
Data Management File organization - 1

Data Management for Data Science

Database Management Systems:
Access file manager and query evaluation

Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Ingegneria informatica automatica e gestionale

Università di Roma “La Sapienza”

2016/2017

Data Management File organization - 2

SQL engine

Access file manager

Buffer manager

Disk manager

Security and

recovery

manager

Data

SQL commands

DBMS

Transaction

manager

Architecture of a DBMS

Data Management File organization - 3

3. Access file manager

3.1 Pages and records
3.2 Simple file organizations
3.3 Index organizations

Data Management File organization - 4

3. Access file manager

3.1 Pages and records
3.2 Simple file organizations
3.3 Index organizations

Data Management File organization - 5

Relations, files, pages and records

Relation DB file

PageRecord contains

formedR-R

(1,n)

(1,1)

(1,1)

(1,n)

(1,n)

(1,1)

Nota: R-R is a derived relationship

(1,n)

(1,1)

stored

Data Management File organization - 6

Pages and records

• The usual dimension of a page is that of a block

• A page is physically constituted by a set of slots

• A slot is a memory space that may contain one record

(typically, all slots of a page contain records of one

relation) and has a number that identifies it in the context

of the page

• Each record has an identifier (record id, o rid)

rid = <page id, slot number>

Data Management File organization - 7

Page with fixed length records

• Packed organization: moving a record changes its rid, and this is a problem,
when records are referred to by other pages

• Unpacked organization: identifying a record requires to scan the bit array to
check whether the slot is free (0) or not (1)

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1

UNPACKED

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

Number of
records

number
of slots

PACKED

Data Management File organization - 8

Page with variable length records

No problem in moving records to the same page! Deleting a record means to

set to -1 the value of the corresponding slot, and move the record space to

the free space (re-organizing the data area and the free space area when

needed).

Page iRid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer to
start of
free space

SLOT DIRECTORY

N . . . 2 1

20 16 24 N

slots

20

Data Management File organization - 9

Page with variable length records

When a record (for example the record with Rid (i,2) in the picture) moves to

another page (page j), we can store in the record itself the address of the

new position (in terms of the page id j and the position k within page j).

Page i

(j,h)

Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer to
start of
free space

SLOT DIRECTORY

N . . . 2 1

20 16 24 N

slots

20

Data Management File organization - 10

Format of a fixed length record

• Information on fields are the same for all records of the

type, and are stored in the system catalog

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Data Management File organization - 11

Format of variable length records

Two alternatives (the number of fields is fixed):

Alternative (2) allows direct access to the fields, and

efficient storage of nulls (two consecutive pointers that

are equal correspond to a null)

4 $ $ $ $

Number
of fields

Fields separated by special symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of offset

(1)

(2)

Data Management File organization - 12

3. Access file manager

3.1 Pages and records
3.2 Simple file organizations
3.3 Index organizations

Data Management File organization - 13

File

• A file is a collection of pages, each one containing a

collection of records (as we saw before)

• A file organization should support the following

operations:

– insert/delete/update a record

– read the record specified by its rid

– scan all the records, possibly focusing on the records

satisfying some given condition

Data Management File organization - 14

File organizations

file organization

simple index-based

treehash

ISAM B+-tree

extendible

hashing

linear

hashing

static

hash
dynamic

hash

coincides with

hashed file

heap sorted

sorted

index

Data Management File organization - 15

Simple file organizations

file organization

simple index-based

treehash

ISAM B+-tree

extendible

hashing

linear

hashing

static

hash
dynamic

hash

coincides with

hashed file

heap sorted

sorted

index

Data Management File organization - 16

Heap File

• In the “heap file organization”, the file representing
the relation contains a set of pages, each one with a
set of records, with no special criterion or order

• When the relation grows or shrinks, pages are
allocated or de-allocated

• To support the operations, it is necessary:

– To keep track of the pages belonging to the file

– To keep track of free space in the pages of the file

– To keep track of the record in the pages of the file

Data Management File organization - 17

Heap File represented through lists

• When a page is needed, the request is issued to the disk
manager, and the page returned by the disk manager is put as
a first page of the list of pages with free space

• When a page is not used anymore (i.e., it is constituted by only
free space), it is deleted from the list

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
free space

Full pages

Data Management File organization - 18

Heap File represented through directory

• The directory is a list of pages, where each entry contains a pointer to a data
page

• Each entry in the directory refers to a page, and tells whether the page has
free space (for example, through a counter)

• Searching for a page with free space is more efficient, because the number of
page accesses is linear with respect to the size of the directory, and not to
the size of the relation (as in the case of the list-based representation)

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

…..

Data Management File organization - 19

File with sorted pages

• Records are sorted within each page on a set of fields

(called the search key)

• Pages are sorted according to the sorting of their

records

• The pages are stored contiguously in a sequential

structure, where the order of pages reflects the sorting

of records

Data Management File organization - 20

Hashed file

• The page of the relation are organized into groups,
called bucket

• A bucket consists of:

– one page, called primary page

– possibly other pages (called overflow pages) linked to
the primary page

• A set of fields of the relation is chosen as the “search
key”. When searching for a record with a given value k
for the search key, we can compute the address of the
bucket containing R by means of the application of a
function (called hash function) to k

Data Management File organization - 21

Hashed file
• Fixed number of primary pages N (i.e., N = number of buckets)

– sequentially allocated

– never de-allocated

– with overflow pages, if needed

• h(k) mod N = address of the bucket containing record with search key k

• (h○ mod N) should distribute the values uniformly into the range 0..N-1

h(k) mod N

hSearch key k

Primary pages Overflow pages

1

0

N-1

Data Management File organization - 22

Cost model (wrt execution time)

B: number of pages in the file

R: number of records per page

D: time for writing/reading a page

- Tipically: 15 ms

C: average time for processing one record (e.g., comparing a field with

a value)

- Tipically: 100 ns

→ I/O operations dominate main memory processing

→ Therefore, we often concentrate only on the number of

page accesses in order to characterize the execution

time of operations

Data Management File organization - 23

Operations on data and their cost

� Scan the records of the file

� Cost of loading the pages of the file

� CPU cost for locating the records in the pages

� Selection based on equality

� Cost of loading the pages with relevant records

� CPU cost for locating the records in the pages

� The record is guaranteed to be unique if equality is

on key (search based on key)

� Selection based on range

� Cost of loading the pages with relevant records

� CPU cost for locating the records in the pages

Data Management File organization - 24

Operations on data

� Insertion of a record

– Cost of locating the page where insertion occurs

– Cost of loading the page

– Cost of modifying the page

– Cost of writing back the page

– Cost of loading, modification and writing of other pages, if
needed

� Deletion of a record

– Like insertion

Data Management File organization - 25

Heap file - cost of operations

We will ignore the cost of locating and managing the pages
with free space

�Scan:

B(D + RC)

– For each of the B pages of the file

• load it (D)

• for each of the R records of the page: process it (C)

�Equality selection:

B(D + RC)

→ the data record can be absent, or many data records can
satisfy the condition

→ if the data record is just one (and therefore is unique and
present), and if the probability that the record is in the i-th
page is 1/B, then the average cost is B/2(D +RC)

Data Management File organization - 26

Heap file - cost of operations

�Range selection:

B(D + RC)

� Insertion: D + C + D

– Loading of the (last) page

– Insertion in the page

– Write the page

� Deletion

– If the record is identified by rid: D + C + D

– If the record is specified through an equality or range
selection: B(D + RC) + XC + YD

• X number of records to delete

• Y number of pages with records to be deleted

Data Management File organization - 27

Sorted file: search based on key

� The simplest method to perform the equality selection on
the key (search based on the key) is by scanning the file.
The average cost is B/2(D + RC), both in the case of
record present and in the case of record absent.

� In the case where the data are stored in contiguous pages
with addresses in the range (a1, aB), a much more clever
method to search K is given by invoking the following
algorithm with range (a1, aB).

Data Management File organization - 28

Sorted file: search based on key

� To search the record with search key K in the range of page
addresses (h1, h2):

1. if the range (h1, h2) is empty, then stop with failure

2. choose a tentative address i (h1 <= i <= h2) and load the page pi at
address i

3. if the record with K is in the page pi, then stop with success

4. if K is less than the minimum key value in the page pi, then repeat
the algorithm using the range (h1, pi-1), else repeat the algorithm
using the range (pi+1, h2)

� Clearly, the above is actually a generic algorithm, while a specific
algorithm is obtained by selecting the criterion used in step 2 for
choosing the address i. Two interesting cases are:

� Binary search

� Interpolation search

Data Management File organization - 29

Sorted file: search based on key

� Binary search: the tentative address is the one at the half of the
range

� Interpolation search: if the searck key values are numeric, and
uniformly distributed in the range (Kmin, Kmax), and if K is the value
to search, then

pk = (K – Kmin) / (Kmax – Kmin)

is the probability that a record have a search key value less than or
equal to K. This implies that

K = Kmin + pk× (Kmax – Kmin)

and therefore, assuming that the distance between addresses is
analogous to the distance between key values, we can choose as
tentative address

i = a1 + pk× (aB – a1)

where, as we said before, a1 is the address of the first page, and
aB is the address of the last page.

Data Management File organization - 30

Sorted file: other operations

� Range selection: a search for range (K1, K2) reduces to
searching for K1 and then scanning the subsequent pages
to look for values that are less than or equal to K2

� Insertion: either we move the records to maintain the
order, or we use an overflow storage (and when insertions
are too many, we rearrange the data)

� Deletion: search for the record, and then modify the page
containing the record

Data Management File organization - 31

Sorted file - cost of operations

� Scan: B(D + RC)

� Equality selection on search key (with binary search)

D log2B + C log2R (worst case)

� binary search for locating the page with the (first) relevant
record

� log2B steps for locating the page

� at each step, 1 I/O operation + 2 comparisons (that can be
ignored)

� binary search for locating the (first) relevant record in the
page: C log2R

� Equality selection on search key (with interpolation search)

� in the average case: D (log2 log2 B) + C log2R

� in the worst case: B(D + RC)

Data Management File organization - 32

Sorted file - cost of operations

� Range selection on search key (or equality search on non-key):

� we analyze the case of binary search

� if the range that we search is (K1, K2), and the keys in this
range are uniformly distributed in the range (Kmin, Kmax), then

fs = (K2 – K1) / (Kmax – Kmin)

is the expected portion of pages occupied by records in the
range, and the cost of the operation is:

D log2B + C log2R + (fs× B – 1)(D + RC)

where (D log2B + C log2R) is the cost of locating the first
record with the value K1, and (fs× B – 1)(D + RC) is the cost
of searching for the other records.

Data Management File organization - 33

Sorted file - cost of operations
� Insertion:

D log2B + C log2R + C + 2B(D + RC)

– Worst case: first page, first position

– Cost of searching the page to insert: D log2B + C log2R

– Insertion of record: C

– If we decide not to use overflow pages, the we must add the
cost of loading and writing the other pages: 2B(D + RC)

– Average case (insert in the middle of the file):

D log2B + C log2R + C + B(D + RC)

� Deletion:

– Similar to insertion (if we decide not to leave empty slots)

– If the deletion condition is an equality selection of non-key
fields, or a range selection, then the cost depends also on
the number of records to be deleted

Data Management File organization - 34

Hashed file - cost of operations (rough analysis)

� Scan:

1.25 B(D + RC)

We assume (as usual) that pages are kept at about 80%
occupancy, to minimize overflows as the file expands.

� Equality selection on search key:

(D + RC) ´́́́ (number of relevant records)

We assume direct access through the hash function

� Range selection on search key: 1.25 B(D + RC)

� Insertion:

2D + RC

� Deletion:

Cost of search + D + RC

See later for a more detailed analysis

Data Management File organization - 35

Comparison

Organization Scan Equality

selection

Range

selection

Insertion Deletion

Heap file BD BD BD 2D Cost of search +

D

Sorted file BD (search based

on key)

D log2B

(on key)

D log2B +

number of

relevant pages

Cost of

search +

2BD

Cost of search

+ 2BD

Hashed file 1.25 BD

D (1 +

number of

relevant

records)

1.25 BD 2D

Cost of search +

D

In the above table, we have only considered the cost of I/O operations,

and we have assumed the use of binary search for sorted file

Data Management File organization - 36

Sorting is only useful for sorted files?

We have seen that the sorted file is a possible organization. But this is not

the only reason to sort a file. For example:

•Users may want data sorted as result of queries

•Sorting is first step in bulk-loading a B+ tree

•Sorting is useful for eliminating duplicates

•Sort-merge join algorithm involves sorting (see later)

Banana

Grapefruit

Apple

Orange

Mango

Kiwi

Strawberry

Blueberry

Apple

Banana

Blueberry

Grapefruit

Kiwi

Mango

Orange

Strawberry

Data Management File organization - 37

Algorithms for sorting

• Don’t we know how to sort?
– Quicksort

– Mergesort

– Heapsort

– Selection sort

– Insertion sort

– Radix sort

– Bubble sort

– Etc.

• Why don’t these work for databases?

Data Management File organization - 38

Sorting in secondary storage

• The problem is how to sort data that do not fit in
main memory

• Sorting of data in secondary storage (called
external sorting) is very different from sorting an
array in main memory (called internal sorting).

• We will consider an «external sorting» version
of the merge-sort algorithm

• The complexity of sorting a data file of N pages
through this algorithm is N logF N, where F is
the number of buffer slots that are available for
this operation

Data Management File organization - 39

3. Access file manager

3.1 Pages and records
3.2 Simple file organizations
3.3 Index organizations

Data Management File organization - 40

The notion of index

An index is any method that that takes as

input a property of records – typically the

value of one or more fields, and finds the

records with that property “quickly”

value ???? value

record

Data Management File organization - 41

The notion of index

Any index organization is based on the value of one or more

predetermined fields of the records of the relation we are

interested in, which form the so-called search key.

– Any subset of the fields of a relation can be taken as

the search key for the index

– Note: the notion of search key is different from the one

of key of the relation (a key is a minimal set of fields

uniquely identifying the records of the relation)

Obviously, it may happen that the search key coincides with

the key of the relation.

Data Management File organization - 42

Data entry, index entry and data record

An implementation of a relation R by means of an index-

based organization comprises:

– Index file (sometimes absent. e.g., in the case of

hash-based index), containing

• Data entry, each containing a value k of the

search key, and used to locate the data records in

the data file related to the value k of the search key

• Index entry (at least for some index organizations),

used for the management of the index file.

– Data file, containing the data records, i.e., the records

of relation R

Data Management File organization - 43

Properties of an index

1.Organization of the index

2.Structure of data entries

3.Clustering/non clustering

4.Primary/secondary

5.Dense/sparse

6.Simple key/Composite key

7.Single level/multi level

Data Management File organization - 44

Organization of the index

• Sorted index

the index is a sorted file

• Tree-based

the index is a tree

• Hash-based

the index is a function from search key values to
record addresses

Data Management File organization - 45

Possible structures of a data entry
There are three main alternative techniques for storing a data entry

whose search key value is k (such a data entry is denoted with k*):

1. k* is a data record (with search key equal k)

� this is an extreme case, because it does not really correspond to

having data entries separated by data records (the hashed file is an

example of this case)

2. k* is a pair (k,r), where r is a reference (for example the record

identifier) to a data record with search key equal k
� the index file is independent from the data file

3. k* is a pair (k,r-list), where r-list is a list of references (for example, a

list of record identifiers) to data records with search key equal k
� the index file is independent from the data file

� better use of space, at the cost of variable-length data entries

Note that if we use more than one index on the same data file, at most

one of them will use technique 1.

Data Management File organization - 46

Clustering/non-clustering

An index (for data file F) is clustering (also called clustered) when its

data entries are stored according to an order that is coherent with (or,

identical to) the order of data records in the data file F. Otherwise, the

index is non-clustering (or, unclustered).

Data entry

Index file

Data record
file

Data record

CLUSTERED

Data entry

Data record

UNCLUSTERED

Index entry Index entry

Data Management File organization - 47

Clustering/non-clustering
• An index whose data entries are stored with technique 1 is

clustered by definition.

• As for the other alternatives, an index is clustered only if the
data records are sorted in the data file according to the search
key.

• If the index is clustered, then it can be effectively used for
interval-based search (see later for more details).

• In general, there can be at most one clustered index per data
file, because the order of data records in the data file can be
coherent with at most one index search key.

Data Management File organization - 48

Clustering/non-clustering

In the case where the data file is not store in any order, or in the
case where it is ordered according to a different ordering key,
the index may still be clustering: indeed, in this case, we say that
the index is clustering if, for every value V of the search key, all
the tuples of the indexed data file with value V for the search key
used in I appears in the page of the data file (or, on roughly as
few pages as can hold them).

Indeed, some authors define an index I to be clustering if all the
tuples of the indexed data file with a fixed value for the search
key used in I appear on roughly as few pages as can hold them.
Note that our definition of clustering implies this alternative
definition.

Data Management File organization - 49

Primary and secondary indexes

• A primary key index (or simply primary index) is an index

on a relation R whose search key includes the primary

key of R. If an index is not a primary key index, then is

called non-primary key index (also called secondary

index).

• In some text, the term “primary index” is used with the

same meaning that we assign to the term “clustering

index”, and the term “secondary index” is used with the

same meaning that we assign to the term “non-clustering

index”

Data Management File organization - 50

Primary and secondary indexes

• Let us call duplicate two data entries with the same

values of the search key.

→ A primary index cannot contain duplicates

→ Typically, a secondary index contains duplicates

→ A secondary index is called unique if its search key

contains a (non-primary) key. Note that a unique

secondary index does not contain duplicates.

Data Management File organization - 51

Primary and secondary indexes

If a secondary non-unique index does not contain duplicates,
then there are two possibilities:

– The index uses alternative (3), and therefore every relevant
value of the search key is stored only once in the index, but
with a list of rids associated to it.

– The index uses alternative (2), and in this case the index is
certainly clustered. Indeed, for each relevant value K of the
search key, we have only one data entry in the index, pointing
to the first data record R with the value K for the search key.
Since the index is clustered, the other data records with value
K for the search key follow immediately R in the data file.

Data Management File organization - 52

Sparse vs. dense

An index is dense if every value of the search key that appears in the data file

appears also in at least one data entry of the index. An index that is not dense is

sparse (typically, a dense index keeps a search key value for each data block)

Azzurri, 20, 3000

Bianchi, 50, 5004

Gialli, 28, 3500

Lilla, 30, 4000

Neri, 40, 6003

Rosa, 35, 4500

Rossi, 44, 3000

Verdi, 22, 6003

Viola, 28, 5000

40

20

28

35

44

22

30

50

Dense index on age

Sparse index on name

Azzurri

Lilla

Viola

• An index using technique 1 is dense by definition
• A sparse index is more compact than a dense one
• A sparse index is clustered; therefore we have at most one sparse index per data file

Data Management File organization - 53

Sparse vs. dense

Typically, in a dense index, we have one data entry per data record, where the

value of the search key of the data entry is the value held by the referenced

data record. This means that if we use alternative 2 or 3, the references

associated to data entries are record identifiers. In the figure, the red arrows

denote record identifiers.

Azzurri, 20, 3000

Bianchi, 50, 5004

Gialli, 28, 3500

Lilla, 30, 4000

Neri, 40, 6003

Rosa, 35, 4500

Rossi, 44, 3000

Verdi, 22, 6003

Viola, 28, 5000

40

20

28

35

44

22

30

50

Dense index on age

Sparse index on name

Azzurri

Lilla

Viola

Data Management File organization - 54

Sparse vs. dense

Typically, in a sparse index, we have one data entry per data page, where the

value of the search key of the data entry is the value held by the first data record

in the corresponding data page (recall that a sparse index is clustered). This

means that if we use alternative 2 or 3, the references associated to data entries

denote page identifiers (see red arrows in the figure).

Azzurri, 20, 3000

Azzurri, 50, 5004

Azzurri, 28, 3500

Azzurri, 30, 4000

Neri, 40, 6003

Rosa, 35, 4500

Rossi, 44, 3000

Verdi, 22, 6003

Viola, 28, 5000

40

20

28

35

44

22

30

50

Dense index on age

Sparse index on name

Azzurri

Azzurri

Rossi

Data Management File organization - 55

Single vs composite key

• A search key is called simple if it is constituted by a
single field, otherwise is called composite.

• If the search key is composite, then a query based on
the equality predicate (called equality query) is a query
where the value of each field is fixed, while a query that
fixes only some of the fields is actually a range query

• A composite index supports a greater number of queries.
With a composite index, a single query is able to extract
more information. For example, we can even avoid
accessing the data records, i.e., we can carry out an
index-only evaluation (in particular, when all the fields
that are relevant in the query are part of the search key)

• On the other hand, a composite index is generally more
subject to update than a simple one.

Data Management File organization - 56

Single vs composite key

Data records ordered
based on name

Azzurri, 20,4000

Bianchi, 30,3000

Neri, 40, 6003

Verdi, 22, 6003

<age, sal>

20,4000

22,6003

30,3000

40,6003

<age>

20

22

30

40

3000,30

4000,20

6003,22

6003,40

<sal, age> <sal>

3000

4000

6003

6003

Data Management File organization - 57

Single level/multi level

• A single level index is an index where we simply
have a single index structure (i.e., a single index
file) and the indexed data file

• A multi level index is an index organization
where an index is built on a structure that is in
turn an index file (for a data file or, recursively,
for another index structure).

Data Management File organization - 58

Tree-based index organization

file organization

simple index-based

treehash

ISAM B+-tree

extendible

hashing

linear

hashing

static

hash
dynamic

hash

coincides with

hashed file

heap sorted

Data Management File organization - 59

Basic idea

• Find all students with avg-grade > 27

• If students are ordered based on avg-grade, we can search through
binary search

• However, the cost of binary search may become high for large files

• Simple idea: create an auxiliary sorted file (index), which contains the
values for the search key and pointers to records in the data file

The binary search can now be carried out on a smaller file (data
entries are smaller than data records, and we can even think of a
sparse index)

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index file

Data Management File organization - 60

Tree index: general characteristics

• In a tree index, the data entries are organized according to a tree
structure, based on the value of the search key

• Searching means looking for the correct page (the page with the
desired data entry), with the help of the tree, which is a hierachical data
structure where

– every node coincides with a page

– pages with the data entries are the leaves of the tree

– any search starts from the root and ends on a leaf (therefore it is
important to minimize the height of the tree)

– the links between nodes corresponds to pointers between pages

• In the following, when we talk about index, we mean ISAM, or B+-tree
index

Data Management File organization - 61

Tree index: general characteristics

The typical structure of an intermediate node (including the root)
is as follows:

– Sequence of m+1 pointers P separated by different values
K ordered according to the search key

– Pointer Pi-1 on the left of value Ki (1 ≤ i ≤ m) points to the
subtree containing only data entries with values that are
less than Ki

– Pointer Pi on the right of value Ki points to the subtree
containing only data entries with values that are greater
than or equal to Ki (and, obviously less than Ki+1,if it exists)

Note that this implies that K1 ≤ K2 ≤ ... ≤ Km.

P0 K1 P1 K2 Km Pm

Data Management File organization - 62

Exercise 4

We just saw the typical structure of an intermediate node
(including the root) is as follows:

Prove that, if all the key values appearing in the non-leaf
nodes of a B+ tree T appear also in the leaf nodes, then
every key value K appearing in a non-leaf node of T
appears also as the leftmost key value found in the leftmost
leaf reachable from the pointer at the “right” of K.

P0 K1 P1 K2 Km Pm

Data Management File organization - 63

Tree index: two types

• ISAM

used when the relation is static (no insertion or

deletion on the tree)

• B+-tree

effective in dynamic situations (i.e., with insertions
and deletions)

In what follows, we assume that there are no
duplicates of the search key values in the index.
All the observations can be generalized to the
case with duplicates.

Data Management File organization - 64

ISAM

The leaves contain the data entries, and they can be scanned

sequentially. The structure is static: no update on the tree!

Non-leaves

Primary pages

Leaves

The name derives from Indexed Sequential Access Method

Overflow
pages

Data Management File organization - 65

Comments on ISAM

• An ISAM is a balanced tree -- i.e., the path from the root to a
leaf has the same length for all leaves

• The height of a balanced tree is the length of the path from root
to leaf

• In ISAM, every non-leaf nodes have the same number of
children; such number is called the fan-out of the tree.

• If every node has F children, a tree of height h has Fh leaf
pages.

• In practice, F is at least 100, so that a tree of height 4 contains
100 million leaf pages

• We will see that this implies that we can find the page we want
using 4 I/Os (or 3, if the root is in the buffer). This has to be
contrasted with the fact that a binary search of the same file
would take log2100.000.000 (>25) I/Os.

Data Management File organization - 66

Comments on ISAM

• Creation of the index: the leaves are allocated sequentially, and the
intermediate nodes are then created

• Search: We start from the root, and we compare the key we are
looking for with the keys in the tree, until we arrive at a leaf. The
cost is

logF N

where F is the fan-out of the tree, and N is the number of leaves
(typically, the value of N depends on several factors, including the
size of the data file, and whether the index is dense or sparse)

• Insert: We find the correct leaf where to insert, allocating an
overflow page, if needed; we then insert the data record in the data
file

• Delete: We find and delete from the leaves; if the page is an
overflow page, and is empty, then we deallocate the page; in any
case, we delete the correct data record from the data file

Static structure: insert/delete are rare, and involve only leaves

Data Management File organization - 67

ISAM: example

We assume that every node contains 2 entries (three

pointers), except the root that may contain less than 2

entries)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Data Management File organization - 68

Insertion of 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97
*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow pages

Leaves

Index

entries

Primary pages

Data Management File organization - 69

Deletion of 42*, 51*, 97*

Note that 51* appears in the index entries, but not in

the leaves

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Data Management File organization - 70

B+-tree index

• A B+-tree is a balanced tree where the length of the path from the root to

a leaf is the same for all leaves

• B+-trees overcome the limitations/problems that ISAM has with

insertion/deletion

• If each page has space for d search key values and d+1 pointers, then d
is called the rank of the tree

• Every node ni contains mi search key values, with (d+1)/2 <= mi <= d.

The only exception is the root, which may have less search key values

(at least one)

• The leaves (the pages with the data entries) are linked through a list

based on the order on the search key

→ Such list is useful for “range” queries:

• we look for the first value in the range, and we access the “correct”

leaf L

• we scan the list from the leaf L to the leaf with the last value in the range

Data Management File organization - 71

Comments on B+-tree

• We remind the reader that, for trees where the
various non-leaf nodes have the same number of
children, such number is called the fan-out of the
tree. Also, if every node has n children, a tree of
height h has nh leaf pages. In other words, if the tree
has m leaves, then the height h is logn m.

• If different nodes may have different numbers of
children, then using the average value F for non-leaf
nodes (instead of n), we get Fh as a good
approximation to the number of leaf pages, and,
knowing that there are m leaves, we get logF m as a
good approximation of the height h.

Data Management File organization - 72

Search through B+-tree: example

We look for data entries with 24 < age ≤ 44

→We search for the leaf with the first value in the range

→We reach F1: we start a scan from F1 until F3 (where we find
the first record with the first value outside the range)

3

33

12

86

78

9 19 56 94

44… … … … … … … …

Neri, 40, 6003Verdi, 22,6003

Viola, 26,5000

Rossi, 44,3000

Bianchi, 50,5004

start

LEAVES

age < 12 78 ≤ age

F1 F2 F3

19 ≤ age < 56

33

12 78

19 56

44

Neri, 40, 6003

Viola, 26,5000

12 ≤ age < 78

F1 F2

Data Management File organization - 73

Search through B+-tree: observations

• The number of page accesses needed in a search for

equality operation (assuming the search key to be the

primary key of the relation) is at most the height of the tree

(in what follows, F is the fan-out of the tree, which is the

average number of children per node):

logFN (where N is the number of leaves)

• The aim is to have F as large as possible (note that F

depends on the size of the block):

→Typically, the fan-out is at least 100, and by default we

will assume that is exactly 100; note that with F=100,

and 1.000.000 pages, the cost of the search is 4 (or 3,

if the root is in the buffer)

→Majority of pages occupied by the leaves

Data Management File organization - 74

Search through B+-tree: observations

• B+-trees (in particular, when they realize a
clustering index) are the ideal method for
efficiently accessing data on the basis of a
range

• They are also very effective (but no ideal) for
accessing data on the basis of an equality
condition

• We will now address the issue of
insertions/deletions in a B+-tree

Data Management File organization - 75

Insertion in a B+-tree

We only deal with insertion in the index (insertion in the data file is
orthogonal)

Recursive algorithm

• We search for the appropriate leaf, and put the new key there, if
there is space

• If there is no room, we split the leaf into two, and divide into
equal parts the keys between the two new nodes

• After splitting, there is a new pointer to insert at the higher level;
do that recursively

• If we try to insert into the root, and there is no room, we split the
root into two nodes and create the new root at higher level,
which has the two nodes resulting from the split as its children.

Data Management File organization - 76

Insertion in a B+-tree

Splitting a leaf node

• Suppose that N is a leaf node with n keys (which is the
maximum allowed) and we want to insert the (n+1) key K

• Let S be the new (sorted) set of key values (i.e., the key values
in N plus K)

• We create a new node M as a sibling of N, and the first n/2 key-
pointer pairs in S remain in N, and the other key-pointer pairs
go to M

• The value in the middle in the order among the sorted values in
S go to the higher level together with the appropriate pointer

Data Management File organization - 77

Insertion in a B+-tree

Splitting a non-leaf node

Suppose that N is a non-leaf node with n keys and n+1 pointers,
suppose that another pointer arrives because of a split in the lowest
level, and suppose that (n+1) was the maximum value of pointers
allowed in the node.

•We leave the first (n+2)/2 pointers in N, in sorted order, and move
the remaining (n+2)/2 pointers to a new node M, sibling of N

•The first n/2 keys stay in N, and the last n/2 keys move to M. There
is one key in the middle left over that goes with neither N nor M.
The leftover key K is the closest value that is equal or smaller to the
smallest key reachable in the tree via the first of M’s children.

Data Management File organization - 78

Insertion of a data record with search key value 8

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Insertion in a B+-tree: example

Data Management File organization - 79

Insertion in a B+-tree: example

Note: every node (except for the root) has a number of data entries

greater than or equal to d/2, where d is the rank of the tree (here d=4)

5 13

17

24 30

Data entry to be inserted in the father
(17 does not appear in the children)

2* 3* 5* 7* 8*

5

Data entry to be inserted in the father
(5 appears both in the leaf and in the father)

N M

Data Management File organization - 80

Insertion in a B+-tree: example

→The height of the tree has increased

Typically, the tree increases in breadth. The only case where the tree
increases in depth is when we need to insert into a full root

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Data Management File organization - 81

Deletion in a B+-tree

We only deal with deletion in the index (deletion in the data file is
orthogonal)

Deletion algorithm

If the node N after the deletion has still at least the minimum
number of keys, then there is nothing to do

Otherwise, we need to do one the following things:

1.If one of the adjacent siblings of node N has more than the
minimum number of keys, then one key-pointer pair can be moved
to N (key redistribution). Possibly, the keys at the parent of N must
be adjusted: for instance, if the right sibling of N, say node M,
provides and extra key and pointer, then it must be the smallest key
that is moved from M to N. At the parent of N and M, there is a key
that represents the smallest key accessible via M: such key must be
changed!

Data Management File organization - 82

Deletion in a B+-tree

2. If neither of adjacent nodes of N can provide an extra key for N,
then we choose one of them, and “merge” it with N (this
operation is called coalesce), because together they have no
more keys and pointers than are allowed in a single node. After
merging, we need to adjust the keys at the parent, and then
delete a key and a pointer at the parent. If the parent is full
enough, we are done, otherwise, we recursively apply the
deletion algorithm at the parent. Note that this may result in
lowering the depth of the tree.

Note: sometimes, coalesce is not implemented, and deletion does
nothing, keeping free space in the leaves for future insertions.

Data Management File organization - 83

Coalesce with sibling

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

4
0

5
0

n=4

Deletion in a B+-tree: examples

Data Management File organization - 84

(b) Coalesce with sibling

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

4
0

5
0

n=4

4
0

Deletion in a B+-tree: examples

Data Management File organization - 85

(c) Redistribute keys

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

3
5

4
0

5
0

n=4

Deletion in a B+-tree: examples

Data Management File organization - 86

(c) Redistribute keys

– Delete 50

1
0

4
0

1
0
0

1
0

2
0

3
0

3
5

4
0

5
0

n=4

3
5

3
5

Deletion in a B+-tree: examples

Data Management File organization - 87

4
0

4
5

3
0

3
7

2
5

2
6

2
0

2
2

1
0

1
41 3

1
0

2
0

3
0

4
0

(d) Non-leaf coalesce

– Delete 37
n=4

2
5

Deletion in a B+-tree: examples

Data Management File organization - 88

4
0

4
5

3
0

3
7

2
5

2
6

2
0

2
2

1
0

1
41 3

1
0

2
0

3
0

4
0

3
0

2
5

(d) Non-leaf coalesce

– Delete 37
n=4

Deletion in a B+-tree: examples

Data Management File organization - 89

4
0

4
5

3
0

3
7

2
5

2
6

2
0

2
2

1
0

1
41 3

1
0

2
0

3
0

4
04
0

2
5

(d) Non-leaf coalesce

– Delete 37
n=4

3
0

Deletion in a B+-tree: examples

Data Management File organization - 90

4
0

4
5

3
0

3
7

2
5

2
6

2
0

2
2

1
0

1
41 3

1
0

2
0

3
0

4
04
0

2
5

2
5

new root

3
0

(d) Non-leaf coalesce

– Delete 37
n=4

Deletion in a B+-tree: examples

Data Management File organization - 91

Clustered B+-tree index
Note that:

• We assume alternative (1) and we assume that F is the fan-out of the tree

• Empirical studies prove that in a B+-tree, in the average, the pages in the
leaves are filled at 67%, and therefore the number of pages with data
entries is about 1.5B, where B is the minimum number of pages required for
storing the data entries (in case of alternative 1, this coincides with the
pages for the data records). So, the number of physical pages for the leaves
is B’=1.5B

�Scan: 1.5B (D+RC)

�Selection based on equality:

D logF(1.5B) + C log2R

�Search for the first page with a data record of interest

�Search for the first data record, through binary search in the page

�Typically, the data records of interest appear in one page

�N.B. In practice, the root is in the buffer, so that we can avoid one page access

�N.B. If alternative (2) is used, then we compute the number B of leaf pages
required to store the data entries, and we count again B’= 1.5B.

Data Management File organization - 92

Clustered B+-tree index

� Selection based on range:

– same as selection based on equality

– but with further I/O operations, if the data records of
interest are spread in several (linked) leaves

� Insertion: D logF(1.5B) + C log2R + C + D

– cost of search + insertion + write

– we ignore additional costs arising when the insertion is
on a full page

� Deletion

– similar to insertion

– we ignore further costs arising when the deletion
leaves the page empty

Data Management File organization - 93

Exercise 5

We have carried out our cost analysis for the clustered B+-
tree index under the assumption of alternative 1.

Characterize the cost of the various operations for the
clustered B+-tree index under the assumption that alternative
2 is used, both in the case of dense index, and in the case of
sparse index.

Do the same under the assumption of alternative 3.

Data Management File organization - 94

Unclustered B+-tree index

• We assume that the data file is a heap file.

• We assume a sparse index using alternative (2), and we suppose that the size
of a data entry in a leaf is 1/10 of the size of a data record; this means that, if B
is the number of pages in the data file, 0.1B is the minimum number of pages
required to store the leaves of the tree.

• Number of leaves in the index: 1.5(0.1 B)=0.15B

• Number of data entries in a leaf page (recall that a data entry page is 67% full):
10(0.67R)=6.7R

• F is the fan-out of the tree

� Scan: 0.15B(D+6.7RC) + BR(D+C)

– Scan of all index data entries: 0.15B(D+6.7RC)

– Every data entry in a leaf can point to a different data file page: BR(D+C)

→High cost: sometime it is better to ignore the index! If we want the records
ordered on the search key, we can scan the data file and sort it -- the I/O
cost of sorting a file with B pages can be assumed to be 4B (with a 2-pass
algorithm in which at each pass we read and write the entire file), which is
much less than the cost of scanning the unclustered index.

Data Management File organization - 95

Unclustered B+-tree index

� Selection based on equality:

D logF(0.15B) + C log2(6.7R) + XD

– locate the first page of the index with the data entry of interest: D logF(0.15B)

– binary search for locating the first data entry in the page: C log2(6.7R)

– X: number of data records satisfying the equality condition

→ we may need one I/O operation for each of these data records

� Selection based on range:

– Similar to selection based on equality

– Note that

→ the cost depends on the number of data records (may be high)

Both for the scan and the selection operator, if we need to go to the data file,

sometimes it might be convenient to avoid using the index. Rather, we can simply

sort the file, and operate directly on the sorted file.

Data Management File organization - 96

Unclustered B+-tree index

� Insertion (of a single data record):

2D + C + D logF(0.15B) + C log2(6.7R) + D

– insert in the data file (unordered): 2D+C

– search for the correct position in the index to insert the data

entry: D logF(0.15B)+C log2(6.7R)

– write the corresponding index page: D

� Deletion (of a single data record):

D logF(0.15B) + C log2(6.7R) + D + 2(C+D)

– search of the data entry: D logF(0.15B)+C log2(6.7R)

– load the page with the data record to be deleted: D

– modify/write the pages that have been modified in the index

and in the file: 2(C+D)

Data Management File organization - 97

Estimating the number of leaves
In a tree index, the analysis of performance of the various operations depends primarily by
the number of physical pages stored as leaves leaves. Here are some observations related
to the issue of figuring out the number of leaves.

�The pages in the leaves are occupied at the 67%. This means that the physical pages are
50% more than the numero of “required leaves”, i.e., the pages strictly required to store the
data entries.

�When we use alternative 1, then the number of required leaves is the number of pages in
the data file (in this case, we accept that the physical pages in the data file is full at 67% of
occupancy).

�When the index is dense and is on a key of the relation (primary index, or secondary,
unique index), we have one data entry per data record. If we know how many data entries fit
in one page, we can compute the number of required leaves (or express this number in
terms of the number of data pages)

�When the index is dense and is secondary non unique, then we must estimate the average
number of data records having the same value for the search key. Using this information,
and knowing how many data entries fit in one page, we can again compute the number of
required leaves.

�When the index is sparse, then we know that the number of data entries in the required
leaves is essentially equal to the number of pages in the data file, and again we should be
able to compute the number of required leaves.

Data Management File organization - 98

Hashed index organization

file organization

simple index-based

treehash

ISAM B+-tree

extendible

hashing

linear

hashing

static

hash
dynamic

hash

coincides with

hashed file

heap sorted

Data Management File organization - 99

Static Hashing (Hashed file)

• Fixed number of primary pages N (i.e., N = number of buckets)

– sequentially allocated

– never de-allocated

– with overflow pages, if needed

• h(k) mod N = address of the bucket containing record with search key k

• h should distribute the values uniformly into the range 0..N-1

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

Data Management File organization - 100

Static Hashing (Cont.)

• The buckets contain the data entries

• The Hash function should distribute the values uniformly

into the range 0..N-1

– Usually, h(key) = (a×key + b), with a,b constants

– There are techniques for choosing good hash

functions h

• In static hashing, the number of buckets never changes.

With insertions and deletions, this means long overflow

chains, which are a problem for efficiency

– Extendible and Linear Hashing: techniques for dealing

with this problem

Data Management File organization - 101

Static Hashing - detailed analysis (1)

• We assume alternative (2) and that the data file is a heap
file.

• We assume that each data entry is a 1/10 the size of a data
record. Also, as usual in static hashed files, we assume
that pages are kept at about 80% occupancy, to minimize
overflows as the file expands. Therefore, the number of
pages required to store data entries is 1.25(0.10 B) = 0.125
B. The number of data entries that fit on a page is 10 (0.80
R)= 8R

� Scan: 0.125 B(D+8RC) + BR(D+C)

– Scan of all index data entries: 0.125 B(D+8RC)

– Every data entry can point to a different data file page: BR(D+C)

→High cost: no one ever scans a hash index!

Data Management File organization - 102

Static Hashing - detailed analysis (1)

� Selection based on equality: H + D + D + 0.5(8R)C = H + 2D + 4RC

� H is the cost of identifying the page through the hash function

� We assume no overflow pages

� We assume to find the (single) data entry after scanning half of
a page

� We also have to fetch the data record. How many pages we
have to access depends on whether the index is clustering or
not. If the index is clustering (remember that in this case this
means that the data records with a given value of the search
key are stored in as few pages as possible – probably one if
their number is not high), then we will have one or a few
accesses (in any case, as few as possible). If the index is non
clustering, then we might even have one page access for each
distinct data records with that value for the search key.

Data Management File organization - 103

Static Hashing - detailed analysis (2)

� Selection based on range: B(D+RC)

–No use of index! In this case, even if the index is clustered
(the data records with a given value of the search key are
stored in as few pages as possible) the index does not
help!

� Insertion: 2D + C + H + 2D + C = H + 4D + 2C

�Cost of inserting the data record in the heap (2D + C)

�Cost of inserting the data entry in the index (H + 2D + C)

� Deletion: H + 2D + 4RC + 2D = H + 4D + 4RC

�Cost of locating the data record and the data entry (H + 2D
+ 4RC)

�Cost of writing the modified data page and index page (2D)

Data Management File organization - 104

Hashed index organization

file organization

simple index-based

treehash

ISAM B+-tree

extendible

hashing

linear

hashing

static

hash
dynamic

hash

coincides with

hashed file

heap sorted

Data Management File organization - 105

Extendible Hashing

• When a bucket (primary page) becomes full, why not

re-organizing the file by doubling the number of

buckets?

– Reading and writing all the pages is too costly

– Idea: use a directory of pointers to buckets, double

only such directory, and split only the bucket that is

becoming full

– The directory is much smaller than the file, and

doubling the directory is much less costly than

doubling all buckets

– Obviously, when the directory is doubled, the hash

function has to be adapted

Data Management File organization - 106

Example

• The directory is an array of 4 items -- in the picture, k is denoted by h(k)*

• To find the bucket for k, consider the last g bits of h(k), where g is the global

depth (note that, with this method, the buckets for k1 and k2 can be the

same, even if k1 and k2 do not collide -- i.e., even if h(k1) ≠ h(k2))

• If h(k) = 5 = binary 101, then 5* is in the bucket pointed by 01

13*

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

DIRECTORY DATA PAGES

Data Management File organization - 107

Insertion of a data entry

• Insertion: If the bucket B is full, but the search key value k is such that h(k) is different
from at least one entry in B in the last c+1 bits (where c is the local depth), then split it,
and re-distribute the records in B and its split image according to the same hash function
h, but using c+1 bits (in the example, c+1=3 bits!)

• If needed, double the directory. In particular, the decision on whether to double or not the
directory is based on comparing the global depth and the local depth of the bucket to be
split: we should double the directory if we split and the global depth is equal to the local
depth

• Example: insert h(r)=20*= (101)00

13*

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

Bucket A

Bucket B

Bucket C

Bucket D

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

DIRECTORY PAGES WITH DATA ENTRIES

Data Management File organization - 108

Insert h(r)=20* (double the directory)

20*

00

01

10

11

2 2

2

LOCAL DEPTH
2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(split image
of Bucket A)

1* 5* 21*13*

32* 16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(split image
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

2

Data Management File organization - 109

Observations

• 20 = binary 10100. The last 2 bits (00) tell us that r belongs to either A

or A2. We need another bit to decide which is the right one

– Global depth of the directory: Maximum number of bits needed to

decide which is the bucket of a given entry

– Local depth of a bucket: Number of bits used to decide whether

an entry belongs to a bucket

• When is a bucket split?

– When inserting, if the bucket is full and we can distribute the data

entries in two buckets using c+1 bits (where c is the local depth)

• When is the directory doubled?

– When inserting, if the bucket is split, and if local depth of the

bucket = global depth, then insertion would make local depth >

global depth; it follows that the directory must be doubled in this

case. Doubling the directory means copying it, and then setting up

the pointers to the split image

Data Management File organization - 110

Observations

• Initially, all local depths are equal to the global depth, which is the

number of bits needed to express the total number of initial buckets

• We increment the global depth g by 1 each time the directory doubles

• Whenever a bucket is split, we increment by 1 the local depth of the

two resulting buckets

• If a bucket ha local depth c, the hash values of the data entries in it

agree on the last c bits, and no data entries in any other bucket has a

has value with the same last c bits

• At most 2g-c directory elements point to a bucket with local depth c (if

g=c, then exactly one directory element points to the bucket, and

splitting such a bucket requires doubling the directory)

Data Management File organization - 111

Doubling the directory

00

01

10

11

2

We use the least significant bits, because in this way

we double the directory simply by copying (using the most

significant bits, we could not simply do it by copying)

000

001

010

011

3

100

101

110

111

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least significant bits Most significant bits

Data Management File organization - 112

Extendible Hashing: observations

• If the directory fits in main memory (buffer), we need one access for the
search with equality condition, otherwise we need two

– Example. File of size 100MB, 100 bytes per record, page of size 4KB

• 1.000.000 records (data entries)

• 40 records per page

• 25.000 entries in the directory

– If the distribution of the hash function values is not uniform, then the
size of the directory can be very large

– Collisions (k1 and k2 such that h(k1) = h(k2)) may still require overflow
pages (a collision in a full bucket cannot be handled with the split
image!)

• Deletion: If the deletion of a data entry makes a bucket empty, then it
can be merged with its split image. Additionally, if every entry in the
directory points to the same record as its split image, then we can halve
the directory

Data Management File organization - 113

Exercise 6

Insert k1, k2, k3, k4, k5

2

2

2

000

001

010

011

100

101

110

111

3

3

3

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 114

Insert k1

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12*

Exercise 6 - solution

11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 115

Exercise 6 - solution

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12*

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 116

Exercise 6 - solution

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12*

Insert k2

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 117

Exercise 6 - solution

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12* 28*

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 118

Insert k3

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12* 28*

Exercise 6 - solution

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 119

Exercise 6 - solution

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12* 28*

27*

overflow

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 120

Exercise 6 - solution

2

2

2

000

001

010

011

100

101

110

111

3

3

3

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*12* 28*

27*

overflow

Insert k4

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 121

Exercise 6 - solution

0000

0001

0010

0011

0100

0101

0110

0111

4

1000

1001

1010

1011

1100

1101

1110

1111

2

2

2

3

4

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*

27*

overflow

4

Bucket A312* 60*28*

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 122

0000

0001

0010

0011

0100

0101

0110

0111

4

1000

1001

1010

1011

1100

1101

1110

1111

2

2

2

3

4

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*

27*

overflow

4

12* 60*28*

Insert k5

Bucket A3

Exercise 6 - solution

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 123

0000

0001

0010

0011

0100

0101

0110

0111

4

1000

1001

1010

1011

1100

1101

1110

1111

2

2

3

3

4

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*

4

12* 60*28*

3 Bucket D2

Bucket A3

Exercise 6 - solution

7*

27*

overflow

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Data Management File organization - 124

0000

0001

0010

0011

0100

0101

0110

0111

4

1000

1001

1010

1011

1100

1101

1110

1111

2

2

3

3

4

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*

4

12* 60*28*

3 Bucket D2

Bucket A3

Exercise 7

7*

27*

overflow

27*11* 19*27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

Insert k6 such that
h(k6)=001011=11

Data Management File organization - 125

0000

0001

0010

0011

0100

0101

0110

0111

4

1000

1001

1010

1011

1100

1101

1110

1111

2

2

3

3

4

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

32*

1* 5* 21*13*

16*

10*

4* 20*

4

12* 60*28*

4 Bucket D2

Bucket A3

Exercise 7 - solution

7*

27*

overflow

27*11* 27*

h(k1) = 011011 = 27
h(k2) = 011100 = 28
h(k3) = 011011 = 27
h(k4) = 111100 = 60
h(k5) = 000111 = 7

4 Bucket D3

19*

11*

Data Management File organization - 126

Hashed index organization

file organization

simple index-based

treehash

ISAM B+-tree

extendible

hashing

linear

hashing

static

hash
dynamic

hash

coincides with

hashed file

heap sorted

Data Management File organization - 127

Linear Hashing

• The goal is to avoid the directory, so to avoid one access while
searching

• The primary pages (initially, they are N) are stored sequentially

• The accesses are organized in rounds. The variable LEVEL (initially
set to 0) tells us at which round we are at present

– During insertion/deletion, the bucket that have been allocated at the
beginning of the round are split one by one, from the first to the last,
so that, at the end of the round, the number of buckets is double
wrt to the beginning of the round

– The variable NEXT always points to the next bucket to split, so that
the buckets from 0 to NEXT – 1 have been already split

• The method is flexible in choosing when the split should occur.
Possible choices are, for example,

– when any overflow page is allocated (this is the strategy we
assume to follow)

– when a given condition on the storage space used occurs

Data Management File organization - 128

The situation in the current round

Buckets that have been
split in the current round

Next bucket to split

NEXT:

“Image buckets” resulting
from the split of some
buckets in the current
round

Buckets that were
present at the beginning
of the current round
(range of hLEVEL)

Data Management File organization - 129

Bucket splitting

• Essentially, we use a family of hash functions

– h0,

– h1,

– h2,

– ….

such that, if the range of hi is M, then the range of hi+1 is 2×M

• To deal with splitting, when we search for a value k, we apply the

hash function hLEVEL to get bucket whose address is T:

– If the bucket has not been split in this round (T ≥ NEXT), then

we look for the data entry k* in bucket T

– otherwise, we use the hash function hLEVEL+1 to decide if we

access the bucket T or its split image

Data Management File organization - 130

The family of hash functions

• The family is defined as follows:

hi(v) = h(v) mod 2
i
N

where h is the main hash function, and N is the initial

number of buckets

• If N is a power of 2, then hi(v) usually simply computes

the last di bits of h(v), where d0 is the number of bits

needed to represent N (i.e., d0 is log N), and di = di-1 + 1

Data Management File organization - 131

Example

Let N = 32. Here are the values for some parameters:

– d0 = 5

• h0(v) = h(v) mod 32

– d1 = 6

• h1(v) = h(v) mod 64

– d2 = 7

• h2(v) = h(v) mod 128

– ……

Data Management File organization - 132

Example: insert h(r)=43*

• Every bucket contains 4 entries

• Iniatially, LEVEL = 0, N = 4, NEXT=0

• Insert r: h0(r) = 43* mod N = (1010)11

• Since the insertion is in a full bucket, we allocate an
overflow page → we split the bucket pointed by NEXT

32* 44* 36*

00

01

10

11

Bucket A

Bucket B

NEXT = 0

h0

9* 25* 5*

10* 14* 18* 30*

31* 7* 11* 35*

Bucket C

Bucket D

PRIMARY PAGES OVERFLOW PAGES

Data Management File organization - 133

Insert h(r)=43* (split the NEXT bucket)

000

001

010

011

100

NEXT = 1

h0 h1

00

01

10

11

00

32* Bucket A

Bucket B9* 25* 5*

10* 14* 18* 30*

31* 7* 11* 35*

Bucket C

44* 36*
Bucket A2
(split image of A)

43*

PRIMARY PAGES OVERFLOW PAGES

• The data entries in the bucket NEXT are re-distributed in this bucket and in
its split image, according to the hash function hLEVEL+1

• Differently from the extendible hashing, when a split occur during an
insertion, the inserted data is not necessarily stored in the split bucket (see
the example below)

Bucket D

Data Management File organization - 134

Linear Hashing: observations (1)

• During round “LEVEL”, only the hash functions hLEVEL and hLEVEL+1

are used

• The image of bucket b is the bucket b + NLEVEL, where NLEVEL is the

number of buckets when the round is “LEVEL”, and is defined as N *

2LEVEL (N is the initial number of buckets)

• If the hash function returns a number between NEXT and NLEVEL,

then we know that the bucket is not split

• If the hash function returns a number between 0 and NEXT-1, then

we know that the bucket is split, and we need to use the new hash

function (looking at one more bit) to find the correct bucket

Data Management File organization - 135

Linear Hashing: observations (2)

• Example:

– h0(18)=102 is a number between NEXT and NLEVEL, and

therefore the correct bucket is 2 (=102)

– h0(32)=002 is a number between 0 and NEXT-1; h1(32) = 0002,

therefore the correct bucket is 0

– h0(44)=002 is a number between 0 and NEXT-1; h1(44)=1002,

therefore the correct bucket is 4

• There will be a stage where all buckets will be split: at this stage we

go to a different round, which means that LEVEL is incremented by

1, and NEXT is set to 0, and this corresponds to double the range of

the hash function (this is analogous to the doubling of the directory in

the extendible hashing)

• Delete: dual operation wrt insertion (if the last “primary” bucket is

empty, then NEXT is decremented,…)

Data Management File organization - 136

Extendible and Linear Hashing

• Suppose linear hashing uses a directory (like the extendible hashing)

– initially (buckets 0…N-1); when a new overflow page is allocated, the
bucket pointed by 0 is split and we add element N to the directory

– in principle, one can imagine that the whole directory is split, but since
element i points to the same data entry as element N+i, it is possible to
avoid the copy of the other elements of the directory

→ at the end of the round the size of the directory is double

• Idea of linear hashing: by allocating the primary buckets sequentially, bucket i
can be located by simply computing an offset i, and the use of directory can
be avoided

• Extendible Hashing vs Linear Hashing:

– Extendible: since we split the most appropriate bucket (the full one), we
can have less splitting

– Linear:

– the average number of buckets that are almost empty is low if the
hash function uniformly distributes the key values

– avoids the access to the directory (that might result in one page
access for every search)

Data Management File organization - 137

Comparing different file organizations

• In general

– We base our comparison on the cost of simple operations

– We do not consider the cost of operations on main memory data

– For search based on equality, we assume that the number of

records satisfying the equality is such that all such records fit in

one page

• Heap files

– We ignore the cost of space management (it is infrequent that

space management tasks are needed)

• Sorted file

– In “search based on equality”, we assume that the equality

condition matches the sort order (i.e., it is on at least the first field

of the composite key)

Data Management File organization - 138

The cost for different file organizations

• Clustered tree-based index

– We assume that alternative (1) is used

– We assume that the search operations refers to at least the first
component of the search key

– We ignore the cost of keeping the tree balanced (it is infrequent that
this needs occur)

• Unclustered tree-based index

– We assume that the search operations refers to at least the first
component of the search key

– We ignore the cost of keeping the tree balanced (it is infrequent that
this needs occur)

• Unclustered static hash-based index

– We assume that the search operations refers to at least the first
component of the search key

– We assume that there are no overflow chains

– The analysis for dynamic hash-based is similar (the problem of overflow
chains is irrelevant, although we have higher average cost for search)

Data Management File organization - 139

Summary

File

Organization

Scan Search based

on equality

Search based

on range

Insertion Deletion

Heap file BD BD BD 2D
(we ignore time

for space
management)

Cost of search

+ D (we ignore

time for space
management)

Sorted File BD D log2B
D log2B +
of further

pages

Cost of

search

+ 2BD

Cost of search

+ 2BD

Clustered tree-

based index

(alternative 1)

1.5BD D logF(1.5B) D logF(1.5B)
+ #of further

pages

Cost of

search

+ D

Cost of search

+ D

Unclustered

tree-based

index

(alternative 2)

BD (R

+0.15)

D(logF(0.15B)

+ #of further
records)

D(logF(0.15B)

+ #of further
records)

D(3+

logF(0.15B))

Cost of

search + 2D

Unclustered

static hash-

based index

BD(R+

0.125)

D(1 + #of

further

records)
BD 4D

Cost of

search + 2D

Data Management File organization - 140

Discussion

• Heap file

– Efficient in terms of space occupancy

– Efficient for scan and insertion

– Inefficient for search and deletion

• Sorted file

– Efficient in terms of space occupancy

– Inefficient for insertion and deletion

– More efficient search with respect to heap file

Data Management File organization - 141

Discussion

• Clustered tree index

– Limited overhead in space occupancy

– Efficient insertion and deletion

– Efficient search

– Optimal support for search based on range

Data Management File organization - 142

Discussion

• Static hash index

– Efficient search based on equality, insertion and deletion

– Optimal support for search based on equality

– Inefficient scan and search based on range

– Inefficient management of insertion and deletion (overflow)

• Dynamic hash index

– Efficient search based on equality, insertion and deletion

– Optimal support for search based on equality

– Inefficient scan and search based on range

– Good management of insertion and deletion (no overflow)

→ No file organization is uniformly superior to the other ones in every

situation

