modeling:

49

Data Modeling

Remark:

• Since document data stores allow you to query by attributes
inside the document, searches such as “find all orders that
include the ‘Divina Commedia’ product” are possible

• Creating an aggregate in a document store of product and
orders it belongs to is therefore not necessary for obtaining the
result we are looking for, but rather for optimizing the way we
obtain it.

50

Data Modeling

• When using the column families to
model the data, we can model the
schema a little more. Obviously, there
are multiple ways to model the data

• In our example, one way is to store
the Customer and Order in different
column families

• The reference to all the orders placed
by the customer are in the Customer
column family. Similar other
denormalizations are generally done
so that query (read) performance is
improved

51

Data Modeling

When using graph databases to model the same data, we model all objects as (typed)
nodes and relations within them as (typed) edges; both nodes and edges may have
properties (key/value pairs). This is especially convenient when you need to use the

data to recommend products to users or to
find

patterns in actions taken by users.
1:Customer

name: “Martin”

3:Payment

type: “debit”

ccinfo:”1000..”

27:Product

price:32,45

2:Address

city:”Chicago”

99:Order

date:”Nov-20-2011”

belongs_to

payed_with

txtId:”abef…”

containsshipped_to

purchased

adress_of

ordered_by

Possible representation
in Neo4J formalism

• NoSQL data models

• Key-value, document, column databases

• Distribution models

• Consistency

• Map-Reduce

52

NoSQL databases: Aggregated DBs

53

Distribution Models

• As said, the primary driver of interest in NoSQL has been its
ability to run databases on a large cluster

• In particular, aggregate orientation fits well with scaling out
because the aggregate is a natural unit to use for distribution

• Let us now have a look to various models for data distribution

• Sharding

• Master-slave replication

• Peer-to-peer replication

Note: What follows is a brief overview. More on this topic is addressed
in the course “Distributed Systems” (Prof. R. Baldoni)

54

Sharding

• Often, a busy data store is busy because different people are
accessing different parts of the dataset. In these circumstances we can
support horizontal scalability by putting different parts of the data
onto different servers. This technique is called Sharding

55

Sharding

• Two main issues arise in Sharding:

1. how to clump the data, so that one user mostly gets her data
from a single server

2. how to arrange single data clumps on the nodes to provide the
best data access

• As for point 1, we recall that we generally design aggregates to
combine data that are commonly accessed together. So aggregates
leap out as an obvious unit of distribution

• As for point 2, there are several factors that can help improve
performance. If you know that most accesses of certain aggregates
are based on a physical location, you can place the data close to
where it is being accessed. Another factor is trying to arrange
aggregates so they are evenly distributed across the nodes which all
get equal amounts of the load. This may vary over time

56

Sharding

• Sharding is particularly valuable for performance because it can
improve both read and write performance

• Sharding however does little to improve resilience when used alone:
Although the data is on different nodes, a node failure makes that
shards data unavailable just as surely as it does for a single-server
solution. The resilience benefit it does provide is that only the users
of the data on that shard will suffer, which is however not that much!
Furthermore, we notice that clusters often use less reliable machines
than those adopted in single-server solutions, and therefore node
failures can be more frequent. So in practice, sharding alone is likely
to decrease resilience

• Many NoSQL databases offer auto-sharding, where the database
takes on the responsibility of allocating data to shards and ensuring
that data access goes to the right shard

57

Master-slave replication

• With master-slave distribution, you replicate data across
multiple nodes

• One node is designated as the master, or primary, and is the
authoritative source for the data, usually responsible for
processing any updates to that data

• The other nodes are slaves, or secondaries. A replication
process synchronizes the slaves with the master

58

Master-slave replication

59

Master-slave replication

• Master-slave replication is most helpful for scaling when you have a
read-intensive dataset, since read accesses can be on any node, but it
isn’t such a good scheme for datasets with heavy write traffic, since
all writes must be routed to the master and than propagated to the
slaves.

• Also, should the master fail, the slaves can still handle read requests
(read resilience)

• The failure of the master however eliminates the ability to handle
writes until either the master is restored or a new master is appointed.
Having slaves as replicates of the master does speed up recovery after
a failure

• The main drawback is the arising of possible inconsistency. You have
the danger that different clients, reading different slaves, will see
different values because the changes haven’t all propagated to the
slaves!

60

Peer-to-peer replication

• Master-slave replication helps with read scalability but doesn’t
help with scalability of writes. It provides resilience against
failure of a slave, but not of a master

• Peer-to-peer replication attacks these problems by not having a
master. All the replicas have equal weight, they can all accept
writes, and the loss of any of them does not prevent access to
the data store

61

Peer-to-peer replication

62

Peer-to-peer replication

• With a peer-to-peer replication cluster, you can ride over node
failures without losing access to data. Furthermore, you can easily
add nodes to improve your performance

• The biggest complication is, again, consistency. When you can write
to two different places, you run the risk that two people will attempt
to update the same record at the same time: a write-write conflict!

• Inconsistencies on read lead to problems but at least they are
relatively transient. Inconsistent writes are forever!

• There are various policies that can be adopted to cope with this
problem. Here we mention only some of them:

• we can ensure that whenever we write data, the replicas coordinate one
another to ensure we avoid a conflict (at the cost of network traffic to
coordinate the writes)

• In other cases we can decide we don’t need all the replicas to agree on
the write, but just a majority

• At the other extreme, we can decide to cope with an inconsistent write.
There are contexts when we can come up with policy to successively
merge inconsistent writes

63

Sharding with Master-slave replication

• If we use both master-slave replication and sharding, we then
have multiple masters, but each data item only has a single
master.

64

Sharding with P2P replication

• Using peer-to-peer replication and sharding is a common strategy
for column-family databases. Each shard is replicated in a peer-to-
peer fashion

• In a scenario like this you might have tens or hundreds of nodes in
a cluster with data sharded over them. Should a node fail, then the
shards on that node will be built on the other nodes

• NoSQL data models

• Key-value, document, column databases

• Distribution models

• Consistency

• Map-Reduce

65

NoSQL databases: Aggregated DBs

66

Consistency
• Informally: “every request receives the right response”

• In relational databases the above aim is achieved through the
enforcement of so-called ACID properties to database transactions
(strong consistency)
• Atomicity: every transaction is executed in “all-or-nothing” fashion

• Coherence*: every transaction preserves the coherence with constraints

on data (i.e., at the end of the transaction constraints are satisfied by

data)

• Isolation: transaction does not interfere. Every transaction is executed as

it was the only one in the system (every seralization of concurrent

transactions is accepted)

• Durability: after a commit, the updates made are permanent regardless

possible failures

*Note: In DB literature the term Consistency is often used in place of Coherence to
indicate conformance of data with integrity constraints. However, here we use
Consistency in a wider sense (e.g., it indicates the enforcement of all ACID properties),
and thus we prefer to indicate constraints satisfaction as data Coherence.

67

Consistency

Transactions in relational DBMSs are such that:

• Atomicity is always guaranteed

• Coherence can be relaxed within the transaction (e.g., by
deferring constraint checks), but it is enforced at the end of
the transaction (when data are committed)

• Durability is in general guaranteed (even though some in-
memory databases may not fully meet this requirement)

• Isolation is the most critical property, since independent
transactions may interfere in various ways.

68

Consistency – Isolation in RDBMSs
• Possible Conflicts between transactions T1 and T2 are classified as

• Write-Read (WR): T1 reads data written by T2, which is still not
committed (and that could be rolled-back)

• Read-Write (RW): T1 reads data that T2 then updates (before T1 is
committed)

• Write-Write (WW): T2 overwrites data previously written by T1 (but
before T1 is committed)

• Isolation is ensured through the use of sophisticated lock
mechanisms that assign a resource to a transaction in exclusive or
shared modality

• DBMSs allow users to set the desired isolation level, which means
adopting a desired lock policy

• The stricter lock policy guarantees serializability: the final effect on
the DB is the execution of either the sequence T1-T2 or the
sequence T2-T1

• For performance reasons, often a weaker isolation level is adopted:
for example, the Read-Committed level is enough to avoid WW and
WR conflicts

69

RW - example

This kind of conflicts is also called inconsistent read. Avoiding

them means ensuring logical consistency

In this example, we want to check whether X+Y+Z=100

Consistency in NoSQL DBs

• A common claim we hear is that NoSQL databases don’t support

transactions and thus can’t be consistent

• As we already said, any statement about lack of transactions

usually only applies to some NoSQL databases, in particular the

aggregate-oriented ones, whereas graph databases tend to support

ACID transactions

• Secondly, aggregate-oriented databases do support atomic

operations, but only within a single aggregate. Consider the

example in the previous slide and assume you have an aggregate

database storing that data. If X, Y and Z are managed in the same

aggregate, RW conflict can be avoided (logical consistency within

an aggregate but not between aggregates)

70

Relaxing consistency
• More in general, in distributed databases, consistency, and in

particular isolation, is often relaxed for performance reasons in

such a way that also conflicts typically avoided in a single-server

setting (like WW conflicts) are somehow tolerated

• Indeed, concurrent programming involves a fundamental tradeoff

between safety (avoiding errors such as WW conflicts) and

liveness (responding quickly to clients)

• Also, we notice that in the presence of more than one server, such

as with peer-to-peer replication, serializability is complicated by

the fact that different nodes might apply the updates in a different

order. Often, when people talk about concurrency in distributed

systems, they talk about sequential consistency— ensuring that all

nodes apply operations in the same order.

71

72

Update consistency

• As for updates, rather than a pessimistic approach, which works by

preventing conflicts from occurring, an optimistic approach is often

adopted, which lets conflicts occur, but detects them and takes action

to sort them out

• A common optimistic approach is a conditional update where any

client that does an update (which may give rise to WW conflicts) tests

the value just before updating it to see if it’s changed since her last

read

• There is another optimistic way to handle a write-write conflict —
save both updates and record that they are in conflict. Then, you have
to merge the two updates somehow (heavily application dependent)

• These techniques are particularly relevant under P2P replication

Read consistency
• Since in NoSQL databases logical consistency is within an

aggregate but not between aggregates, any update that affects

multiple aggregates leaves open a time when clients could perform

an inconsistent read

• The length of time an inconsistency is present, is called the

inconsistency window

• A NoSQL system may have a quite short inconsistency window

(e.g., Amazon’s documentation says that the inconsistency window

for its SimpleDB service is usually less than a second)

• Once you introduce replication, however, you get a whole new

kind of read inconsistency (besides logical inconsistency):

Replication inconsistency

73

Replication consistency
Replication consistency amounts to ensuring that the same data item has the

same value when read from different replicas

Example: Martin and Cindy, who are in London and Boston respectively, are on

phone to book together an hotel room. At the same time, Pramod books the last

room in that hotel at the Mumbai node and the Boston node shows the booking

before the London one

74

Eventually consistent

• Eventually, of course, the updates propagate fully in the network,

(and Martin will see the room is booked)

• Therefore this situation is generally referred to as eventually

consistent, meaning that at any time nodes may have replication

inconsistencies but, if there are no further updates, eventually all

nodes will be updated to the same value

• Although replication consistency is independent from logical

consistency, replication can exacerbate a logical inconsistency by

lengthening its inconsistency window (for examples, under master-

slave replication, inconsistency window is generally narrow on the

master, but lasts for much longer on a slave)

75

Session consistency

• Inconsistency windows can be particularly problematic when you

get inconsistencies with yourself.

• read-your-writes consistency means that, once you’ve made an

update, you’re guaranteed to continue seeing that update.

• There are situations where guaranteeing this may not be so obvious

• Consider the example of posting comments on a blog entry. Often,

systems handle the load of such sites by running on a cluster and

load-balancing incoming requests to different nodes. This means

that you may post a message using one node, then refresh your

browser, but the refresh goes to a different node which hasn’t

received your post yet!

• session consistency guarantees read-your-writes consistency

within a session: if the session ends for some reason, or the user

access simultaneously the same system from different computers,

she may lose consistency.

76

Session consistency

• There are a couple of techniques to guarantee session consistency.

• sticky session: a session that’s tied to one node (this is also

called session affinity). The downside is that sticky sessions

reduce the ability of the load balancer to do its job.

• using version stamps*, ensuring that every interaction with

the data store includes the latest version stamp seen by a

session. The server node must then ensure that it has the

updates that include that version stamp before responding to a

request.

*A version stamp is a field that changes every time the data in the database

changes. When you read the data you keep a note of the version stamp, so

that when you write data you can check to see if the version has changed.

77

Properties of shared data systems

• Consistency
� (informally) “every request receives the right response”

� E.g. If I get my shopping list on Amazon I expect it contains all the

previously selected items

� It is essentially what discussed so far

• Availability
� (informally) “each request eventually receives a response”

� E.g. eventually I access my shopping list

� A bit more formally: if you can talk to a node in the cluster, it can

read and write data.

• tolerance to network Partitions
� (informally) “servers can be partitioned into multiple groups that

cannot communicate with one other”

� A bit more formally: the cluster can survive communication

breakages that separate the cluster into multiple partitions unable to

communicate one another

78

Network partitions

79

This situation is also known as a split brain

(simple) CA systems

80

• A single-server system is the obvious example of a CA system: a

system that has Consistency and Availability. Partition tolerance is

not applicable here, since a single machine can’t partition. This is

the world that most relational database systems live in

• It is theoretically possible to have a CA cluster: However, this

would mean that if a partition ever occurs in the cluster, all the

nodes in the cluster would go down so that no client can talk to a

node (according to definition of availability, if a node is not

reachable, then it does not infer lack of capability). Realizing a CA

cluster in this way is usually prohibitively expensive. Notice also

that we are somehow bypassing partition tolerance here

The CAP Theorem

81

• When we try to have a cluster to be really tolerant to network

partitions, the CAP theorem comes into play

“Of three properties of shared-data systems (Consistency,

Availability and tolerance to network Partitions) only two can

be achieved at any given moment in time.”

• 2000: Eric Brewer, PODC conference keynote

• 2002: Seth Gilbert and Nancy Lynch, ACM SIGACT News 33(2)

The CAP Theorem - observations

82

� CAP states that in case of failures you can have at most two of

these three properties for any shared-data system

� To scale out, you have to distribute resources.
� P is not really an option but rather a need

� The real selection is among Consistency or Availability

� In almost all cases, you would choose availability over

consistency.

� In practice, what CAP is saying is that in a system that may

suffer partitions, as distributed system do, you have to trade off

consistency versus availability (if there are no strong reasons to

do the converse). However, it is not a binary decision; often, you

can trade off a little consistency to get some availability.

Example

83

London Mumbai

Martin and Pramod are both trying to book the last hotel room on a system that

uses peer-to-peer distribution with two nodes. If we want to ensure consistency,

when Martin tries to book his room on the London node, that node must

communicate with the Mumbai node before confirming the booking. But

should the network link break, then neither system can book any hotel room,

sacrificing availability.

Example

84

• One way to improve availability is to designate one node as the master for a

particular hotel and ensure all bookings are processed by that master.

Should that master be Mumbai, then Mumbai can still process hotel

bookings for that hotel and Pramod will get the last room, whereas Martin

can see the inconsistent room information but cannot make a booking

(which would in this case cause an update inconsistency). This is a lack of

availability for Martin.

• To gain more availability, we might allow both systems to keep accepting

hotel reservations even if a link in the network breaks down. But this may

cause both Martin a Pramod book the same room => Inconsistency. But in

this domain it might be tolerated somehow: the travel company may tolerate

some overbooking; some hotels might always keep a few rooms clear even

when they are fully booked; Some hotels might even cancel the booking

with an apology once they detected the conflict.

Relaxing consistency

86

• The lesson here is that there are cases in which you can

gracefully deal with inconsistent answers to requests

• The level of inconsistency accepted completely depend on

the application at hand. In general, you should establish how

tolerant you are to stale reads (i.e., reading obsolete data)

and how long the inconsistency window can be

• Advocate of NoSQL often say that instead of following the

ACID properties of relational transactions, NoSQL systems

follow the BASE properties

BASE

87

BASE stands for Basically Available Soft State Eventually

Consistent system.

� Basically Available: the system is available most of the time

and there could exist a subsystem temporarily unavailable

� Soft State: data are “volatile” in the sense that their

persistence is in the hand of the user that must take care of

refreshing them

� Eventually Consistent: the system eventually converges to a

consistent state

CAP theorem - conclusions

88

• It’s usually better to think not about the tradeoff between consistency

and availability but rather between consistency and latency

• We can always improve consistency by getting more nodes involved

in the interaction, but each node we add increases the response time of

that interaction

• We can then think of availability as the limit of latency that we’re

prepared to tolerate: once latency gets too high, we give up and treat

the data as unavailable

• In principle every system should be designed to ensure both C and A

in normal situations. When a partition occurs, the decision among C

and A can be taken. When the partition is resolved the system takes

corrective action coming back to work in normal situation

• NoSQL data models

• Key-value, document, column databases

• Distribution models

• Consistency

• Map-Reduce

89

NoSQL databases: Aggregated DBs

Map Reduce

• When you have a cluster, you have lots of machines to

spread the computation over.

• However, you also still need to try to reduce the amount of

data that needs to be transferred across the network.

• The map-reduce pattern is a way to organize processing in

such a way as to take advantage of multiple machine on a

cluster while keeping as much processing and the data it

needs together on the same machine.

90

Map Reduce

• This programming model gained prominence with

Google’s MapReduce framework [Dean and Ghemawat,

OSDI-04].

• A widely used open-source implementation is part of the

Apache Hadoop project.

• The name “map-reduce” reveals its inspiration from the

map and reduce operations on collections in functional

programming languages.

91

Map Reduce - benefits

• Complex details are abstracted away from the

developer

– No file I/O

– No networking code

– No synchronization

• It’s scalable because you process one record at a

time

• A record consists of a key and corresponding

value

92

Map Reduce Example* – Job input

• Each mapper gets a chunk of job’s input data to process

– This “chunk” is called an InputSplit

• In this example the input is a portion of a log with a list of

events, each of a certain type (INFO, WARN…)

93*This example is taken from: An Introduction to Hadoop. Mark Fei (Cloudera). Strata

+ Hadoop World 2012 Conference

Map Reduce Example –

Phyton code for map function

• Our map function will parse the event type, and

then output that event (key) and a literal 1 (value)

94

Map Reduce Example–

output of map function

• The map function produces key/value pairs as

output

95

Map Reduce Example –

Input to Reduce Function

• The (single) Reducer receives a key and all values for

that key

• Keys are always passed to reducers in sorted order

whereas, values are unordered

96

Map Reduce Example –

Python Code for Reduce Function

• The Reducer first extracts the key and value it was passed

97

Map Reduce Example –

Python Code for Reduce Function

• Then simply adds up the value for each key

98

Map Reduce Example –

Output of the Reduce Function

• The output of this Reduce function is a sum for each level

99

Map Reduce Example –

Recap in data flow

100

An Example with Aggregate data

101

Let us consider the usual scenario of customers and orders

We have chosen order as

our aggregate, with each

order having line items.

Each line item has a

product ID, quantity, and

the price charged.

Sales analysis people want to see a product and its total

revenue for the last seven days.

An Example with Aggregate data

102

• In order to get the product revenue report, you’ll have to visit

every machine in the cluster and examine many records on each

machine.

• This is exactly the kind of situation that calls for map-reduce.

Again, the first stage in a map-reduce job is the map.

• A map is a function whose input is a single aggregate and whose

output is a bunch of key-value pairs.

• In this case, the input would be an order, and the output would

be key-value pairs corresponding to the line items

• For this example, we are just selecting a value out of the record,

but there’s no reason why we can’t carry out some arbitrarily

complex function as part of the map—providing it only depends

on one aggregate’s worth of data.

An Example with Aggregate data

103

Each such pair would have the product ID as the key and an

embedded map with the quantity and price as the value

An Example with Aggregate data

104

The reduce function takes multiple map outputs with the same

key and combines their values

An Example with Aggregate data

105

• The map-reduce framework arranges for map tasks to be run on the

correct nodes to process all the documents and for data to be moved

to the reduce framework

• The framework collects all the values for a single pair and calls the

reduce function once with the key and the collection of all the

values for that key

• So to run a map-reduce job, you just need to write these two

functions.

• Each application of the map function is independent of all the

others. This allows them to be safely parallelizable, so that a map-

reduce framework can create efficient map tasks on each node and

freely allocate each order to a map task.

• To increase parallelism, we can also partition the output of the

mappers and send each partition to a different reducer (“shuffling”)

Partitioning map outputs

106

Looking at the entire distributed computation

107

• Coming back to the log example we might have the following

situation:

– Input for the entire job is subdivided into InputSplits

• In Hadoop An InputSplit usually corresponds to a single HDFS

(Hadoop Distributed File System) block

• Each of these serves as input to a single Map task

Mappers Feed the Shuffle and Sort

108

Output of all Mappers is partioned, merged, and sorted (No code

required – the framework, e.g., Hadoop does this automatically)

Shuffle and Sort Feeds the Reducers

109

All values for a given key are then collapsed into a list . The

key and all its values are fed to reducers as input

Each Reducer Has an Output

110

In Hadoop, these are output files stored in HDFS below your

output directory. It is then possible to replicate them to a local

copy

Programming with map-reduce

111

• Map-reduce is powerful, but it has a rigid schema: Within a

map task, you can only operate on a single aggregate. Within

a reduce task, you can only operate on a single key.

• This means you have to think differently about structuring

your programs so they work well within these constraints. In

particular, you have to structure your calculations around

operations that fit in well with the notion of a reduce

operation.

• Of course, you have to put some care in this

A further example

112

• Let’s consider the kind of orders we’ve been looking at so far; suppose we

want to know the average ordered quantity of each product.

• But averages are not composable — that is, if I take two groups of orders,

I can’t combine their averages alone.

• In this case, the reducer needs to take total amount and the count of orders

from each group , combine those, and then calculate the average from the

combined sum and count

A two stage Map-Reduce example

113

• As map -reduce calculations get more complex, it’s useful to

break them down into stages.

• Consider an example where we want to compare the sales of

products for each month in 2011 to the prior year.

• To do this, we’ll break the calculations down into two stages.

• The first stage will produce records showing the aggregate

figures for a single product in a single month of the year.

• The second stage then uses these as inputs and produces the

result for a single product by comparing one month’s results

with the same month in the prior year.

A two stage Map-Reduce example

114

First stage: Creating records for monthly sales of a product

A two stage Map-Reduce example

115

Second stage (map) : mappers take as input the output of the

first stage, and “prepare” the input for reducers

A two stage Map-Reduce example

116

Second stage (reduce) : The reduction step is a merge of

incomplete records.

Map-reduce – further aspects

117

• Map-reduce is a pattern that can be implemented in any

programming language.

• But, it is a good fit for languages specifically designed for

map-reduce computations.

• Apache Pig , an offshoot of the Hadoop project , is a language

specifically built to make it easy to write map-reduce programs

• In a similar vein, if you want to specify map-reduce programs

using an SQL-like syntax, there is Hive, another Hadoop

offshoot (it takes your SQL-like queries and turns them into

MapReduce jobs)

• Another interesting tool in the Hadoop ecosystem is Sqoop,

which integrates with any JDBC-compatible database (import

into HDFS from a RDBMS, and export to a RDBMS)

