
Data Management for Data Science

Database Management Systems:

transaction management

and recovery management

Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Ingegneria informatica automatica e gestionale

Sapienza Università di Roma

2017/2018

SQL engine

Access file manager

Buffer manager

Disk manager

Security and

recovery

manager

Data

SQL commands

DBMS

Transaction

manager

Architecture of a DBMS

DBMS transactions and recovery 2

1 - Transaction management

1.1 Transactions, concurrency, serializability
1.2 Recoverability
1.3 Concurrency control through locks
1.4 Concurrency control through timestamps
1.5 Transaction management in SQL

DBMS transactions and recovery 3

1 - Transaction management

1.1 Transactions, concurrency, serializability
1.2 Recoverability
1.3 Concurrency control through locks
1.4 Concurrency control through timestamps
1.5 Transaction management in SQL

DBMS transactions and recovery 4

Transactions

A transaction models the execution of a software procedure
constituted by a set of instructions that may ”read from” and “write
on” a database, and that form a single logical unit.

Syntactically, we will assume that every transaction contains:

– one “begin” instruction

– one “end” instruction

– one among “commit” (confirm what you have done on the
database so far) and “rollback” (undo what you have done on the
database so far)

As we will see, each transaction should enjoy a set of properties (called
ACID)

DBMS transactions and recovery 5

Example of “real” transaction

DBMS transactions and recovery 6

begin
writeln(’Inserire importo, conto di partenza, conto di arrivo’);
read (Importo, contoPartenza, contoArrivo);
EXEC SQL

select Saldo into :saldoCorrente
from ContiCorrenti
where Numero = :contoPartenza

if saldoCorrente < Importo
then begin

writeln(’Saldo Insufficiente’);
ABORT;

end;
else begin

EXEC SQL
UPDATE ContiCorrenti
set Saldo=:saldoCorrente - :Importo
where Numero = :contoPartenza;

writeln(‘Operazione eseguita con successo’);
COMMIT;

end;
end;

Numero Saldo

Tabella ContiCorrenti

Effect of a transaction

Let DB be a database

Let T be a transaction on DB

Effect (or result) of T = state of DB after the execution of T

As we shall see, every transaction must enjoy a set of properties
(called ACID properties) that deal with the effect of the transaction

DBMS transactions and recovery 7

Concurrency

The throughput of a system is the number of transactions per second
(tps) accepted by the system

In a DBMS, we want the throughput to be approximately 100-1000tps

This means that the system should support a high degree of
concurrency among the transactions that are executed

– Example: If each transaction needs 0.1 seconds in the average for
its execution, then to get a throughput of 100tps, we must
ensure that 10 transactions are executed concurrently in the
average

Typical applications: banks, flight reservations, …

DBMS transactions and recovery 8

Concurrency: example

Suppose that the same program is executed concurrently by two

applications aiming at reserving a seat in the same flight

The following temporal evolution is possible:

The result is that we have two reservations for the same seat!

Application 1

1. Find seat
2.
3. Book seat
4.

Application 2

Find seat

Book seat

time

DBMS transactions and recovery 9

Isolation of transactions

The DBMS deals with this problem by ensuring the so-called

“isolation” property for the transactions

This property for a transaction essentially means that it is

executed like it was the only one in the system, i.e., without

concurrent transactions

While isolation is essential, other properties are important as

well

DBMS transactions and recovery 10

Desirable properties of transactions

The desirable properties in transaction management are called the

ACID properties. They are:

1. Atomicity: for each transaction execution, either all or none

of its actions are executed

2. Consistency: each transaction execution brings the

database to a correct state

3. Isolation: each transaction execution is independent of any

other concurrent transaction executions

4. Durability: if a transaction execution succeeds, then its

effects are registered permanently in the database

DBMS transactions and recovery 11

Schedules and serial schedules

Given a set of transactions T1,T2,…,Tn, a sequence S of executions of

actions of such transactions respecting the order within each

transaction (i.e., such that if action a is before action b in Ti, then a is

before b also in S) is called schedule on T1,T2,…,Tn, or simply

schedule.

A schedule on T1,T2,…,Tn that does not contain all the actions of all

transactions T1,T2,…,Tn is called partial

A schedule S is called serial if the actions of each transaction in S

come before every action of a different transaction in S, i.e., if in S

the actions of different transactions do not interleave.

DBMS transactions and recovery 12

Serializability

Example of serial schedules:

Given T1 (x=x+x; x= x+2) and T2 (x= x**2; x=x+2), possible serial
schedules on them are:

Sequence 1: x=x+x; x= x+2; x= x**2; x=x+2
Sequence 2: x= x**2; x=x+2; x=x+x; x= x+2

Definition of serializable schedule: A schedule S is serializable if
the outcome of its execution is the same as the outcome of at
least one serial schedule constituted by the same transactions
of S, no matter what the initial state of the database is.

DBMS transactions and recovery 13

Serializability

In other words, a schedule S on T1,T2,…,Tn is serializable if
there exists a serial schedule on T1,T2,…,Tn that is
“equivalent” to S

But what does “equivalent” mean?

Definition of equivalent schedules: Two schedules S1 and
S2 are said to be equivalent if, for each database state D,
the execution of S1 starting in the database state D
produces the same outcome as the execution of S2 starting
in the same database state D

DBMS transactions and recovery 14

Notation

A successful execution of transaction can be represented as a sequence of

– Comands of type begin/commit

– Actions that read and write an element (attribute, record, table) in the

database

– Actions that read and write an element in the local store

T1

begin

READ(A,t)

t := t+l00

WRITE(A,t)

READ(B,t)

t := t+l00

WRITE(B,t)

commit

T2

begin

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)
commit

DBMS transactions and recovery 15

A serial schedule

T1

begin

READ(A,t)

t := t+l00

WRITE(A,t)

READ(B,t)

t := t+l00

WRITE(B,t)

commit

T2

begin

READ(A,s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

commit

A B

25 25

125

125

250

250

DBMS transactions and recovery 16

A serializable schedule

T1

begin

READ(A,t)

t := t+l00

WRITE(A,t)

READ(B,t)

t := t+l00

WRITE(B,t)

commit

T2

begin

READ(A,s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

commit

A B

25 25

125

250

125

250

The final values of
A and B are the
same as the serial
schedule T1, T2, no
matter what the
initial values of A
and B.

We can indeed
show that, if
initially A=B=c (c is
a costant), then at
the end of the
execution of the
schedule we have:
A=B=2(c+100)

DBMS transactions and recovery 17

A non-serializable schedule

T1

begin

READ(A,t)

t := t+l00

WRITE(A,t)

READ(B,t)

t := t+l00

WRITE(B,t)

commit

T2

begin

READ(A,s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

commit

A B

25 25

125

250

50

150

Where is
the
problem??

DBMS transactions and recovery 18

A non-serializable schedule

T1

begin

READ(A,t)

t := t+l00

WRITE(A,t)

READ(B,t)

t := t+l00

WRITE(B,t)

commit

T2

begin

READ(A,s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

A B

25 25

125

250

50

150

Where is
the
problem??

commit

DBMS transactions and recovery 19

Anomaly 1: reading temporary data (WR anomaly)

T1

begin
READ(A,x)
x := x-1
WRITE(A,x)

READ(B,x)
x:=x+1
WRITE(A,x)
commit

T2

begin

READ(A,x)
x := x*2
WRITE(A,x)
READ(B,x)
x := x*2
WRITE(B,x)
commit

Note that the interleaved

execution is different from any
serial execution. The problem

comes from the fact that the

value of A written by T1 is read

by T2 before T1 has completed

all its changes.

This is a WR (write-read)

anomaly

DBMS transactions and recovery 20

Anomaly 2a: update loss (RW anomaly)

• Let T1, T2 be two transactions, each of the form:

READ(A, x), x := x + 1, WRITE(A, x)

• The serial execution with initial value A=2 produces A=4, which is
the result of two subsequent updates

• Now, consider the following schedule:

T1

begin
READ(A,x)
x := x+1

WRITE(A,x)
commit

T2

begin

READ(A,x)
x := x+1

WRITE(A,x)
commit

The final result is A=3, and the

first update is lost: T2 reads

the initial value of A, and

writes the final value. In this

case, the update executed by

T1 is lost!

DBMS transactions and recovery 21

Anomaly 2a: update loss (RW anomaly)

• This kind of anomaly is called RW anomaly (read-write anomaly),
because it shows up when a transaction reads an element, and
another transaction writes the same element.

• Indeed, this anomaly comes from the fact that a transaction T2
could change the value of an object A that has been read by a
transaction T1, while T1 is still in progress. The fact that T1 is still is
progress means that the risk is that T1 works on A without taking
into account the changes that T2 makes on A. Therefore, the update
of T1 or T2 are lost.

DBMS transactions and recovery 22

Anomaly 2b: unrepeateable read (RW anomaly)

T1 executes two consecutive reads of the same data:

However, due to the concurrent update of T2, T1 reads two different
values.

This is another kind of RW (read-write) anomaly.

T1

begin
READ(A,x)

READ(A,x)
commit

T2

begin

READ(A,x)
x := x+1
WRITE(A,x)
commit

DBMS transactions and recovery 23

Anomaly 3: ghost update (WW anomaly)

Assume the following integrity constraint A = B

T1

begin
WRITE(A,1)

WRITE(B,1)
commit

T2

begin

WRITE(B,2)

WRITE(A,2)
commit

Note that T1 and T2 in

isolation do not violate the

integrity constraints. However,

the interleaved execution is

different from any serial

execution. Transaction T1 will

see the update of A to 2 as a

surprise, and transaction T2

will see the update of B to 1

as a surprise.

This is a WW (write-write)

anomaly

DBMS transactions and recovery 24

Scheduler

The scheduler is part of the transaction manager, and works as follows:

– It deals with new transactions entered into the system, assigning them an

identifier

– It instructs the buffer manager so as to read and write on the DB according to a

particular sequence

– It is NOT concerned with specific operations on the local store of transactions,

nor with constraints on the order of executions of transactions. The last

conditions means that every order by which transactions are entered into the

system is acceptable to the schedule.

It follows that we can simply characterize each transaction Ti (where i is a nonnegative

integer identifying the transaction) in terms of its actions, where each action of

transaction Ti is denoted by a letter (read, write, o commit) and the subscript i

The transactions of the previous examples are written as:

T1: r1(A) r1(B) w1(A) w1(B) c1 T2: r2(A) r2(B) w2(A) w2(B) c2

An example of (complete) schedule on these transactions is:

r1(A) r1(B) w1(A) r2(A) r2(B) w2(A) w1(B) c1 w2(B) c2

T1 reads A T2 writes A T1 commit

DBMS transactions and recovery 25

Serializability and equivalence of schedules

As we saw before, the definition of serializability relies on the notion
of equivalence between schedules.

Depending on the level of abstraction used to characterize the effects
of transactions, we get different notions of equivalence, which in turn
suggest different definitions of serializability.

Given a certain definition of equivalence, we will be interested in

• two types of algorithms:
– algorithms for checking equivalence: given two schedule, determine if

they are equivalent

– algorithms for checking serializability: given one schedule, check whether
it is equivalent to any of the serial schedules on the same transactions

• rules that ensures serializability

DBMS transactions and recovery 26

Two important assumptions

1. No transaction reads or writes the same element twice

2. No transaction executes the “rollback” command (i.,e. all

executions of transactions are successful)

DBMS transactions and recovery 27

Classes of schedules

Basic idea of our investigation: single out classes of schedules
that are serializable, and such that the serializability check can
be done with reasonable computational complexity

Serial
schedules

All
schedules

Serializable
schedules

DBMS transactions and recovery 28

Conflict-serializability: the notion of conflict

Definition of conflicting actions: Two actions are conflicting in a schedule if they
belong to different transactions, they operate on the same element, and at least
one of them is a write.

It is easy to see that:

– Two consecutive nonconflicting actions belonging to different transactions can
be swapped without changing the effects of the schedule. Indeed,

• Two consecutive reads of the same elements in different transactions can be
swapped

• One read of X in T1 and a consecutive read of Y in T2 (with Y≠X) can be
swapped

– The swap of two consecutive actions of the same transaction can change the
effect of the transaction

– Two conflicting consecutive actions cannot be swapped without changing the
effects of the schedule, because:

• Swapping two write operations w1(A) w2(A) on the same elements may
result in a different final value for A

• Swapping two consecutive operations such as r1(A) w2(A) may cause T1
read different values of A (before and after the write of T2, respectively)

DBMS transactions and recovery 29

Conflict-equivalence

Definition of conflict-equivalence: Two schedules S1 and S2 on the same

transactions are conflict-equivalent if S1 can be transformed into S2 through a

sequence of swaps of consecutive non-conflicting actions

Example:

S = r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

is conflict-equivalent to:

S’ = r1(A) w1(A) r1(B) w1(B) r2(A) w2(A) r2(B) w2(B)

because it can be transformed into S’ through the following sequence of swaps:

r1(A) w1(A) r2(A) w2(A) r1(B) w1(B) r2(B) w2(B)

r1(A) w1(A) r2(A) r1(B) w2(A) w1(B) r2(B) w2(B)

r1(A) w1(A) r1(B) r2(A) w2(A) w1(B) r2(B) w2(B)

r1(A) w1(A) r1(B) r2(A) w1(B) w2(A) r2(B) w2(B)

r1(A) w1(A) r1(B) w1(B) r2(A) w2(A) r2(B) w2(B)

DBMS transactions and recovery 30

Exercise

Prove the following property:

Two schedules S1 and S2 on the same transactions T1,…,Tn are

conflict-equivalent if and only if there are no actions ai of Ti and

bj of Tj (with Ti and Tj belonging to T1,…Tn) such that

- ai and bj are conflicting, and

- the mutual position of the two actions in S1 is different

from their mutual position in S2

DBMS transactions and recovery 31

Conflict-serializability

Definition of conflict-serializability: A schedule S is conflict-
serializable if there exists a serial schedule S’ that is conflict-
equivalent to S

How can conflict-serializability be checked?

We can do it by analyzing the precedence graph associated to
a schedule. Given a schedule S on T1,…,Tn, the precedence
graph P(S) associated to S is defined as follows:

– the nodes of P(S) are the transactions {T1,…, Tn} of S

– the edges E of P(S) are as follows: the edge Ti Tj is in E if and
only if there exists two actions Pi(A), Qj(A) of different transactions
Ti and Tj in S operating on the same object A such that:

– Pi(A) <S Qj(A) (i.e., Pi(A) appears before Qj(A) in S)

– at least one between Pi(A) and Qj(A) is a write operation

DBMS transactions and recovery 32

Example of precedence graph

S: w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

3 1

2 4

DBMS transactions and recovery 33

How the precedence graph is used

Theorem (conflict-serializability) A schedule S is conflict-

serializable if and only if the precedence graph P(S)

associated to S is acyclic.

Exercise: Prove that, if S is a serial schedule, then the

precedence graph P(S) is acyclic.

DBMS transactions and recovery 34

1 - Transaction management

1.1 Transactions, concurrency, serializability
1.2 Recoverability
1.3 Concurrency control through locks
1.4 Concurrency control through timestamps
1.5 Transaction management in SQL

DBMS transactions and recovery 35

The rollback problem

We now consider the problem of rollback.

The first observation is that, with rollbacks, the notion
of serializability that we have considered up to now is
not sufficient for achieving the ACID properties.

This fact is testified by the existence of a new anomaly,
called “dirty read”.

DBMS transactions and recovery 36

A new anomaly: dirty read (WR anomaly)

Consider two transactions T1 and T2, both with the commands:

READ(A,x), x:=x+1, WRITE(A,x)

Now consider the following schedule (where T1 executes the rollback):

T1

begin
READ(A,x)
x := x+1
WRITE(A,x)

rollback

T2

begin

READ(A,x)
x := x+1

WRITE(A,x)
commit

The problem is that T2 reads a

value written by T1 before T1

commits or rollbacks.

Therefore, T2 reads a “dirty”

value, that is shown to be

incorrect when the rollback of T1

is executed. The behavior of T2

depends on an incorrect input

value.

This is another form of WR (write-

read) anomaly.

DBMS transactions and recovery 37

Commit o rollback?

Recall that, at the end of transaction Ti:

• If Ti has executed the commit operation:

– the system should ensure that the effects of the

transactions are recorded permanently in the database

• If Ti has executed the rollback operation:

– the system should ensure that the transaction has no effect

on the database

DBMS transactions and recovery 38

Cascading rollback

Note that the rollback of a transaction Ti can trigger the rollback of

other transactions, in a cascading mode. In particular:

– If a transaction Tj different from Ti has read from Ti, we should kill

Tj (or, Tj should rollback)

– If another transaction Th has read from Tj, Th should in turn

rollback

– and so on…

This is called cascading rollback, and the task of the system is to avoid

it.

DBMS transactions and recovery 39

Recoverable schedules

If in a schedule S, a transaction Ti that has read from Tj commits before
Tj, the risk is that Tj then rollbacks, so that Ti leaves an effect on the
database that depends on an operation (of Tj) that never existed. To
capture this concept, we say that Ti is not recoverable.

A schedule S is recoverable if no transaction in S commits before all
other transactions it has “read from”, commit.

Example of recoverable schedule:

S: w1(A) w1(B) w2(A) r2(B) c1 c2

Example of non-recoverable schedule:

S: w1(A) w1(B) w2(A) r2(B) r3(A) c1 c3 c2

DBMS transactions and recovery 40

Serializability and recoverability

Serializability and recoverability are two orthogonal concepts: there are recoverable
schedules that are non-serializable, and serializable schedule that are not
recoverable. Obviously, every serial schedule is recoverable.

For example, the schedule

S1: w2(A) w1(B) w1(A) r2(B) c1 c2

is recoverable, but not serializable (it is not conflict-serializable), whereas the
schedule

S2: w1(A) w1(B) w2(A) r2(B) c2 c1

is serializable (in particular, conflict-serializable), but not recoverable

serializable
schedule

recoverable
schedule

serial
schedule

DBMS transactions and recovery 41

Recoverability and cascading rollback

Recoverable schedules can still suffer from the cascading rollback problem.

For example, in this recoverable schedule

S: w2(A) w1(B) w1(A) r2(B)

if T1 rollbacks, T2 must be killed.

To avoid cascading rollback, we need a stronger condition wrt recoverability: a
schedule S avoids cascading rollback (i.e., the schedule is ACR, Avoid Cascading
Rollback) if every transaction in S reads values that are written by transactions that
have already committed.

For example, this schedule is ACR

S: w2(A) w1(B) w1(A) c1 r2(B) c2

In other words, an ACR schedule blocks the dirty data anomaly.

DBMS transactions and recovery 42

Summing up

• S is recoverable if no transaction in S commits before the

commit of all the transactions it has “read from” Example:

w1(A) w1(B) w2(A) r2(B) c1 c2

• S is ACR, i.e., avoids cascading rollback, if no transaction

“reads from” a transaction that has not committed yet

Example:

w1(A) w1(B) w2(A) c1 r2(B) c2

DBMS transactions and recovery 43

Recoverability and ACR

recoverable
schedule

ACR
schedule

serial
schedule

serializable
schedule

Analogously to recoverable schedules, not all ACR schedules
are serializable. Obviously, every ACR schedule is recoverable,
and every serial schedule is ACR.

DBMS transactions and recovery 44

Strict schedules

• We say that, in a schedule S, a transaction Ti writes on Tj if there is
a wj(A) in S followed by wi(A), and there is no write action on A in S
between these two actions

• We say that a schedule S is strict if every transaction reads only
values written by transactions that have already committed, and
writes only on transactions that have already committed

• It is easy to verify that every strict schedule is ACR, and therefore
recoverable

• Note that, for a strict schedule, when a transaction Ti rollbacks, it is
immediate to determine which are the values that have to be
stored back in the database to reflect the rollback of Ti, because no
transaction may have written on this values after Ti

DBMS transactions and recovery 45

Strict schedules and ACR

recoverable schedule

serializable
schedule

Obviously, every serial schedule is strict, and every strict
schedule is ACR, and therefore recoverable. However, not all
ACR schedules are strict.

ACR schedule

serial
schedule

strict schedule

DBMS transactions and recovery 46

1 - Transaction management

1.1 Transactions, concurrency, serializability
1.2 Recoverability
1.3 Concurrency control through locks
1.4 Concurrency control through timestamps
1.5 Transaction management in SQL

DBMS transactions and recovery 47

Concurrency control through locks

• Conflict-serializability is not used in commercial systems

• We will now study a method for concurrency control that is

used in commercial systems. Such method is based on the use

of lock

• In the methods based on locks, a transaction must ask and get

a permission in order to operate on an element of the

database. The lock is a mechanism for a transaction to ask and

get such a permission

DBMS transactions and recovery 48

Primitives for exclusive lock

• For the moment, we will consider exclusive locks. Later on,
we will take into account more general types of locks

• We introduce two new operations (besides read and write)
that can appear in transactions. Such operations are used to
request and release the exclusive use of a resource (element
A in the database):

– Lock (exclusive): li(A)
– Unlock: ui(A)

• The lock operation li(A) means that transaction Ti requests
the exclusive use of element A of the database

• The unlock operation ui(A) means that transaction Ti
releases the lock on A, i.e., it renounces the use of A

DBMS transactions and recovery 49

Well-formed transactions and legal schedules

When using exclusive locks, transactions and schedules should obey two rules:

– Rule 1: Every transaction is well-formed. A transaction Ti is well-formed if
every action pi(A) (a read or a write on A) of Ti is contained in a “critical
section”, i.e., in a sequence of actions delimited by a pair of lock-unlock on
A:

Ti: … li(A) … pi(A) … ui(A) ...

– Rule 2: The schedule is legal. A schedule S with locks is legal if no
transaction in it locks an element A when a different transaction has
granted the lock on A and has not yet unlocked A

S: ……li(A) ………………... ui(A) ……

no lj(A)

DBMS transactions and recovery 50

Schedule with exclusive locks: examples

T1 well-formed,
S1 not legal

T1 ill-formed:
write without lock.
T2 ill-formed: lock
without unlock.

S2 not legal

T1, T2, T3 well-formed,
and S3 legal

S1: l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B) r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2: l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B) w2(B) l3(B) r3(B) u3(B)

S3: l1(A) r1(A) u1(A) l1(B) w1(B) u1(B) l2(B) r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

DBMS transactions and recovery 51

Scheduler based on exclusive locks

A scheduler based on exclusive locks behaves as follows:

1. When an action request is issued by a transaction, the scheduler
checks whether this request makes the transaction ill-formed, in
which case the transaction is aborted by the scheduler.

2. When a lock request on A is issued by transaction Ti, while
another transaction Tj has a lock on A, the scheduler does not
grant the request (otherwise the schedule would become illegal),
and Ti is blocked until Tj releases the lock on A.

3. To trace all the locks granted, the scheduler manages a table of
locks, called lock table

In other words, the scheduler ensures that the current
schedule is legal and all its transactions are well-formed.

DBMS transactions and recovery 52

T1 T2

l1(A); r1(A)

A:=A+100; w1(A);

l2(A) – blocked!

l1(B); r1(B); u1(A);

l2(A) – re-started!

r2(A)

A:=Ax2; w2(A); u2(A)

B:=B+100; w1(B); u1(B)

l2(B); r2(B)

B:=Bx2; w2(B); u2(B)

Example of scheduler behaviour

DBMS transactions and recovery 53

T1 T2 25 25

l1(A); r1(A)

A:=A+100; w1(A); u1(A) 125

l2(A); r2(A)

A:=Ax2; w2(A); u2(A) 250

l2(B); r2(B)

B:=Bx2; w2(B); u2(B) 50

l1(B); r1(B)

B:=B+100; w1(B); u1(B) 150

250 150

Ghost update: isolation is not ensured by the use of locks

Is this sufficient for serializability?

A B

DBMS transactions and recovery 54

We have seen that the two rules for

- well-formed transactions

- legal schedules

are not sufficient for guaranteeing serializability

To come up with a correct policy for concurrency control through the use of

exclusive locks, we need a further rule (or, protocol), called “Two-Phase

Locking (2PL)”:

Definition of two-phase locking (with only exclusive locks): A schedule S

with exclusive locks follows the two-phase locking protocol if in each

transaction Ti appearing in S, all lock operations precede all unlock operations.

S: ……. li(A) …… ui(A) ……

no unlock no lock

Two-Phase Locking (with exclusive locks)

DBMS transactions and recovery 55

Growing
Phase

Shrinking
Phase

Time

lock granted
to Ti

The two phases of Two-Phase Locking

Locking and unlocking scheme in a transaction following

the 2PL protocol

DBMS transactions and recovery 56

T1 T2 25 25

l1(A); r1(A)

A:=A+100; w1(A); u1(A) 125

l2(A); r2(A)

A:=Ax2; w2(A); u2(A) 250

l2(B); r2(B)

B:=Bx2; w2(B); u2(B) 50

l1(B); r1(B)

B:=B+100; w1(B); u1(B) 150

250 150

Example of a 2PL schedule

A B

DBMS transactions and recovery 57

l1(A); r1(A)
A:=A+100; w1(A)
l1(B)

u1(A)

r1(B)
B:=B+100
w1(B); u1(B)

l2(A); r2(A)
A:=Ax2;
w2(A); l2(B) – blocked

l2(B); - re-started u2(A); r2(B)
B:=Bx2; w2(B);
u2(B)

T1 T2

How the scheduler works in the 2PL protocol

The 2PL protocol
avoids the ghost
update while
accepting
concurrency

Note that the
scheduler still
checks that the
schedule is legal

DBMS transactions and recovery 58

l1(A); r1(A)

A:=A+100;

w1(A)

l1(B) – blocked

l2(B); r2(B)

B:=Bx2

w2(B)

l2(A) – blocked

T1 T2

The risk of deadlock

S: l1(A) r1(A) l2(B) r2(B) w1(A) w2(B) l1(B) l2(A)

To ensure that the schedule is legal, the scheduler blocks both T1 and

T2, and none of the two transactions can proceed. This is a deadlock

(we will come back to the methods for deadlock management).

DBMS transactions and recovery 59

Who issues the lock/unlock commands?

So far, we have assumed that transactions issue the lock/unlock commands. However, this
is not necessary.

Indeed, we can design a scheduler in such a way that it inserts the lock/unlock commands
while respecting the following conditions:

- Every transaction is well-formed

- The schedule is legal (if at all possible)

- Each transaction, extended with the inserted lock/unclock commands, follows the
2PL protocol

For this reason, even in the presence of locks, we will continue to denote a schedule by
means of a sequence of read/write/commit commands. For example, the schedule

l1(A) r1(A) l1(B) u1(A) l2(A) w2(A) r1(B) w1(B) u1(B) l2(B) u2(A) r2(B) w2(B) u2(B)

can be denoted as:

r1(A) w2(A) r1(B) w1(B) r2(B) w2(B)

DBMS transactions and recovery 60

Scheduler based on exclusive locks and 2PL

We study how a scheduler based on exclusive locks and 2PL behaves during the analysis of
the current schedule (obviously, not necessarily complete):

1. If a request by transaction Ti shows that Ti is not well-formed, then Ti is aborted by
the scheduler

2. If a lock request by transaction Ti shows that Ti does not follow the 2PL protocol,
then Ti is aborted by the scheduler

3. If a lock is requested for A by transaction Ti while A is used by a different
transaction Tj, then the scheduler blocks Ti, until Tj releases the lock on A. If the
scheduler figures out that a deadlock has occurred (or will occur), then the
scheduler adopts a method for deadlock management

4. To trace all the locks granted, the scheduler manages a table of locks, called
lock table

Note that (1) and (2) do not occur if the lock/unlock commands are automatically insterted by
the scheduler.

Simply put, the above behaviour means that the scheduler ensures that

1. the current schedule is legal

2. all its transactions are well-formed

3. all its transactions follow the 2PL protocol

DBMS transactions and recovery 61

2PL and conflict-serializability

To compare 2PL and conflict-serializability, we make use of the
above observation, and note that every schedule that includes
lock/unlock operations can be seen as a “traditional” schedule
(by simply ignoring such operations)

Theorem Every legal schedule constituted by well-formed
transactions following the 2PL protocol (with exclusive locks) is
conflict-serializable.

DBMS transactions and recovery 62

2PL and conflict-serializability

Theorem There exists a conflict-serializable schedule that does not

follow the 2PL protocol (with exclusive locks).

Proof It is sufficient to consider the following schedule S:

r1(x) w1(x) r2(x) w2(x) r3(y) w1(y)

S is obviously conflict-serializable (the serial schedule T3,T1,T2 is conflict-equivalent to S),

but it is easy to show that we cannot insert in S the lock/unlock commands in such a way

that all transactions are well-formed and follow the 2PL protocol, and the resulting

schedule is legal. Indeed, it suffices to notice that we should insert in S the command

u1(x) before r2(x), because in order for T2 to read x it must hold the exclusive lock on x,

and we should insert in S the command l1(y) after r3(y), because in order for T3 to read y

it must hold the exclusive lock on y, and therefore, the command l1(y), which is necessary

for executing w3(y), cannot be issued before r3(y). It follows that we cannot insert into S

the lock/unlock commands in such a way that the 2PL protocol is respected.

DBMS transactions and recovery 63

Shared locks

With exclusive locks, a transaction reading A must unlock A before another transaction
can read the same element A:

S: ... l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Actually, this looks too restrictive, because the two read operations do not create any
conflict. To remedy this situation, we introduce a new type of lock: the shared lock.
We denote by sli(A) the command for the transaction Ti to ask for a shared lock on A.

With the use of shared locks, the above example changes as follows:

S: ... sl1(A) r1(A) sl2(A) r2(A) …. u1(A) u2(A)

The primitive for locks are now as follows:

xli(A): exclusive lock (also called write lock)

sli(A): shared lock (also called read lock)

ui(A): unlock

DBMS transactions and recovery 64

Well-formed transactions with shared locks

With shared and exclusive locks, the following rule must be
respected.

Rule 1: We say that a transaction Ti is well-formed if
– every read ri(A) is preceded either by sli(A) or by xli(A), with

no ui(A) in between,

– every wi(A) is preceded by xli(A) with no ui(A) in between,

– every lock (sl or xl) on A by Ti is followed by an unlock on A by
Ti.

Note that we allow Ti to first execute sli(A), probably for
reading A, and then to execute xli(A), probably for writing A
without the unlock of A by means of T. The transition from
a shared lock on A by T to an exclusive lock on the same
element A by T (without an unlock on A by T) is called “lock
upgrade”.

DBMS transactions and recovery 65

Legal schedule with shared locks

With shared and exclusive locks, the following

rule must also be respected.

Rule 2: We say that a schedule S is legal if

– an xli(A) is not followed by any xlj(A) or by any slj(A) (with j

different from i) without an ui(A) in between

– an sli(A) is not followed by any xlj(A) (with j different from i)

without an ui(A) in between

DBMS transactions and recovery 66

Two-phase locking (with shared locks)

With shared locks, the two-phase locking rule becomes:

Definition of two-phase locking (with exclusive and shared locks): A

schedule S (with shared and exclusive locks) follows the 2PL protocol if

in every transaction Ti of S, all lock operations (either for exclusive or

for shared locks) precede all unlocking operations of Ti.

In other words, no action sli(X) or xli(X) can be preceded by an

operation of type ui(Y) in the schedule.

DBMS transactions and recovery 67

How locks are managed

• The scheduler uses the so-called “compatibility matrix” (see
below) for deciding whether a lock request should be
granted or not.

• In the matrix, “S” stands for shared lock, “X” stands for
exclusive lock, “yes” stands for “requested granted” and
“no” stands for “requested not granted”

S

S

X

X

yes

no no

noLock already
granted to Ti
on A

New lock requested by Tj ≠ Ti on A

DBMS transactions and recovery 68

How locks are managed

• The problem for the scheduler of automatically inserting
the lock/unlock commands becomes more complex in the
presence of shared locks.

• Also, the execution of the unlock commands requires
more work. Indeed, when an unlock command on A is
issued by Ti, there may be several transactions waiting for
a lock (either shared on exclusive) on A, and the scheduler
must decide to which transaction to grant the lock. Several
methods are possible:

• First-come-first-served

• Give priorities to the transactions asking for a shared lock

• Give priorities to the transactions asking for a lock upgrade

The first method is the most used one, because it avoids
“starvation”, i.e., the situation where a request of a
transaction is never granted.

DBMS transactions and recovery 69

Exercise 7

Consider the following schedule S:

r1(A) r2(A) r2(B) w1(A) w2(D) r3(C) r1(C) w3(B) c2
r4(A) c1 c4 c3

and tell whether S is in the class of 2PL schedules
with shared and exclusive locks

DBMS transactions and recovery 70

Exercise 7: solution

The schedule S:

r1(A) r2(A) r2(B) w1(A) w2(D) r3(C) r1(C) w3(B) c2 r4(A) c1 c4
c3

is in the class of 2PL schedules with shared and exclusive
locks. This can be shown as follows:

sl1(A) r1(A) sl2(A) r2(A) sl2(B) r2(B) xl2(D) u2(A) xl1(A) w1(A)
w2(D)

sl3(C) r3(C) sl1(C) r1(C) u1(C) u1(A) u2(B) u2(D) xl3(B) w3(B)
u3(B) u3(C) c2 sl4(A) r4(A) u4(A) c1 c4 c3

DBMS transactions and recovery 71

Properties of two-phase locking (with shared locks)

The properties of two-phase locking with shared and exclusive locks are
similar to the case of exclusive locks only:

• Theorem Every legal schedule with well-formed transactions
following the two-phase locking protocol (with exclusive and shared
locks) is conflict-serializable.

• Theorem There exists a conflict-serializable schedule that does not
follow the 2PL protocol (with exclusive and shared locks).

• With shared locks, the risk of deadlock is still present, like in:

sl1(A) sl2(A) xl1(A) xl2(A)

DBMS transactions and recovery 72

2PL and conflict-serializability

We denote by “2PL schedule” the class of legal schedules with shared and exclusive
locks constituted by well-formed transactions following the 2PL protocol.

schedule

serializable schedule

conflict-serializable schedule

2PL schedule serial
schedule

2PL schedule with
exclusive locks

DBMS transactions and recovery 73

Recoverability and 2PL

• So far, when discussing about recoverability, ACR, strictness and

rigorousness we focused on:

– read, write

– rollback

– commit

• We still have to study the impact of these notions on the

locking mechanisms and the 2PL protocol

DBMS transactions and recovery 74

Strict two-phase locking (strict 2PL)

A schedule S is said to be in the strict 2PL class if

•S is in 2PL, and

•S is strict.

Tj

wj(A)

……

commit

uj(A)
ri(A)

Ti

DBMS transactions and recovery 75

Strict two-phase locking (strict 2PL)

With the goal of capturing the class of strict 2PL the following protocol has

been defined: A schedule S follows the strict 2PL protocol if it follows the 2PL

protocol, and all exclusive locks of every transaction T are kept by T until

either T commits or rollbacks.

Tj

wj(A)

rj(B)

……

uj(B)

commit

uj(A)
ri(A)

Ti

DBMS transactions and recovery 76

Properties of strict 2PL

• Every schedule following the strict 2PL protocol is strict:

(See exercise 7)

• Every schedule following the strict 2PL protocol is serializable:

it can be shown that every strict 2PL schedule S is conflict-
equivalent to the serial schedule S’ obtained from S by ignoring
the transactions that have rollbacked, and by choosing the order
of transactions determined by the order of commit (the first
transaction in S’ is the first that has committed, the second
transaction in S’ is the second that has committed, and so on)

DBMS transactions and recovery 77

Exercise 8

• Prove or disprove the following statement:

Every schedule following the strict 2PL protocol is strict.

• Prove or disprove the following statement:

Every schedule that is strict and follows the 2PL protocol also
follows the strict 2PL protocol.

DBMS transactions and recovery 78

The complete picture

schedule

serializable

conflict-serializable

2PL
ACRstrict serial

strict
2PL

DBMS transactions and recovery 79

1 - Transaction management

1.1 Transactions, concurrency, serializability
1.2 Recoverability
1.3 Concurrency control through locks
1.4 Concurrency control through timestamps
1.5 Transaction management in SQL

DBMS transactions and recovery 80

Concurrency based on timestamps

• Each transaction T has an associated timestamp ts(T) that is unique
among the active transactions, and is such that ts(Tj) < ts(Th)
whenever transaction Ti arrives at the scheduler before transaction
Th. In what follows, we assume that the timestamp of transaction Ti
is simply i: ts(Ti)=i.

• Note that the timestamps actually define a total order on
transactions, in the sense that they can be considered ordered
according to the order in which they arrive at the scheduler.

• Note also that every schedule respecting the timestamp order is
conflict-serializable, because it is conflict-equivalent to the serial
schedule corresponding to the timestamp order.

• Obviously, the use of timestamp avoids the use of locks. Note,
however, that deadlock may still occur.

DBMS transactions and recovery 81

The use of timestamps

• Transactions execute without any need of protocols.

• The basic idea is that, at each action execution, the scheduler checks whether the
involved timestamps violates the serializability condition according to the order
induced by the timestamps.

• In particular, we maintain the following data for each element X:

– rts(X): the highest timestamp among the active transactions that have read X

– wts(X): the highest timestamp among the active transactions that have
written X (this coincides with the timestamp of the last transaction that wrote
X)

– wts-c(X): the timestamp of the last committed transaction that has written X

– cb(X): a bit (called commit-bit), that is false if the last transaction that wrote X
has not committed yet, and true otherwise.

DBMS transactions and recovery 82

The rules for timestamps

• Basic idea:
– the actions of transaction T in a schedule S must be considered as

being logically executed in one spot
– the logical time of an action of T is the timestamp of T, i.e., ts(T)
– the commit-bit is used to avoid the dirty read anomaly

• The system manages two “temporal axes”, corresponding to
the “physical” and to the “logical” time. The values rts(X)
and wts(X) indicate the timestamp of the transaction that
was the last to read and write X according to the logical
time.

• An action of transaction T executed at the physical time t is
accepted if its ordering according to the physical temporal
order is compatible with respect to the logical time ts(T)

• This “compatibility principle” is checked by the scheduler.
• As we said before, we assume that the timestamp of each

transaction Ti coincide with the subscript i: ts(Ti)=i. In what
follows, t1,…,tn will denote physical times.

DBMS transactions and recovery 83

Rules – case 1a (read ok)

Consider r2(X) with respect to the last write on X, namely w1(X):

– the physical time of r2(X) is t6, that is greater than the physical time of w1 (t4)

– the logical time of r2(X) is ts(T2), that is greater than the logical time of w1(X), which
is wts(X) = ts(T1)

We conclude that there is no incompatibility between the physical and the logical time, and
therefore we proceed as follows:

1. if cb(X) is true, then

• generally speaking, after a read on X of T, rts(X) should be set to the maximum
between rts(X) and ts(T) – in the example, although, according to the physical
time, r2(X) appears after the last read r3(X) on X, it logically precedes r3(X),
and therefore, if cb(X) was true, rts(X) would remain equal to ts(T3)

• r2(X) is executed, and the schedule goes on

2. if cb(X) is false (as in the example), then T2 is put in a state waiting for the commit or
the rollback of the transaction T’ that was the last to write X (i.e., a state waiting for
cb(X) equal true -- indeed, cb(X) is set to true both when T’ commits, and when T’
rollbacks, because the transactions T’’ that was the last to write X before T’ obviously
committed, otherwise T’ would be still blocked)

B(T1) B(T2) B(T3) w1(X) r3(X) r2(X)
Case 1.a

t1 t2 t3 t4 t5 t6

DBMS transactions and recovery 84

Rules – case 1b (read too late)

Consider r1(X) with respect to the last write on X, namely w2(X):

– the physical time of r1(X) is t4, that is greater than the physical time of

w2(X), that is t3

– the logical time of r1(X) is ts(T1), that is less than the logical time of

w2(X), i.e., wts(X) = ts(T2)

We conclude that r1(X) and w2(X) are incompatible.

Action r1(X) of T1 cannot be executed, T1 rollbacks, and a new execution of

T1 starts, with a new timestamp.

B(T1) B(T2) w2(X) r1(X)
Case 1.b

t1 t2 t3 t4

DBMS transactions and recovery 85

Rules – case 2a (write ok)

Consider w3(X) with respect to the last read on X (r1(X)) and the last write on X (w2(X)):

– the physical time of w3(X) is greater than that of r1(X) and w2(X)

– the logical time of w3(X) is greater than that of r1(X) and w2(X)

We can conclude that there is no incompatibility. Therefore:

1. if cb(X) is true or no active transaction wrote X, then

– we set wts(X) to ts(T3)

– we set cb(X) to false

– action w3(X) of T3 is executed, and the schedule goes on

2. else T3 is put in a state waiting for the commit or the rollback of the
transaction T’ that was the last to write X (i.e., a state waiting for cb(X)
equal true -- indeed, cb(X) is set to true both when T’ commits, and when T’

rollbacks, because the transactions T’’ that was the last to write X before T’
obviously committed, otherwise T’ would be still blocked)

B(T1) B(T2) r1(X)
Case 2.a

t1 t2 t4
w3(X)

t6
w2(X)
t5

B(T3)
t3

DBMS transactions and recovery 86

Rules – case 2b (Thomas rule)

• Consider w1(X) with respect to the last read r1(X) on X: the physical time of w1(X)
is greater than the physical time of r1(X), and, since w1(X) and r1(X) belong to the
same transaction, there is no incompatibility with respect to the logical time.

• However, on the logical time dimension, w2(X) comes after the write w1(X), and
therefore, the execution of w1(X) would correspond to an update loss. Therefore:

1. If cb(X) is true, we simply ignore w1(X) (i.e., w1(X) is not executed). In this
way, the effect is to correctly overwrite the value written by T1 on X with
the value written by T2 on X (it is like pretending that w1(X) came before
w2(X)

2. if cb(X) is false, we let T1 waiting either for the commit or for the rollback of
the transaction that was the last to write X (i.e., a state waiting for cb(X) equal
true -- indeed, cb(X) is set to true both when T’ commits, and when T’ rollbacks,
because the transactions T’’ that was the last to write X before T’ obviously
committed, otherwise T’ would be still blocked)

B(T1) B(T2) r1(X) w2(X)
Case 2.b

t1 t2 t4 t5
…… w1(X)
…… t6

B(T3)
t3

DBMS transactions and recovery 87

Rules – case 2c (write too late)

B(T1) B(T2) r2(X) w1(X)
Case 2.c

t1 t2 t3 t4

Consider w1(X) with respect to the last read r2(X) on X:

– the physical time of w1(X) is t4, that is greater than the physical
time of r2(X), i.e., t3

– the logical time of w1(X) is ts(T1), that is less than the logical
time of r2(X), that is rts(X) = ts(T2)

We conclude that w1(X) and r2(X) are incompatible.

Action w1(X) is not executed, T1 is aborted, and is executed again
with a new timestamp.

DBMS transactions and recovery 88

Timestamp-based method: the scheduler
Action ri(X):

if ts(Ti) >= wts(X)

then if cb(X)=true or ts(Ti) = wts(X) // (case 1.a)

then set rts(X) = max(ts(Ti), rts(X)) and execute ri(X) // (case 1.a.1)

else put Ti in “waiting” for the commit or the

rollback of the last transaction that wrote X // (case 1.a.2)

else rollback(Ti) // (case 1.b)

Action wi(X):

if ts(Ti) >= rts(X) and ts(Ti) >= wts(X)

then if cb(X) = true

then set wts(X) = ts(Ti), cb(X) = false, and execute wi(X) // (case 2.a.1)

else put Ti in “waiting” for the commit or the

rollback of the last transaction that wrote X // (case 2.a.2)

else if ts(Ti) >= rts(X) and ts(Ti) < wts(X) // (case 2.b)

then if cb(X)=true

then ignore wi(X) // (case 2.b.1)

else put Ti in “waiting” for the commit or the

rollback of the last transaction that wrote X // (case 2.b.2)

else rollback(Ti) // (case 2.c)

DBMS transactions and recovery 89

Timestamp-based method: the scheduler

When Ti executes ci:

for each element X written by Ti,

set cb(X) = true

for each transaction Tj waiting for cb(X)=true or for the
rollback of the transaction that was the last to
write X, allow Tj to proceed

choose the transaction that proceeds

When Ti executes the rollback bi:

for each element X written by Ti, set wts(X) to be wts-c(X), i.e., the

timestamp of the transaction Tj that wrote X before Ti, and set

cb(X) to true (indeed, Tj has surely committed)

for each transaction Tj waiting for cb(X)=true or for the
rollback of the transaction that was the last to
write X allow Tj to proceed

choose the transaction that proceeds

DBMS transactions and recovery 90

Deadlock with the timestamps

Unfortunately, the method based on timestamps does not avoid the
risk of deadlock (although the probability is lower than in the case of
locks).

The deadlock is related to the use of the commit-bit. Consider the
following example:

w1(B), w2(A), w1(A), r2(B)

When executing w1(A), T1 is put in waiting for the commit or the
rollback of T2. When executing r2(B), T2 is put in waiting for the commit
or the rollback of T1.

The deadlock problem in the method based on timestamps is handled
with the same techniques used in the 2PL method.

DBMS transactions and recovery 91

The method based on timestamp: example

Action Effect New values

r6(A) ok rts(A) = 6

r8(A) ok rts(A) = 8

r9(A) ok rts(A) = 9

w8(A) no T8 aborted

w11(A) ok wts(A) = 11

r10(A) no T10 aborted

c11 ok cb(A) = true

DBMS transactions and recovery 92

Timestamps and conflict-serializability

• There are conflict-serializable schedules that are not accepted by the timestamp-
based scheduler, such as:

r1(Y) r2(X) w1(X)

• If the schedule S is accepted by the timestamp-based scheduler and does not use
the Thomas rule, then the schedule obtained from S by removing all actions of
rollbacked transactions is conflict-serializable

• If the schedule S is accepted by the timestamp-based scheduler and does use the
Thomas rule, then S may be non conflict-serializable, like for example:

r1(A) w2(A) c2 w1(A) c1

However, if the schedule S is accepted by the timestamp-based scheduler and
does use the Thomas rule, then the schedule obtained from S by removing all
actions ignored by the Thomas rules and all actions of rollbacked transactions is
conflict-serializable

DBMS transactions and recovery 93

Comparison between timestamps and 2PL

• There are schedules that are accepted by timestamp-
based schedulers that are not 2PL, such as

r1(A) w2(A) r3(A) r1(B) w2(B) r1(C) w3(C) r4(C) w4(B) w5(B)
(that is not 2PL because T2 must release the lock on A
before asking for the lock on B)

• Obviously, there are schedules that are accepted by the
timestamp-based schedulers and are also strict 2PL
schedules, such as the serial schedule:

r1(A) w1(A) r2(A) w2(A)

• There are strong strict 2PL schedules that are not accepted
by the timestamp-based scheduler, such as:

r1(B) r2(A) w2(A) r1(A) w1(A)

DBMS transactions and recovery 94

Comparison between timestamps and 2PL

• Waiting stage

– 2PL: transactions are put in waiting stage

– TS: transactions are killed and re-started

• Serialization order

– 2PL: determined by conflicts

– TS: determined by timestamps

• Need to wait for commit by other transactions

– 2PL: solved by the strong strict 2PL protocol

– TS: buffering of write actions (waiting for cb(X) = true)

• Deadlock

– 2PL: risk of deadlock

– TS: deadlock is less probable

DBMS transactions and recovery 95

Comparison between timestamps and 2PL

• Timestamp-based method is superior when transactions are “read-
only”, or when concurrent transactions rarely write the same elements

• 2PL is superior when the number of conflicts is high because:

– although locking may delay transactions and may cause deadlock
(and therefore rollback),

– the probability of rollback is higher in the case of the timestamp-
based method, and this causes a greater global delay of the system

• In the following picture (page 101), the set indicated by “timestamp”
denotes the set of schedules generated by the timestamp-based
scheduler, where all actions ignored by the Thomas rule and all actions of
rollbacked transactions are removed

DBMS transactions and recovery 96

Multiversion timestamp

Idea: do not block the read actions! This is done by introducing different versions

X1 … Xn of element X, so that every read can be always executed, provided that the

“right” version (according to the logical time determined by the timestamp) is

chosen

– Every “legal” write wi(X) generates a new version Xi (in our notation, the

subscript corresponds to the timestamp of the transaction that generated X)

– To each version Xh of X, the timestamp wts(Xh)=ts(Th) is associated, denoting

the ts of the transaction that wrote that version

– To each version Xh of X, the timestamp rts(Xh)=ts(Ti) is associated, denoting

the highest ts among those of the transactions that read Xh

The properties of the multiversion timestamp are similar to those of the timestamp

method.

DBMS transactions and recovery 97

New rules for the use of timestamps

The scheduler uses timestamps as follows:

– when executing wi(X): if a read rj(Xk) such that wts(Xk) < ts(Ti) < ts(Tj) already
occurred, then the write is refused (it is a “write too late” case, because
transaction Tj, that is older than Ti, has already read a version of X that
precedes version Xi), otherwise the write is executed on a new version Xi of X,
and we set wts(Xi) = ts(Ti).

– ri(X): the read is executed on the version Xj such that wts(Xj) is the highest
write timestamp among the versions of X having a write timestamp less than or
equal to ts(Ti), i.e.: Xj is such that wts(Xj) <= ts(Ti), and there is no version Xh
such that wts(Xj) < wts(Xh) <= ts(Ti). Note that such a version always exists,
because it is impossible that all versions of X are greater than ts(Ti). Obviously,
rts(Xj) is updated in the usual way.

– For Xj with wts(Xj) such that no active transaction has timestamp less than j,
the versions of X that precede Xj are deleted, from the oldest to the newest.

– To ensure recoverability, the commit of Ti is delayed until all commit of the
transactions Tj that wrote versions read by Ti are executed.

DBMS transactions and recovery 98

New rules for the use of timestamps

The scheduler uses suitable data structures:

– For each version Xi the scheduler maintains a range range(Xi) = [wts, rts],

where wts is the timestamp of the transaction that wrote Xi, and rts is the

highest timestamp among those of the transactions that read Xi (if no one

read Xi, then rts=wts).

– We denote with ranges(X) the set:

{ range(Xi) | Xi is a version of X }

– When ri(X) is processed, the scheduler uses ranges(X) to find the version Xj

such that range(Xj) = [wts, rts] has the highest wts that is less than or equal

to the timestamp ts(Ti) of Ti. Moreover, if ts(Ti) > rts, then the rts of

range(Xj) is set to ts(Ti).

– When wi(x) is processed, the scheduler uses ranges(X) to find the version Xj

such that range(Xj) = [wts, rts] has the highest wts that is less than or equal

to the timestamp ts(Ti) of Ti. Moreover, if rts > ts(Ti), then wi(X) is rejected,

else wi(Xi) is accepted, and the version Xi with range(Xi) = [wts, rts], with

wts = rts = ts(Ti) is created.

DBMS transactions and recovery 99

Multiversion timestamp: example

Suppose that the current version of A is A0, with rts(A0)=0.

T1(ts=1) T2(ts=2) T3(ts=3) T4(ts=4) T5(ts=5)

r1(A) reads A0, and set rts(A0)=1

w1(A) writes the new version A1

r2(A) reads A1, and set rts(A1)=2

w2(A) writes the new version A2

r4(A) reads A2, and set rts(A2)=4

r5(A) reads A2, and set rts(A2)=5

w3(A) rollback T3

DBMS transactions and recovery 100

strong
2PL

The final picture

schedule

serializable

conflict-serializable

2PL

recoverable

ACR

strict

serial

time
stamp

DBMS transactions and recovery 101

1 - Transaction management

1.1 Transactions, concurrency, serializability
1.2 Recoverability
1.3 Concurrency control through locks
1.4 Concurrency control through timestamps
1.5 Transaction management in SQL

DBMS transactions and recovery 102

Transaction management in SQL

• SQL-92 has constructs for defining transactions and

concurrency levels

• A single SELECT statement is considered as an atomic execution

unit

• SQL does not have an explicit BEGIN TRANSACTION statement

• In SQL, every transaction must have an explicit termination

statement (COMMIT or ROLLBACK)

DBMS transactions and recovery 103

Example

EXEC SQL WHENEVER sqlerror GO TO ESCI;

EXEC SQL SET TRANSACTION

READ WRITE , DIAGNOSTICS SIZE 8,

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO

EMPLOYEE (Name, ID, Address)

VALUES (‘John Doe',1234,‘xyz');

EXEC SQL UPDATE EMPLOYEE

SET Address = ‘abc'

WHERE ID = 1000;

EXEC SQL COMMIT;

GOTO FINE;

ESCI: EXEC SQL ROLLBACK;

FINE: …

DBMS transactions and recovery 104

Ghost read

• Since SQL considers a whole query as an atomic execution unit,

we must consider a further anomaly, the so-called ghost read

• Example:

– T1 executes query SELECT * FROM R

– T2 adds a record r to relation R

– T1 executes the previous query again: the result of the

second query contains record r, which was not in the first

result

• The ghost read anomaly is a generalized version of the

unrepeatable read anomaly, in which the read operation

retrieves a set of records instead of a single one

DBMS transactions and recovery 105

SET TRANSACTION

• The SET TRANSACTION statement allows for defining the

following aspects:

• Access mode: READ ONLY or READ WRITE

• Isolation level of the transaction: can assume one of the

following values:

– READ UNCOMMITTED

– READ COMMITTED

– REPEATABLE READ

– SERIALIZABLE (default value)

• Configuration of the number of error conditions that can be

handled (DIAGNOSTIC SIZE n)

DBMS transactions and recovery 106

Isolation levels

(We assume that the SET TRANSACTION statement is relative to

transaction Ti)

• SERIALIZABLE:

– Transaction Ti only reads from committed transactions

– No value read or written by transaction Ti can be modified

until Ti commits

– The set of records read by Ti through a query cannot be

modified by other transactions until Ti commits (this

condition avoids the ghost read anomaly)

DBMS transactions and recovery 107

Isolation levels

• REPEATABLE READ:

– Transaction Ti only reads from committed transactions

– No value read or written by transaction Ti can be modified

until Ti commits

– The set of records read by Ti through a query can be

modified by other transactions until Ti commits (the ghost

read anomaly is thus possible)

DBMS transactions and recovery 108

Isolation levels

• READ COMMITTED:

– Transaction Ti only reads from committed transactions

– No value written by transaction Ti can be modified until Ti

commits, while values read by Ti can be modified by other

transactions (thus, both the ghost read anomaly and the

unrepeatable read anomaly are possible)

DBMS transactions and recovery 109

Isolation levels

• READ UNCOMMITTED:

– Transaction Ti can read from any (even uncommitted)

transaction (cascading rollback is thus possible)

– Values both read and written by Ti can be modified by other

transactions (thus, besides ghost read and unrepeatable

read, also the dirty read anomaly is possible)

DBMS transactions and recovery 110

Transaction management in commercial systems

– The transaction managers of the main commercial systems

(Oracle, DB2, SQL Server, PostgreSQL) use schedulers based on

lock and/or (multiversion) timestamp methods

– In such systems, the scheduler usually distinguishes between

two classes of transactions:

– The transactions with read and write are executed under the

2PL protocol

– The transactions that are “read only” are executed under the

method of multiversion timestamp

DBMS transactions and recovery 111

2. Recovery management

DBMS transactions and recovery 112

SQL engine

Access file manager

Buffer manager

Disk manager

Security and

recovery

manager

Data

SQL commands

DBMS

Transaction

manager

Architecture of a DBMS

DBMS transactions and recovery 113

The recovery manager

The transaction manager is mainly concerned with isolation and

consistency, while the recovery manager is mainly concerned

with atomicity and persistency.

It is responsible for:

– Beginning the execution of transactions

– Committing transactions

– Executing the rollback of transactions

– Restore a correct state of the database following a fault

condition

It uses a special data structure, called log file

DBMS transactions and recovery 114

Failure types

• System failures

– System crash:

• We loose the buffer content, not the secondary storage content

– System error or application exception

• E.g. division by zero

– Local error conditions of a transaction

– Concurrency control

• The scheduler forces the rollback of a transaction

• Storage media failures

– Disk failures

• We loose secondary storage content, but not the log file content

– Catastrophic events”

• Fire

• Flooding

• Etc…
DBMS transactions and recovery 115

The strategies depend on the failures

• System failures:

– Information loss in the buffer, not in the data

– Main risk for Atomicity

– Recovery strategy:

• Periodically register the system status (checkpoint)

• Analyze back the DB change history

• Undo and redo some operations

• Using the log

• Media failure:

– Information loss in th data

– Main risk for Durability

– Recovery strategy :

• Load the most recent available DB back-up

• Reconstruct that state using the log, starting the dump

DBMS transactions and recovery 116

The log file

• The log file (or, simply, the log) records the actions of the
various transactions in a stable storage (stable means “failure
resistant”)

• Read and write operations on the log are executed as the
operations on the database, i.e., through the buffer. Note that
writing on the stable storage is generally done through “force”

• The stable storage is an abstraction: stability is achieved
through replication

• The physical organization of the log can be based on:

– Tapes

– Disk (perhaps coupled with tapes)

– Two replicated disks

DBMS transactions and recovery 117

The structure of log

• The log is a sequential file (assumed to be failure-free). The operations

on the log are: append a record at the end, scan the file sequentially

forward, scan backward

• The log records the actions of the transactions, in chronological order.

• Two types of records in the log:

– Transaction records (begin, insert, delete, update, commit, abort)

– System records (checkpoint, dump)

• Please, do not confuse the transaction actions with the actions on the

secondary storage. In particular, the actions of the transactions are

assumed to be executed on the DB when they are recorded in the log

(even if their effects are not registered yet in the secondary storage)

DBMS transactions and recovery 118

The transaction records

O = element of the DB

AS = After State, value of O after the operation

BS = Before State, value of O before the operation

For each transaction T, the transaction records are stored in the
log as follows:

– begin: B(T)

– insert: I(T,O,AS)

– delete: D(T,O,BS)

– update: U(T,O,BS,AS)

– commit: C(T)

– abort: A(T)

DBMS transactions and recovery 119

Checkpoint

• The goal of the checkpoint is to register in the log the set of active
transactions T1, …, Tn so as to differentiate them from the committed
transactions

• The checkpoint (CK) operation executes the following actions:

– For each committed transaction after the last checkpoint, their buffer
pages are copied into the secondary storage (through flush)

– A record CK(T1,…Tn) is written on the log (through force), where T1,…Tn
identify all active transactions that are uncommitted

• It follows that:

– For each transaction T such that Commit(T) precedes CK(T1,…Tn) in the
log, we can avoid the “redo” in case of failure

• The checkpoint operation is executed periodically, with fixed frequency

DBMS transactions and recovery 120

Dump

• The dump is a copy of the entire state of the DB

• The dump operation is executed offline (all transactions are

suspended)

• It produces a backup, i.e., the DB is saved in stable storage

• It writes (through force) a dump record in the log

DBMS transactions and recovery 121

Example: log with checkpoint and dump

CK
Crash

B(T1) B(T2) C(T2) B(T3)

U(T3,…)
U(T1,…)

U(T1,…)U(T2,…)
U(T1,…)

dump

DBMS transactions and recovery 122

The Undo operation

• Restore the state of an element O at the time preceding the

execution of an action

• update, delete:

– assigns the BS value to O

• insert:

– delete O

DBMS transactions and recovery 123

The Redo operation

• Restore the state of an element O at the time following the

execution of an action

• insert, update:

– assigns the value AS to O

• delete:

– delete O

DBMS transactions and recovery 124

Atomicity of transactions

• The outcome of a transaction is established when either the Commit(T)

record or the Abort(T) record is written in the log

– The Commit(T) record is written synchronously (force) from the buffer

to the log

– The Abort(T) record is written asynchronously (flush) from the buffer to

the log (the recovery manager does not need to know immediately that

a transaction is aborted)

• When a failure occurs, for a transaction

– Uncommitted: since atomicity has to be ensured, in general we may

need to undo the actions, especially if there is the possibility that the

actions have been executed on the secondary storage Undo

– Committed: we need to redo the actions, to ensure durability Redo

DBMS transactions and recovery 125

Writing records in the log

The recovery manager follows this rule:

• WAL (write-ahead log)

– The log records are written from the buffer to the log

before the corresponding records are written in the

secondary storage

– This is important for the effectiveness of the Undo

operation, because the old value can always be written back

to the secondary storage by using the BS value written in

the log. In other words, WAL allows to undo write

operations executed by uncommitted transactions

DBMS transactions and recovery 126

Writing records in the log

The recovery manager follows this rule:

• Commit-Precedence

– The log records are written from the buffer to the log
before the commit of the transaction (and therefore before
writing the commit record of the transaction in the log)

– This is important for the effectiveness of the Redo
operation, because if a transaction committed before a
failure, but its pages have not been written yet in
secondary storage, we can use the AS value in the log to
write such pages. In other words, the Commit-Precedence
rule allows committed transactions whose effects have not
been registered yet in the database to be redone.

DBMS transactions and recovery 127

Writing in secondary storage

For each operation

– Update

– Insert

– Delete

The recovery manager must decide on the strategy for

writing in secondary storage

In the following, we concentrate on update, but similar

considerations hold for the other operations

DBMS transactions and recovery 128

Writing in secondary storage
There are three possible methods for writing values into the secondary storage, all
coherent with the WAL and the commit-precedence rules

• Immediate effect

– The update operations are executed immediately on the secondary storage after
the corresponding records are written in the log

– The buffer manager writes (either with force or flush) the effect of an operation by
a transaction T on the secondary storage before writing the commit record of T in
log

– It follows that all the pages of the DB modified by a transaction are certainly
written in the secondary storage

• Delayed effect

– The update operations by a transaction T are executed on the secondary storage
only after the commit of the transaction, i.e., only after the commit record of T has
been written in the log

– As usual, the log records are written in the log before the corresponding data are
written in secondary storage

• Mixed effect

– For an operation O, both the immediate effect and and the delayed effect are
possible, depending on the choice of the buffer manager

DBMS transactions and recovery 129

Examples

Immediate

Delayed

Mixed

(T)
Writes on the log

Writes on the database

(T)

(T)

DBMS transactions and recovery 130

Immediate effect

• The secondary storage may contain AS values from uncomitted
transactions

• Undo of transactions that are uncomitted when the failure occurs is
needed

• Redo is not needed (if the commit record of T is in the log, all pages
of T have been written in secondary storage)

dump CK Crash

T3

T1

T4

T2

T5

Nothing
Nothing

Nothing

Undo

Undo

DBMS transactions and recovery 131

Delayed effect

• The secondary storage does not contain AS values from
uncomitted transactions

• Undo is not needed (when we rollback a transaction T, nothing
has been done by T on the secondary storage)

• Redo is needed

dump CK Crash

T3

T1

T4

T2

T5

Nothing
Redo

Redo

Nothing

Nothing

DBMS transactions and recovery 132

Mixed effect

• The buffer manager decides its strategy for each of the
operation (for this reason, this is the most used method). In
particular, this strategy allows to to optimize the execution of
the flush operation

• Both Undo and Redo are needed

dump CK Crash

T3

T1

T4

T2

T5

Redo

Redo

Undo

Undo

Nothing

DBMS transactions and recovery 133

Two types of recovery

Depending on the type of failure…

• In case of system failure:

– Warm restart

• In case of disk failure:

– Cold restart

DBMS transactions and recovery 134

Warm restart

We will assume the mixed effect strategy. The warm restart is constituted by
5 steps:

1. We go backward through the log until the most recent checkpoint
record in the log

2. We set s(UNDO) = { active transactions at checkpoint } s(REDO) = { }

3. We go forward through the log adding to s(UNDO) the transactions
with the corresponding begin record, and moving those with the
commit record to s(REDO)

4. Undo phase: we go backward through the log again, undoing the
transactions in s(Undo) until the begin record of the oldest transaction
in the set of active transactions at the last checkpoint (note that we
may even go before the most recent checkpoint record)

5. Redo phase: we go forward through the log again, redoing the
transactions in s(Redo)

DBMS transactions and recovery 135

Warm restart: example

B(T1)

B(T2)

U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

C(T1)

B(T4)

U(T3,O2,B3,A3)

U(T4,O3,B4,A4)

CK(T2,T3,T4)

C(T4)

B(T5)

U(T3,O3,B5,A5)

U(T5,O4,B6,A6)

D(T3,O5,B7)

A(T3)

C(T5)

I(T2,O6,A8)

CK Crash

T4

T1

T2

T3

T5

C

A

C

C

DBMS transactions and recovery 136

Example: the most recent checkpoint

B(T1)

B(T2)

U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

C(T1)

B(T4)

U(T3,O2,B3,A3)

U(T4,O3,B4,A4)

CK(T2,T3,T4)

C(T4)

B(T5)

U(T3,O3,B5,A5)

U(T5,O4,B6,A6)

D(T3,O5,B7)

A(T3)

C(T5)

I(T2,O6,A8)

CK Crash

T4

T1

T2

T3

T5

C

UNDO = {T2,T3,T4}

A

C

C

DBMS transactions and recovery 137

Example: s(UNDO) and s(REDO)

B(T1)

B(T2)

8. U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

C(T1)

B(T4)

7. U(T3,O2,B3,A3)

9. U(T4,O3,B4,A4)

CK(T2,T3,T4)

1. C(T4)

2. B(T5)

6. U(T3,O3,B5,A5)

10. U(T5,O4,B6,A6)

5. D(T3,O5,B7)

A(T3)

3. C(T5)

4. I(T2,O6,A8)

0. UNDO = {T2,T3,T4}. REDO = {}

1. C(T4) UNDO = {T2, T3}. REDO = {T4}

2. B(T5) UNDO = {T2,T3,T5}. REDO = {T4}

3. C(T5) UNDO = {T2,T3}. REDO = {T4, T5}

DBMS transactions and recovery 138

Example: the UNDO phase

B(T1)

B(T2)

8. U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

C(T1)

B(T4)

7. U(T3,O2,B3,A3)

9. U(T4,O3,B4,A4)

CK(T2,T3,T4)

1. C(T4)

2. B(T5)

6. U(T3,O3,B5,A5)

10. U(T5,O4,B6,A6)

5. D(T3,O5,B7)

A(T3)

3. C(T5)

4. I(T2,O6,A8)

0. UNDO = {T2,T3,T4}. REDO = {}

1. C(T4) UNDO = {T2, T3}. REDO = {T4}

2. B(T5) UNDO = {T2,T3,T5}. REDO = {T4}

3. C(T5) UNDO = {T2,T3}. REDO = {T4, T5}

4. D(O6)

5. O5 =B7

6. O3 = B5

7. O2 =B3

8. O1=B1

Undo phase

DBMS transactions and recovery 139

Example: the REDO phase

B(T1)

B(T2)

8. U(T2, O1, B1, A1)

I(T1, O2, A2)

B(T3)

C(T1)

B(T4)

7. U(T3,O2,B3,A3)

9. U(T4,O3,B4,A4)

CK(T2,T3,T4)

1. C(T4)

2. B(T5)

6. U(T3,O3,B5,A5)

10. U(T5,O4,B6,A6)

5. D(T3,O5,B7)

A(T3)

3. C(T5)

4. I(T2,O6,A8)

0. UNDO = {T2,T3,T4}. REDO = {}

1. C(T4) UNDO = {T2, T3}. REDO = {T4}

2. B(T5) UNDO = {T2,T3,T5}. REDO = {T4}

3. C(T5) UNDO = {T2,T3}. REDO = {T4, T5}

4. D(O6)

5. O5 =B7

6. O3 = B5

7. O2 =B3

8. O1=B1

9. O3 = A4

10. O4 = A6

Undo phase

Redo phase

DBMS transactions and recovery 140

Cold restart

It is constituted by three phases:

1. Search for the most recent dump record in the log, and load
the dump into the secondary storage (more precisely, we
selectively copy the fragments of the DB that have been
damaged by the disk failure)

2. Forward recovery of the dump state:

1. We re-apply all actions in the log, in the order
determined by the log

2. At this point, we have the database state immediately
before the crash

3. We execute the warm restart procedure

DBMS transactions and recovery 141

Exercise: cold restart

• Consider the following log: DUMP, B(T1), B(T2), B(T3),

I(T1,O1,A1), D(T2,O2,B2), B(T4), U(T4,O3,B3,A3),

U(T1,O4,B4,A4), C(T2), CK(T1,T3, T4), B(T5), B(T6),

U(T5,O5,B5,A5), A(T3), CK(T1,T4,T5,T6), B(T7), A(T4),

U(T7,O6,B6,A6), U(T6,O3,B7,A7), B(T8), C(T7)

• Suppose that a disk failure occurs. Assume the mixed strategy.

DBMS transactions and recovery 142

Solution: reconstruct the DB from DUMP

• DUMP, B(T1), B(T2), B(T3), I(T1,O1,A1), D(T2,O2,B2), B(T4),

U(T4,O3,B3,A3), U(T1,O4,B4,A4), C(T2), CK(T1,T3, T4), B(T5),

B(T6), U(T5,O5,B5,A5), A(T3), CK(T1,T4,T5,T6), B(T7), A(T4),

U(T7,O6,B6,A6), U(T6,O3,B7,A7), B(T8), C(T7)

• We go to the most recent dump record in the log (the first

record), and load the dump into the secondary storage

• We scan the log forward starting from B(T1), and we execute all

actions in the log, until C(T7)

• We execute the warm restart procedure

DBMS transactions and recovery 143

Solution: warm restart

B(T1),

B(T2),

B(T3),

I(T1,O1,A1),

D(T2,O2,B2),

B(T4),

U(T4,O3,B3,A3),

U(T1,O4,B4,A4),

C(T2),

CK(T1,T3, T4),

B(T5),

B(T6),

U(T5,O5,B5,A5),

A(T3),

CK(T1,T4,T5,T6),

B(T7),

A(T4),

U(T7,O6,B6,A6),

U(T6,O3,B7,A7),

B(T8),

C(T7)

CK Crash

T4

T1

T2

T3

T5

C

A

T6

T7

T8

C

CK

A

DBMS transactions and recovery 144

Solution: most recent checkpoint
B(T1),

B(T2),

B(T3),

I(T1,O1,A1),

D(T2,O2,B2),

B(T4),

U(T4,O3,B3,A3),

U(T1,O4,B4,A4),

C(T2),

CK(T1,T3, T4),

B(T5),

B(T6),

U(T5,O5,B5,A5),

A(T3),

CK(T1,T4,T5,T6),

B(T7),

A(T4),

U(T7,O6,B6,A6),

U(T6,O3,B7,A7),

B(T8),

C(T7)

CK Crash

UNDO = {T1, T4, T5, T6}

T4

T1

T2

T3

T5

T6

T7

T8

C

A

C

A

DBMS transactions and recovery 145

Solution: the UNDO and REDO sets

0. UNDO = {T1, T4, T5, T6}. REDO = {}

1. B(T7) {T1, T4, T5, T6, T7}. REDO = {}

2. B(T8) {T1, T4, T5, T6, T7, T8}. REDO = {}

3. C(T7) {T1, T4, T5, T6, T8}. REDO = {T7}

B(T1),

B(T2),

B(T3),

I(T1,O1,A1),

D(T2,O2,B2),

B(T4),

U(T4,O3,B3,A3),

U(T1,O4,B4,A4),

C(T2),

CK(T1,T3, T4),

B(T5),

B(T6),

U(T5,O5,B5,A5),

A(T3),

CK(T1,T4,T5,T6),

B(T7),

A(T4),

U(T7,O6,B6,A6),

U(T6,O3,B7,A7),

B(T8),

C(T7)

DBMS transactions and recovery 146

Solution: the UNDO phase

0. UNDO = {T1, T4, T5, T6}. REDO = {}

1. B(T7) {T1, T4, T5, T6, T7}. REDO = {}

2. B(T8) {T1, T4, T5, T6, T7, T8}. REDO = {}

3. C(T7) {T1, T4, T5, T6, T8}. REDO = {T7}

4. O3 = B7

5. O5 = B5

6. O4 = B4

7. O3 = B3

8. D(O1)

B(T1),

B(T2),

B(T3),

I(T1,O1,A1),

D(T2,O2,B2),

B(T4),

U(T4,O3,B3,A3),

U(T1,O4,B4,A4),

C(T2),

CK(T1,T3, T4),

B(T5),

B(T6),

U(T5,O5,B5,A5),

A(T3),

CK(T1,T4,T5,T6),

B(T7),

A(T4),

U(T7,O6,B6,A6),

U(T6,O3,B7,A7),

B(T8),

C(T7)

Undo phase

DBMS transactions and recovery 147

Solution: the REDO phase
0. UNDO = {T1, T4, T5, T6}. REDO = {}

1. B(T7) {T1, T4, T5, T6, T7}. REDO = {}

2. B(T8) {T1, T4, T5, T6, T7, T8}. REDO = {}

3. C(T5) {T1, T4, T5, T6, T8}. REDO = {T7}

4. O3 = B7

5. O5 = B5

6. O4 = B4

7. O3 = B3

8. D(O1)

9. O6 = A6

B(T1),

B(T2),

B(T3),

I(T1,O1,A1),

D(T2,O2,B2),

B(T4),

U(T4,O3,B3,A3),

U(T1,O4,B4,A4),

C(T2),

CK(T1,T3, T4),

B(T5),

B(T6),

U(T5,O5,B5,A5),

A(T3),

CK(T1,T4,T5,T6),

B(T7),

A(T4),

U(T7,O6,B6,A6),

U(T6,O3,B7,A7),

B(T8),

C(T7) Redo phase

Undo phase

DBMS transactions and recovery 148

