
Introduction to Databases

Maurizio Lenzerini



M. Lenzerini - Introduction to databases 2

Acknowledgments

This material is based on a set of slides prepared by 

Prof. Phokion Kolaitis (University of California, Santa 
Cruz, USA) 

I thank Prof. Phokion Kolaitis for letting me use his 
material



Fare clic per modificare stileOutline

1. The notion of database

2. The relational model of data

3. The relational algebra

4. SQL

M. Lenzerini - Introduction to databases 3



Fare clic per modificare stileOutline

1. The notion of database

2. The relational model of data

3. The relational algebra

4. SQL

M. Lenzerini - Introduction to databases 4



M. Lenzerini - Introduction to databases 5

The Notion of Database 

Application 1

Application N

File 1

File N

Application 1

Application 1
Database

pre-

database

situation

(60’s-70’s)

The term “database” may refer to any collection of data stored in 
a computing system. Here, we use it with a specific meaning: 
integrated repository of the set of all relevant data of an
organization.

post-database 

situation



M. Lenzerini - Introduction to databases 6

Database

The Database Management System (DBMS) is the software 
system responsible of managing the database. Data in the 
database are accessible only through such system.

Three-layer Software Architecture

Application1

Applicationn

DBMS

.

.

.

Application Server

Clientn

.

.

.

Client1

Presentation layer Application layer Data layer



Fare clic per modificare stileDatabases and Database Management Systems

– A database is a collection of inter-related data organized in
particular ways, and managed by a DBMS.

– A database management system (DBMS) is a set of 
programs that allows one to carry out at least the following 
tasks:

• Create a (persistent) database.

• Insert, delete, modify (update) data in a database.

• Query a database “efficiently (ask questions and extract 
information from the database).

• Ensuring “correctness” and “availability” in data management

– DBMS’s are different  from File Systems

– Example: “Find all customers whose address has 95060 as zip 
code” is an easy task for a DBMS, but may require a new program 
to be written in a file system.

M. Lenzerini - Introduction to databases 7



Key Characteristics of DBMS’s 

Every DBMS must provide support for:

• A Data Model: A mathematical abstraction for 
representing/organizing data.

• At least one high-level Data Language: Language for defining, 
updating, manipulating, and retrieving data.

• Mechanisms for specifying and checking Integrity Constraints:
Rules ad restrictions that the data at hand must obey – e.g., different 
people must have different SSNs.

• Transaction management, concurrency control & recovery 
mechanisms:
Must not confuse simultaneous actions – e.g., 
two deposits to the same account must each credit the account.

• Access control:

Limit access of certain data to certain users.
M. Lenzerini - Introduction to databases 8



Applications of Database Management Systems

• Traditional applications:

– Institutional records 
• Government, Corporate, Academic, …

• Payroll, Personnel Records, …

– Airline Reservation Systems

– Banking Systems 

• Numerous new applications:

– Scientific Databases

– Electronic Health Records

– Information Integration from Heterogeneous Sources

– Databases are behind most of the things one does on the 
web:

• Google searches, Amazon purchases, eBay auctions, …

M. Lenzerini - Introduction to databases 9



Data Languages

A Data Language has two parts:

• A Data Definition Language (DDL) has a syntax for describing 
“database templates” in terms of the underlying data model.

• A Data Manipulation Language (DML) supports the following 
operations on data:

– Insertion

– Deletion

– Update

– Retrieval and extraction of data (query the data).

The first three operations are fairly standard. However, there is  
much variety on data retrieval and extraction (Query 
Languages).

M. Lenzerini - Introduction to databases 10



Fare clic per modificare stileA Brief History of Data Models

• Earlier Data Models (before 1970)

– Hierarchical Data Model
• Based on the mathematical notion of a tree.

– Network Data Model
• Based on the mathematical notion of a graph.

• Relational Data Model – 1970
– Based on the mathematical notion of a relation.

• Entity-Relationship Model – 1976
– Conceptual model; used mainly as a design tool.

• Semi-structured Data Model and XML – late 1990s
– Based on SGML and the mathematical notion of a tree (the 

Hierarchical Model strikes back!).

• Data Model of Graph-databases – 2000s

M. Lenzerini - Introduction to databases 11



Fare clic per modificare stile

12

Relational Databases:  A Very Brief History

• The history of relational databases is  
the history of a scientific and 
technological revolution.

• The scientific revolution started in 1970 
by Edgar (Ted) F. Codd at the IBM San 
Jose Research Laboratory (now the 
IBM Almaden Research Center)

• Codd introduced the relational data 
model and two database query 
languages: relational algebra and 
relational calculus.

– “A relational model for data for large 
shared data banks”, CACM, 1970.

– “Relational completeness of data 
base sublanguages”, in: Database 
Systems, ed. by R. Rustin, 1972.

Edgar F. Codd, 1923-2003

M. Lenzerini - Introduction to databases 12



Fare clic per modificare stile

13

Relational Databases:  A Very Brief History

• Researchers at the IBM San Jose Laboratory embark on the 
System R project, the first implementation of a relational 
database management system (RDBMS) – see the paper by 
Astrahan et al.

– In 1974-1975, they develop SEQUEL, a query language that eventually 
became the industry standard SQL.

– System R evolved to DB2 – released first in 1983.

• M. Stonebraker and E. Wong embark on the development of 
the Ingres RDBMS at UC Berkeley in 1973.

– Ingres is commercialized in 1983; later, it became PostgreSQL, a free 
software OODBMS (object-oriented DBMS).

• L. Ellison founds a company in 1979 that eventually becomes 
Oracle Corporation; Oracle V2 is released in 1979 and Oracle 
V3 in 1983.

• Ted Codd receives the ACM Turing Award in 1981.

• Database research is still very active today
M. Lenzerini - Introduction to databases 13



Fare clic per modificare stileOutline

1. The notion of database

2. The relational model of data

3. The relational algebra

4. SQL

M. Lenzerini - Introduction to databases 14



Fare clic per modificare stile

15

The Relational Data Model (E.F. Codd – 1970)

• The Relational Data Model uses the mathematical concept of a 
relation as the formalism for describing and representing data.

• Question: What is a relation?

• Answer:

– Formally, a relation is a subset of a cartesian product of sets.

– Informally, a relation is a “table” with rows and columns.

branch-name account-no customer-name balance

Orsay 10991-06284 Abiteboul $3,567.53

Hawthorne 10992-35671 Hull $11,245.75

… … … …

CHECKING-ACCOUNT Table

M. Lenzerini - Introduction to databases 15



Fare clic per modificare stile

16

Basic Notions from Discrete Mathematics

• A k-tuple is  an ordered sequence of k objects (need not be 
distinct)

– (2,0,1) is a 3-tuple; (a,b,a,a,c) is a 5-tuple, and so on.

• If D1, D2, … , Dk are k sets, then the cartesian product D1× D2

… × Dk of these sets is the set of all k-tuples (d1,d2, …,dk) such 
that di⊆ Di, for 1 ≤ i ≤ k.

• Fact: Let |D| denote the cardinality (# of elements) of a set D. 
Then  |D1× D2×… × Dk| = |D1|× |D2| ×… × |Dk|.

• Example: If D1 = {0,1} and D2 ={a,b,c,d}, then |D1× D2| = 8.

• Warning: In general, computing a cartesian product is an 
expensive operation!

M. Lenzerini - Introduction to databases 16



Fare clic per modificare stile

17

Basic Notions from Discrete Mathematics

• A k-ary relation R is a subset of a cartesian product of k sets, 
i.e., R ⊆ D1× D2×…× Dk.

• Examples:

– Unary     R = {0,2,4,…,100}   (R ⊆ N)

– Binary    L = {(m,n):  m < n}   (L ⊆ N×N)

– Binary    T = {(a,b): a and b have the same birthday}

– Ternary  S = {(m,n,s): s = m+n}

– …

M. Lenzerini - Introduction to databases 17



Fare clic per modificare stile

18

Relations and Attributes

R ⊆ D1× D2 ×… × Dk can be viewed as a table with k columns

Table R

M. Lenzerini - Introduction to databases 18

Definition: An attribute is the name of a position (column) of a 
relation (table).

In the CHECKING-ACCOUNT Table below, the attributes are 
branch-name, account-no, customer-name, and balance.

branch-name account-no customer-name balance

Orsay 10991-06284 Abiteboul $3,567.53

Hawthorne 10992-35671 Hull $11,245.75

… … … …

CHECKING-ACCOUNT Table



Fare clic per modificare stile

19

Relation Schemas and Relations

Definition: A k-ary relation schema R(A1,A2,…,AK) is a named 
ordered sequence (A1,A2,…,Ak) of k attributes (where each 
attribute may have a data type declared).

Examples:

– COURSE(course-no, course-name, term, instructor, room, time)

– CITY-INFO(name, state, population)

– Option: course-no:integer,  course-name:string

Thus, a  k-ary relation schema is a “blueprint”, a “template” or a “structure 
specification” for some k-ary relation.

Definition: An instance of a relation schema is a relation 
conforming to the schema:

� The arities must match;

� If declared, the data types must match.

M. Lenzerini - Introduction to databases 19



Fare clic per modificare stile

20

Relational Database Schemas and Relational Databases

M. Lenzerini - Introduction to databases 20

Definition: A relational database schema is a set of relation 
schemas Ri(A1,A2,…,Aki

), for 1 ≤ i≤ m.

Example: BANKING relational database schema with relation 
schemas

– CHECKING-ACCOUNT(branch, acc-no, cust-id, balance)

– SAVINGS-ACCOUNT(branch, acc-no, cust-id, balance)

– CUSTOMER(cust-id, name, address, phone, email)

– ….

Definition: A relational database instance or, simply, a relational 
database of a relational schema is a set of relations Ri each of 
which is an instance of the corresponding relation schema Ri, for 
each 1 ≤ i≤ m.



Fare clic per modificare stile

21

Relational Database Schemas  - Examples

Examples:

• BANKING relational database schema with relation schemas

– CHECKING-ACCOUNT(branch, acc-no, cust-id, balance)

– SAVINGS-ACCOUNT(branch, acc-no, cust-id, balance)

– CUSTOMER(cust-id, name, address, phone, email)

– ….

• UNIVERSITY relational database schema with relation 
schemas

– STUDENT(student-id, student-name, major, status)

– FACULTY(faculty-id, faculty-name, dpt, title, salary)

– COURSE(course-no, course-name, term, instructor)

– ENROLLS(student-id, course-no, term)

– …

Note:  In general, a relational schema may have infinitely many
different relational database instances.

M. Lenzerini - Introduction to databases 21



Fare clic per modificare stile

22

Schemas vs. Instances

Keep in mind that there is a clear distinction between

– relation schemas and instances of relation schemas

and

– relational database schemas and relational database 
instances.

Syntactic Notion Semantic Notion

(discrete mathematics notion)

Relation Schema Instance of a relation schema 

(i.e., a relation)

Relational Database Schema Relational database instance

(i.e., a database)

M. Lenzerini - Introduction to databases 22



Fare clic per modificare stile

23

Query Languages for the Relational Data Model

Codd introduced two different query languages for the relational 
data model:

• Relational Algebra, which is a procedural language.
– It is an algebraic formalism in which queries are expressed by applying a 

sequence of operations to relations.

• Relational Calculus, which is a declarative language.
– It is a logical formalism in which queries are expressed as formulas of 

first-order logic.

Codd’s Theorem:  Relational Algebra and Relational Calculus are 

essentially equivalent in terms of expressive power.

DBMSs are based on yet another language, namely SQL, a hybrid 
of a procedural and a declarative language that combines features 
from both relational algebra and relational calculus. 

M. Lenzerini - Introduction to databases 23



Fare clic per modificare stile

24

Desiderata for a Database Query Language

Desiderata:

I. The language should be sufficiently high-level to secure 
physical data independence, i.e., the separation between the 
physical level and the conceptual level of databases.

II. The language should have high enough expressive power to 
be able to pose useful and interesting queries against the 
database.

III. The language should be efficiently implementable to allow for 
the fast retrieval of information from the database.

Warning:

� There is a well-understood tension between desideratum II 
and desideratum III.

� Increase in expressive power comes at the expense of 
efficiency.

M. Lenzerini - Introduction to databases 24



Fare clic per modificare stileOutline

1. The notion of database

2. The relational model of data

3. The relational algebra

4. SQL

M. Lenzerini - Introduction to databases 25



Fare clic per modificare stile

26

The Five Basic Operations of Relational Algebra

Operators of Relational Algebra:

• Group I: Three standard set-theoretic binary operations:

– Union

– Difference

– Cartesian Product

• Group II. Two special unary operations on relations:

– Projection

– Selection

• Relational Algebra consists of all expressions obtained by 
combining these five basic operations in syntactically correct 
ways.

M. Lenzerini - Introduction to databases 26



Fare clic per modificare stile

27

Relational Algebra: Standard Set-Theoretic Operations 

• Union
– Input: Two k-ary relations R and S, for some k.
– Output: The k-ary relation  R ∪ S, where

R ∪ S = {(a1,…,ak): (a1,…,ak) is in R or (a1,…,ak) is in S}
• Difference:

– Input: Two k-ary relations R and S, for some k.
– Output: The k-ary relation  R - S, where

R - S = {(a1,…,ak): (a1,…,ak) is in R and (a1,…,ak) is not in S}

• Note:
– In relational algebra, both arguments to the union and the 

difference must be relations of the same arity.
– In SQL, there is the additional requirement that the 

corresponding attributes must have the same data type.
– However, the corresponding attributes need not have the 

same names; the corresponding attribute in the result can be 
renamed arbitrarily.

M. Lenzerini - Introduction to databases 27



Fare clic per modificare stile

Employee

Code

7432

9824

Age

54

45

Name

Neri

Verdi

7274 42Rossi

Director

Code

7432

9824

9297

Age

54

45

33

Name

Neri

Verdi

Neri

Employee ∪∪∪∪ Director

Code AgeName

7432 54Neri

9824 45Verdi

9297 33Neri

7274 42Rossi

7432 54Neri

9824 45Verdi

7274 42Rossi

7432 54Neri

9824 45Verdi

9297 33Neri

7432 54Neri

9824 45Verdi

9297 33Neri

7274 42Rossi

Union

M. Lenzerini - Introduction to databases 28



Fare clic per modificare stile

Employee

Code AgeName

7432 54Neri

9824 45Verdi

7274 42Rossi

Director

Code

7432

9824

9297

Age

54

45

33

Name

Neri

Verdi

Neri

Employee – Director

Code AgeName

7432 54Neri

9824 45Verdi

7274 42Rossi

7432 54Neri

9824 45Verdi

7274 42Rossi

Difference

M. Lenzerini - Introduction to databases 29



Fare clic per modificare stile

30

Relational Algebra: Cartesian Product

• Cartesian Product

– Input: An m-ary relation R and an n-ary relation S

– Output: The (m+n)-ary relation R× S, where

R × S = {(a1,…,am,b1,…,bn): (a1,…am) is in R and (b1,…,bn) is in S}

• Note:

As stated earlier,
|R× S| = |R|× |S|

M. Lenzerini - Introduction to databases 30



Rossi A

Neri B

Bianchi B

Emp Dept

Employee

A Mori

B BruniB BruniB Bruni

Code Chair

Dept

Employee ×Dept

Emp Dept ChairCode

Rossi A MoriAAA
Rossi A B Bruni

Neri B MoriA

Neri B B Bruni

Bianchi B MoriA

Bianchi B B Bruni

Relational Algebra: Cartesian Product

M. Lenzerini - Introduction to databases 31



Fare clic per modificare stile

32

Algebraic Laws for the Basic Set-Theoretic Operation

• Union:
– R ∪ R = R -- idempotence law
– R ∪ S = S ∪ R  -- commutativity law, order is unimportant
– R ∪ (S ∪ T) = (R∪ S) ∪ T 

-- associativity law, can drop parentheses

• Difference:
– R – R = ∅

– In general, R – S ≠  S – R
– Associativity does not hold for the difference

• Cartesian Product:
– In general, R × S ≠ S × R
– R × (S × T) = (R ×S) × T

– R × (S ∪ T) = (R × S) ∪ (R × T) (distributivity law)

M. Lenzerini - Introduction to databases 32



Fare clic per modificare stile

33

Algebraic Laws

• Question: 

– Why are algebraic laws important? 

• Answer:

– Algebraic laws are important in query processing and 
optimization to transform a query to an equivalent one that 
may be less costly to evaluate

– Applying correct algebraic laws ensures the correctness of 
the transformations.

M. Lenzerini - Introduction to databases 33



Fare clic per modificare stile

34

The Projection Operation

• Motivation: It is often the case that, given a table R, one wants 
to rearrange the order of the columns and/or suppress some 
columns

• Projection is a family of unary operations of the form

π<attribute list> (<relation name>)

• The intuitive description of the projection operation is as 
follows:

– When projection is applied to a relation R, it removes all 
columns whose attributes do not appear in the <attribute 
list>.

– The remaining columns may be re-arranged according to the 
order in the <attribute list>.

– Any duplicate rows are also eliminated.
M. Lenzerini - Introduction to databases 34



Name Site SalaryCode

Neri Milano 645998

Neri Napoli 557309

Rossi Roma 645698

Rossi Roma 449553

Show name and Site of employees

PROJ Name, Site(Employee)

Employee

The Projection Operation

M. Lenzerini - Introduction to databases 35



Fare clic per modificare stile

36

More on the Syntax of the Projection Operation

• In relational algebra, attributes can be referenced by position 
number

• Projection Operation:

– Syntax: πi1,…,im
(R), where R is of arity k, and i1,….,im are 

distinct integers from 1 up to k.

– Semantics:

πi1,…,im
(R) = {(a1,…,am): there is a tuple (b1,…,bk) in R such

that a1=bi1
, …, am=bim

}

• Example: If R is R(A,B,C,D), then πC,A (R) = π3,1(R)

π3,1(R) = {(a1,a2): there is (a,b,c,d) in R such that a1=c and

a2=a}

M. Lenzerini - Introduction to databases 36



Fare clic per modificare stile

37

The Selection Operation

• Motivation: Given SAVINGS(branch-name, acc-no, cust-

name, balance) we may want to extract the following 
information from it:

• Find all records in the Aptos branch

• Find all records with balance at least $50,000

• Find all records in the Aptos branch with balance less than $1,000

• Selection is a family of unary operations of the form 

σΘ(R) 

where R is a relation and Θ is a condition that can be 
applied as a test to each row of R.

• When a selection operation is applied to R, it returns 
the subset of R consisting of all rows that satisfy the 
condition Θ

• Question: What is the precise definition of a “condition”?

M. Lenzerini - Introduction to databases 37



Fare clic per modificare stile

38

The Selection Operation

• Definition: A condition in the selection operation is an 
expression built up from:

– Comparison operators =, <, >, ≠, ≤,  ≥ applied to operands 
that are constants or attribute names or component 
numbers.

• These are the basic (atomic) clauses of the conditions.

– The Boolean logic operators ∧, ∨, ¬ applied to basic clauses.

• Examples: 

– balance > 10,000

– branch-name = “Aptos”

– (branch-name = “Aptos”)  ⋀ (balance < 1,000)

M. Lenzerini - Introduction to databases 38



Fare clic per modificare stile

39

The Selection Operator

• Note:

– The use of the comparison operators <, >, ≤,  ≥ 
assumes that the underlying domain of values is 
totally ordered.

– If the domain is not totally ordered, then only = and 
≠ are allowed.

– If we do not have attribute names (hence, we can 
only reference columns via their component 
number), then we need to have a special symbol, 
say $, in front of a component number. Thus,

– $4 > 100 is a meaningful basic clause

– $1 = “Aptos” is a meaningful basic clause, and so on.

M. Lenzerini - Introduction to databases 39



Name Site SalaryCode

Neri Milano 645998

Rossi Roma 557309

Neri Napoli 645698

Milano Milano 449553 Milano Milano 449553 Neri Napoli 645698

Show the employees whose salary is greater than 50

σσσσSalary > 50 (Employee) 

Employee

The Selection Operator

M. Lenzerini - Introduction to databases 40



Fare clic per modificare stile

41

Algebraic Laws for the Selection Operation

� σΘ1
(σΘ2 

(R)) = σΘ2
(σΘ1 

(R))

� σΘ1
(σΘ2 

(R)) = σΘ1 ℵ Θ2 
(R)

� σΘ (R × S) = σΘ(R) × S 

provided Θ mentions only attributes of R.

Note: These are very useful laws in query optimization.

M. Lenzerini - Introduction to databases 41



Fare clic per modificare stile

42

Relational Algebra Expression

• Definition: A relational algebra expression is a string 
obtained from relation schemas using union, 
difference, cartesian product, projection, and 
selection.

• Context-free grammar for relational algebra expressions:

E :=  R, S, … | (E1 ∪ E2) | (E1 – E2) | (E1× E2) | πX (E) | σΘ (E), 

where

� R, S, … are relation schemas

� X is a list of attributes

� Θ is a condition.

M. Lenzerini - Introduction to databases 42



Fare clic per modificare stile

43

Derived Operation: Intersection

• Intersection

– Input: Two k-ary relations R and S, for some k.

– Output: The k-ary relation  R ∩ S, where

R ∩ S  = {(a1,…,ak): (a1,…,ak) is in R and (a1,…,ak) is in S}

� Fact: R ∩S =  R – (R – S)  =  S – (S – R)

Thus, intersection is a derived relational algebra 
operation.

M. Lenzerini - Introduction to databases 43



Fare clic per modificare stile

Employee

Code

7432

9824

Age

54

45

Name

Neri

Verdi

7274 42Rossi

Director

Code

7432

9824

9297

Age

54

45

33

Name

Neri

Verdi

Neri

Employee ∩ Director

Code AgeName

7432 54Neri

9824 45Verdi

7432 54Neri

9824 45Verdi

7432 54Neri

9824 45Verdi

7432 54Neri

9824 45Verdi

Intersection: example

M. Lenzerini - Introduction to databases 44



Fare clic per modificare stile

45

Derived Operation: ΘΘΘΘ−−−−Join and Beyond

Definition: A Θ-Join is a relational algebra expression of the form  

σΘ(R× S)

Note:

� If R and S have an attribute A in common, then we use the
notation R.A and S.A to disambiguate.

� The Θ-Join selects those tuples from R× S that satisfy the 
condition Θ. In particular, if every tuple in R Θ S satisfies Θ, 
then 

σΘ(R× S) = R× S

M. Lenzerini - Introduction to databases 45



Fare clic per modificare stile

46

ΘΘΘΘ−−−−Join and Beyond

� Θ-joins are often combined with projection to express 
interesting queries.

• Example: F(name, dpt, salary), C(dpt, name), where 
F stands for FACULTY and C stands for CHAIR

– Find the salaries of department chairs

C-SALARY(dpt,salary)  =

π F.dpt, F.salary(σF.name = C.name ⋀ F.dpt = C.dpt (F × C))

Note: The Θ-Join in this example is an equijoin, since Θ is a 
conjunction of equality basic clauses.

Exercise: Show that the intersection R ∩ S can be expressed 
using a combination of projection and an equijoin.

M. Lenzerini - Introduction to databases 46



Fare clic per modificare stile

47

ΘΘΘΘ−−−−Join and Beyond

Example: F(name, dpt, salary),  C-SALARY(dpt, salary)

Find the names of all faculty members of the EE department who 
earn a bigger salary than their department chair.

HIGHLY-PAID-IN-EE(Name)  = 

π F.name (σ F.dpt = “EE” ⋀ F.dpt = C.dpt ⋀ F.salary > C.salary (F ×C-SALARY))

Note: The Θ-Join above is not an equijoin.

M. Lenzerini - Introduction to databases 47



Fare clic per modificare stile

48

Derived Operation: Natural Join 

The natural join between two relations is essentially the equi-join 
on common attributes.

Given TEACHES(facname, course, term) and 

ENROLLS(studname, course, term), we compute the natural join 

TAUGHT-BY(studname, course, term, facname) by:

π E.studname, E.course, E.term. ,E.course, T.facname

(σ T.course = E.course ⋀ T.term = E.term (ENROLLS× TEACHES))

The resulting expression can be written using this notation:

ENROLLS ⋈ TEACHES

M. Lenzerini - Introduction to databases 48



Fare clic per modificare stile

49

Natural Join

• Definition: Let A1, …, Ak be the common attributes of two 
relation schemas R and S.  Then

R ⋈ S = π<list> (σR.A1=S.A1 ⋀ … ⋀ R.A1=S.Ak(R×S)), 

where <list> contains all attributes of R×S, except for S.A1, …, 
S.Ak (in other words, duplicate columns are eliminated).

� Algorithm for R ⋈ S:

For every tuple in R, compare it with every tuple in S as follows:

� test if they agree on all common attributes of R and S;

� if they do, take the tuple in R× S formed by these two 
tuples,

� remove all values of attributes of S that also occur in R;

� put the resulting tuple in R ⋈ S.

M. Lenzerini - Introduction to databases 49



Fare clic per modificare stile

50

Natural Join 

Some Algebraic Laws for Natural Join

– R ⋈ S = S ⋈ R  (up to rearranging the columns)

– (R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

– (R ⋈ R ) = R

– If A is an attribute of R, but not of S, then

σA = c (R ⋈ S) = σA = c (R) ⋈ S 

– …

Fact: The most FAQs against databases involve the natural join
operation ⋈.

M. Lenzerini - Introduction to databases 50



Fare clic per modificare stileOutline

1. The notion of database

2. The relational model of data

3. The relational algebra

4. SQL

M. Lenzerini - Introduction to databases 51



Fare clic per modificare stile

52

• SQL is the standard language for relational DBMSs

• We will present the syntax of the core SQL constructs and then 
will give rigorous semantics by interpreting SQL to Relational 
Algebra.

• Note: SQL typically uses multiset semantics, but we ignore this 
property here, and we only consider the set-based semantics 
(adopted by using the keyword DISTINCT in queries)

SQL: Structured Query Language

M. Lenzerini - Introduction to databases



Fare clic per modificare stile

53

• The basic SQL construct is:

SELECT DISTINCT <attribute list>

FROM    <relation list>

WHERE  <condition>

� More formally,

SELECT DISTINCT Ri1.A1, … , Rim.Am

FROM    R1, … ,RK

WHERE γ

Restrictions: 
� R1, … ,RK are relation names (possibly, with aliases for renaming, where 

an alias S for relation name Ri is denoted by Ri AS N)

� Each Rij.Aj is an attribute of Rij

� γ is a condition with a precise (and rather complex) syntax.

SQL: Structured Query Language

M. Lenzerini - Introduction to databases



Fare clic per modificare stile

54

SQL Relational Algebra

SELECT Projection

FROM Cartesian Product

WHERE Selection

Semantics of SQL via interpretation to Relational Algebra:

SELECT DISTINCT Ri1.A1, …, Rim.Am

FROM    R1, …,RK

WHERE γ

corresponds to

π Ri1.A1, … , Rim.Am (σγ (R1 ×… × RK)) 

SQL vs. Relational Algebra

54

M. Lenzerini - Introduction to databases



Fare clic per modificare stileReferences

M. Lenzerini - Introduction to databases 55

• Raghu Ramakrishnan, Johannes Gehrke, “Database 
Management Systems”, McGraw-Hill Science 
Engineering, 2002

Deals with all aspects of database management (and 
design)

• Serge Abiteboul, Richard Hull, Victor Vianu, 
“Foundations of databases”, Addison-Wesley, 1995

THE database theory book


