
Exercises on SQL query 
evaluation

Riccardo Rosati

Data management for Data Science
Sapienza Università di Roma

2017/2018



Exercise

Consider a database containing relation Movie, whose attributes are 
title, year, directorID, genre, duration, country, and relation Director, 
whose attributes are directorID, name, country, birthDate. Relation 
Movie contains 40.000 records, and the size of every such record is 
N/50, where N is the size of a memory page. Relation Director 
contains 5000 records, and the size of every such record is N/25. 
Moreover, the attribute directorID is a key for relation Director.
Now consider the following query Q:

SELECT F.title, R.name
FROM Movie F, Director R
WHERE F.directorID = R.directorID

and assume that the buffer has 32 available slots for the execution 
of the query. Moreover, assume that the average time for accessing 
a page in mass memory is 5 milliseconds.

2



Exercise

1. Assuming that joins are executed through the Block 
Nested Loop algorithm, choose the physical organization 
of the relations Movie and Director such that the number 
of accesses to mass memory pages during the execution 
of the above query is minimum;

2. assuming that joins are executed through the Block 
Nested Loop algorithm, and ignoring the time needed for 
processing data in central memory, compute the time (in 
milliseconds) needed to execute the above query 
according to the physical organization chosen at the 
above point 1;

3



Exercise

3. assuming that joins are executed through the Index 
Nested Loop algorithm, choose the physical organization 
of the relations Movie and Director such that the number 
of accesses to mass memory pages during the execution 
of the above query is minimum;

4. assuming that joins are executed through the Index 
Nested Loop algorithm, and ignoring the time needed for 
processing data in central memory, compute the time (in 
milliseconds) needed to execute the above query 
according to the physical organization chosen at the 
above point 3.

4



Exercise

5. assuming that joins are executed through the Sort 
Merge Join algorithm, choose the physical organization of 
the relations Movie and Director such that the number of 
accesses to mass memory pages during the execution of 
the above query is minimum;

6. assuming that joins are executed through the Sort 
Merge Join algorithm, and ignoring the time needed for 
processing data in central memory, compute the time (in 
milliseconds) needed to execute the above query 
according to the physical organization chosen at the 
above point 3.

5



Solution – Point 1

The Block Nested Loop algorithm accesses the data files 
for the relations sequentially, therefore no particular 
file organization is needed. Consequently, we choose 
the simplest one, i.e., the heap file.

6



Solution – Point 2

We have the following values:

Relation Movie:

• number of records: 40.000
• size of every record = N/50
• number of pages in the data file = 40000/50 = 800

Relation Director:

• number of records = 5000 
• size of every record = N/25
• number of pages in the data file = 5000/25 = 200

Consequently, we choose Director as the outer relation, and 
Movie as the inner relation.

7



Solution – Point 2

The number of pages read by the Block Nested Loop algorithm 
is: M + M*N/(G-2). In our case:

• M = 200
• N = 800
• G = 32

Applying the above values, we obtain 200 + 800 * 200/30 = 5533

Therefore, the time needed by the algorithm is:

5533 * 5ms = 27665ms = 27,665 seconds.

8



Solution – Point 3

The Index Nested Loop algorithm requires an index on the inner 
relation (with search key equal to the join attributes). Moreover, 
the execution time of this algorithm is minimized by choosing as 
outer relation the one with minimum number of records.

Consequently:

• we choose Director as the outer relation, and Movie as the 
inner relation

• we choose a heap file organization for the relation Director

• we choose a hashed file organization for the relation Movie

9



Solution – Point 4

The number of pages read by the Index Nested Loop 
algorithm (using a hashed file for the inner relation) is: 

M + 1.2 * k 

where k is the number of records of the outer relation (we 
assume that every search by equality over the hased file 
requires an average number of page accesses equal to 1.2, 
to take overflow pages into account).

In our case, M = 200 and k = 5000, thus we obtain

200 + 1.2 * 5000 = 6200

Therefore, the time needed by the algorithm is:

6200 * 5ms = 31000ms = 31 seconds.

10



Solution – Point 5

The Sort Merge Join algorithm is faster if the the data 
files for the relations are already ordered (otherwise it 
has to first sort the relations and then execute the join 
operation). Consequently, we choose the sorted file 
organization for both relations.

11



Solution – Point 6

Assuming that the join operation is sufficiently selective (i.e., the 
tuples of records of the inner relation that join with a given tuple 
of the outer relation is about 1 on average), the number of pages 
read by the Sort Merge Join algorithm using the sorted file 
organization for both relations is: 
M + N 
We choose Movie as the outer relation: however, notice that the 
choice of the outer and the inner relation does not affect the 
execution cost of the Sort Merge Join algorithm.
In our case, M = 200 and N = 800, thus we obtain
200 + 800 = 1000
Therefore, the execution time of the algorithm is:
1000 * 5ms = 5000ms = 5 seconds.

12


